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In this note, a new example of Meyer function and its application to the signature of
4-manifolds are presented.

1 The first MMM class and Meyer’s signature cocycle
Let $\Sigma_{g}$ be a closed oriented $C^{\infty}$-surface of genus $g$ and $Diff^{+}\Sigma_{g}$ the group of all orientation
preserving diffeomorphisms of $\Sigma_{g}$ , endowed with $C^{\infty}$-topology. The mapping class group
of $\Sigma_{g}$ , denoted by $\Gamma_{g}$ , is defined to be the group of connected components of $Diff^{+}\Sigma_{g}$ .

By the result of Earle-Eells[2], each connected component of $Diff^{+}\Sigma_{g}$ is contractible
for $g\geq 2$ . It follows that the classifying space $BDiff^{+}\Sigma_{g}$ is the Eilenberg-MacLane space
$K(\Gamma_{g}, 1)$ . Let $p:Earrow B$ be an oriented $\Sigma_{g}$ bundle. For each $i\geq 1$ , the i-th MMM class
$e_{i}=e_{i}(p)$ is defined by

$e_{i}(p):=p_{!}(e^{i+1})\in H^{2i}(B)$ .
Here, $e\in H^{2}(E)$ is the Euler class of the tangent bundle along the fiber of $p$ and $p!$ is the
Gysin map. Since these classes are natural with respect to bundle maps between oriented
$\Sigma_{g}$ bundles, one can think of $e_{i}$ as the cohomology class in

$H^{2i}(BDiff^{+}\Sigma_{g})\cong H^{2i}(\Gamma_{g})$ .

In this note, we consider the first MMM class $e_{1}$ , which is closely related to the signature
of 4-manifolds as follows.

Let $p:Earrow B$ be an oriented $\Sigma_{g}$ bundle over a closed oriented surface $B$ . Then the total
space $E$ is a closed 4-manifold endowed with the natural orientation. By the Hirzebmch
signature formula, we have

Sign$(E)= \frac{1}{3}\langle e_{1}(p),$ $[B]\rangle$ . (1)

There is also a 2-cocycle of $\Gamma_{g}$ using the signature of 4-manifolds. This is Meyer’s
signature cocycle $\tau_{g}[9]$ . Here we briefly recall its definition.

Let $P$ denote the pair of pants, i.e., $P=S^{2} \backslash \bigcup_{i=1}^{3}$ Int $D_{i}$ where $D_{i},$ $i=1,2$ , and 3 are
the three disjoint closed disks in the 2-sphere $S^{2}$ . Choose a base point $p_{0}\in$ Int$P$ and fix a
based loop $\ell_{1}$ and $\ell_{2}$ such that $\ell_{i}$ is free homotopic to the loop traveling once the boundary
$\partial D_{i}$ by counter clockwise manner $(i=1,2)$ . For $(f_{1}, f_{2})\in\Gamma_{g}\cross\Gamma_{g}$ , we can construct an
oriented $\Sigma_{g}$ bundle $E(f_{1}, f_{2})$ over $P$ such that the topological monodromy $\pi_{1}(P)arrow\Gamma_{g}$

sends $[\ell_{i}]$ to $f_{i}$ for $i=1,2$ . $E(f_{1}, f_{2})$ is a compact $C^{\infty}$-manifold of dimension 4 endowed
with the natural orientation. Then the signature of $E(f_{1}, f_{2})$ is defined and we set

$\tau_{g}(f_{1}, f_{2})$ $:=$ -Sign$(E(f_{1}, f_{2}))$ .
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By the Novikov additivity of the signature $\tau_{g}$ tums out to be a 2-cocycle of $\Gamma_{g}$ , and the
equation (1) shows that

$3[\tau_{g}]=e_{1}\in H^{2}(\Gamma_{g})$ .

2 Triviality of $e_{1}$ over rationals
Let $p:Earrow B$ be an oriented $\Sigma_{g}$ bundle or continuous family of compact Riemann surface
of genus $g$ .

