Characteristic classes of symplectomorphism groups as discrete groups

森田 茂之 (東京大学大学院数理科学研究科)

1 Problem

 (M,ω) : closed symplectic manifold, dim = 2n

Symp M: symplectomorphism group, Symp M: with discrete topology

Problem 1 (widely open problem)

$$H^*(\operatorname{BSymp} M) = ?$$

 $H^*(\operatorname{BSymp}^{\delta} M) = H^*(\operatorname{Symp}^{\delta} M) = ?$

 $M = \Sigma_g$ closed oriented surface $g \ge 2$:

$$\operatorname{Symp}\Sigma_g \overset{\operatorname{Moser}}{\sim} \operatorname{Diff}^+\Sigma_g \overset{\operatorname{Earle-Eells}}{\sim} \mathcal{M}_g \Rightarrow H^*(\operatorname{BSymp}\Sigma_g) \cong H^*(\operatorname{Diff}\Sigma_g) \cong H^*(\mathcal{M}_g)$$

but $H^*(\operatorname{Symp}^{\delta}\Sigma_g)$ completely different

joint work with D. Kotschick

2 Gel'fand-Fuks cohomology theory

 a_n : Lie algebra of formal vector fields on \mathbb{R}^n

$$\mathbf{a}_n = \{\sum_i f_i \frac{\partial}{\partial x_i}; f_i \in \mathbb{R}[[x_1, \cdots, x_n]]\}$$

 $B\Gamma_n$: Haefliger classifying space for codimension n foliations

 $H_{GF}^*(\mathfrak{a}_n, \mathcal{O}(n)) \longrightarrow H^*(\mathcal{B}\Gamma_n; \mathbb{R})$ Gel'fand-Fuks cohomology

Theorem 2 (Gel'fand-Fuks)

$$H_{GF}^*(\mathfrak{a}_n), \ H_{GF}^*(\mathfrak{a}_n, \mathcal{O}(n))$$

finite dimensional

Vey found a basis. In particular, the class with the lowest degree:

$$H_{GF}^{2n+1}(\mathfrak{a}_n, \mathcal{O}(n)) \ni h_1 c_1^n$$

close relation with the Godbillon-Vey class:

$$GV \in H^{2n+1}(B\Gamma_n; \mathbb{R})$$

case of n=1:

 \mathcal{F} : cod. 1 foliation on X defined by 1-form $\theta \Rightarrow d\theta = \eta \wedge \theta$ for some η

$$\eta \wedge d\eta$$
 is a closed 3-