Now we are interested in the triviality of the rational cohomology class $e_{1}(p)\in H^{2}(B;\mathbb{Q})$ .
If this is the case, $[\tau_{g}]$ pulled back to $H^{2}(\pi_{1}(B);\mathbb{Q})$ vanishes and there exists a $\mathbb{Q}$-valued 1-
cochain $\phi:\pi_{1}(B)arrow \mathbb{Q}$ cobounding $\tau_{g}$ pulled back to $\pi_{1}(B)$ by the topological monodromy
of $p$. Moreover, if $H^{1}(\pi_{1}(B);\mathbb{Z})=0$ , such a l-cochain is unique. Then we call $\phi$ the Meyer
function of $\pi_{1}(B)$ with respect to $p:Earrow B$ .

There are several examples:

1. W. Meyer [9] showed that $[\tau_{g}]\in H^{2}(\Gamma_{g};\mathbb{Z})$ is torsion for $g=1,2$ . Thus, $e_{1}=0\in$
$H^{2}(\Gamma_{g};\mathbb{Q})$ for $g=1,2$ . In the case $g=1,$ $\Gamma_{1}$ is isomorphic to $SL(2;\mathbb{Z})$ . Meyer
also gave an explicit formula for the Meyer function $\phi_{1}:SL(2;\mathbb{Z})arrow\frac{1}{3}\mathbb{Z}$ using the
Rademacher function.

2. The hyperelliptic mapping class group $\Gamma_{9}^{H}\subset\Gamma_{g}$ is defined as the centralizer of a
hyperelliptic involution $\iota\in\Gamma_{g}$ . As was shown by F. Cohen [4] and N. Kawazumi
[6] independently, $\Gamma_{g}^{H}$ is $\mathbb{Q}$-acyclic. In particular, $e_{1}=0\in H^{2}(\Gamma_{g}^{H};\mathbb{Q})$ . Later, H.
Endo [3] directly showed that the existence and the uniqueness of the Meyer function
$\phi_{g}^{H}:\Gamma_{g}^{H}arrow\frac{1}{2g+1}\mathbb{Z}$ using a finite presentation of $\Gamma_{g}^{H}$ by J. Birmann-H. Hilden.

3. In contrast, W. Meyer [9] showed that $[\tau_{g}]\in H^{2}(\Gamma_{g};\mathbb{Z})$ has infinite order therefore
$e_{1}\in H^{2}(\Gamma_{g};\mathbb{Q})$ is non-trivial for $g\geq 3$ . In fact, J. Harer [5] showed that $H^{2}(\Gamma_{g};\mathbb{Z})\cong$

$\mathbb{Z}$ for $g\geq 3$ , and combining this with Meyer’s computation, it follows that $[\tau_{9}]\in$

$H^{2}(\Gamma_{g};\mathbb{Z})\cong \mathbb{Z}$ is equal to 4 times a generator.

4. D. Mumford [10] observed that if $p:Earrow B$ is a family of non-hyperelliptic curves
of genus 3, $e_{1}(p)=0\in H^{2}(B;\mathbb{Q})$ . His proof uses the Grothendieck-Riemann-Roch
formula.

In this note, we give an altemative proof of Mumford’s observation, and generalize
it to the case of family of plane curves. Our approach is to show the existence and the
uniqueness of the Meyer function of the group $\Pi(4)$ defined in the next section, which
is universal for families of non-hyperelliptic curves of genus 3. Our approach is purely
topological, although some algebraic geometry is used to compute examples.

3 The mapping class group for plane curves
In this section we construct the group $\Pi(d)$ and state the main result of this note.

Henceforth $d$ is a fixed integer $\geq 2$ . Let $V$ be the complex vector space of homogeneous
polynomials of degree $d$ in the determinates $x,$ $y$ , and $z$ , and let $\mathbb{P}=\mathbb{P}(V)$ be the projec-
tivization of $V$ . Each point $a\in \mathbb{P}$ determines the complex plane curve $C_{a}\subset \mathbb{P}^{2}$ of degree
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$d$ . Let $D$ be the set of all points $a\in \mathbb{P}$ such that the corresponding curve $C_{a}$ is singular.
$D$ is called the discriminant locus and known to be irreducible and of codimension 1. Set

$\mathcal{F}:=\{(a,p)\in(\mathbb{P}\backslash D)\cross \mathbb{P}^{2};p\in C_{a}\}$ .

The group of automorphisms of $\mathbb{P}^{2}$ , namely $PGL(3)$ , acts naturally on $\mathbb{P}\backslash D$ as change of
variables. Then the first projection $\mathcal{F}arrow(\mathbb{P}\backslash D)$ is a complex analytic family of compact
Riemann surfaces of genus 3 and the projection map is $PGL(3)$ -equivariant. Here, the
action of $PGL(3)$ on $\mathcal{F}$ is diagonal.

Taking Borel construction $(\mathbb{P}\backslash D)_{PGL(3)}=EPGL(3)\cross PGL(3)(\mathbb{P}\backslash D)$ , we obtain a
continuous family

$p_{u}:\mathcal{F}_{PGL(3)}arrow(\mathbb{P}\backslash D)_{PGL(3)}$

of compact Riemann surfaces of genus 3.
We denote by $\Pi(d)$ the fundamental group of $(\mathbb{P}\backslash D)_{PGL(3)}$ and call this group the

mapping class group for plane curves of degree $d$ . Let

$\rho;\Pi(d)arrow\Gamma_{9}$

be the topological monodromy of $p_{u}$ . Here, $g= \frac{1}{2}(d-1)(d-2)$ .
Recall that the usual mapping class group $\Gamma_{g}$ is the fundamental group of the classifying

space BDi$ff^{+}\Sigma_{g}$ . The name “mapping class group” for $\Pi(d)$ comes $kom$ the following
universal property of $(\mathbb{P}\backslash D)_{PGL(3)}$ .

Theorem 3.1. For any topological space $B$ , there is a natural bijection

$[B, ( \mathbb{P}\backslash D)_{PGL(3)}]\cong\frac{\{familyofnon-singularp1anecurvesofdegreedoverB\}}{\sim isotopy}$ (2)

induced by pulling back $p_{u}$ . Here, the left hand side is the set of homotopy classes of
continuous maps from $B$ to $(\mathbb{P}\backslash D)_{PGL(3)}$ .

The following are the main results of this note:

Theorem 3.2. $\rho^{*}([\tau_{g}])=0\in H^{2}(\Pi(d);\mathbb{Q})$ .

Theorem 3.3.

$H_{1}(\Pi(d);\mathbb{Z})=\{\begin{array}{ll}\mathbb{Z}/3(d-1)^{2}\mathbb{Z} if d\equiv Omod3,\mathbb{Z}/(d-1)^{2}\mathbb{Z} if d\equiv 1 or 2 mod 3.\end{array}$

As a consequence of Theorems 3.2 and 3.3, there exists the unique l-cochain $\phi^{d}:\Pi(d)arrow$

$\mathbb{Q}$ such that $\delta\phi^{d}=\rho^{*}\tau_{g}$ . We call this cochain the Meyer function for plane curves of degree
$d$ . One can easily see that $\phi^{d}$ is a class function on $\Pi(d)$ .

Let $\sigma$ be an element of $\pi_{1}(\mathbb{P}\backslash D)$ traveling once around $D$ . Such $\sigma$ is called a lasso
around $D$ . We also denote by $\sigma$ the image of $\sigma$ by the natural surjection $\pi_{1}(\mathbb{P}\backslash D)arrow\Pi(d)$ .
$\sigma$ is well-defined up to conjugacy.

Proposition 3.4. For $d\geq 3$ ,
$\phi^{d}(\sigma)=-\frac{d+1}{3(d-1)}$ .
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By this proposition, we can see the order of the integral cohomology class $\rho^{*}[\tau_{g}]\in$

$H^{2}(\Pi(d);\mathbb{Z})$ .
Here we briefly explain how to prove Theorem 3.2. Let $\tilde{D}\subset V$ be the union of all lines

in $D\subset \mathbb{P}$ . There is a natural map $V\backslash \tilde{D}arrow \mathbb{P}\backslash Darrow(\mathbb{P}\backslash D)_{PGL(3)}$ . We can see that this
map induces an injective homomorphism

$H^{2}(\Pi(d);\mathbb{Q})arrow H^{2}(\pi_{1}(V\backslash \tilde{D});\mathbb{Q})$ .
Moreover we can construct a l-cochain $c:\pi_{1}(V\backslash \tilde{D})arrow \mathbb{Z}$ cobounding $\tau_{g}$ pulled back to
$\pi_{1}(V\backslash \tilde{D})$ . The construction is based on the signature of 4-manifolds. Thus we also have
$\rho^{*}([\tau_{g}])=0\in H^{2}(\Pi(d);\mathbb{Q})$ . For details, see Section 3 of [7].

4 The local signature
As an application, we define the local signature for each fiber germs of 4-dimensional fiber
spaces whose general fibers are non-hyperelliptic curves of genus 3. We first introduce a
class of 4-manifolds we consider. By a 4-dimensional non-hyperelliptic fibration of genus 3
is meant a following data:

1. $E(resp. B)$ is an oriented 4(resp. 2)-manifold and $\pi:Earrow B$ is a $C^{\infty}$-map,

2. there exist finitely many points $b_{1},$
$\ldots,$

$b_{n}\in$ Int $(B)$ such that the restriction of $\pi$ to
$B\backslash \{b_{i}\}_{i}$ has a structure of $C^{\infty}$-family of non-hyperelliptic curves of genus 3.

Let $\mathcal{F}_{i}$ be the (possibly singular) fiber germ around $b_{\mathfrak{i}}$ and $D_{i}$ a small closed 2-disk
centered at $b_{i}$ . Now for the case $d=4$, the right hand side of (2) in Theorem 3.1 is
naturally isomorphic to

$\frac{\{continuousfamilyofnon-hypere11ipticcurvesofgenus3overB\}}{\sim isotopy}$ .

Thus, by restricting $\pi$ to $D_{i}\backslash \{b_{i}\}$ we obtain the classifying map $g^{i}:D_{i}\backslash \{b_{i}\}arrow$

$(\mathbb{P}\backslash D)_{PGL(3)}$ (determined up to homotopy). Define

loc.sig2 $(\mathcal{F}_{i})$ $:=\phi^{4}(g_{*}^{i}(\partial D_{i}))_{*}(\gamma))+$ Sign$(N( \pi^{-1}(b_{i})))\in\frac{1}{9}\mathbb{Z}$ .

Here, $N(\pi^{-1}(b_{i}))$ denotes a fiber neighborhood of the singular fiber $\pi^{-1}(b_{i})$ . It is easy to see
that this value only depends on the germ of $\pi$ around $b_{i}$ (note that $\phi^{4}$ is a class function
on $\Pi(4))$ . We remark here that this definition originates from Y. Matsumoto [8] where
Lefschetz fibrations of genus 2 are discussed.

By using this local signature, we can now formulate the signature formula in our setting:
Theorem 4.1 (The signature formula). Let $p:Earrow B$ be a 4-dimensional non-hyperelliptic
fibration of genus 3. If $E$ is closed,

Sign$(E)= \sum_{l}$ loc.sig $Q(\mathcal{F}_{i})$ .

In this case of non-hyperelliptic family of genus 3, T. Ashikaga-K. Konno [1] and K.
Yoshikawa [11] have already defined local signature independently. The definition of [1]
is algebro geometric and that of [11] is complex analytic. Computing some examples of
values of our local signature, we observe that they coincide with those computed in [1] and
[11]. For details of the computations, see [7].
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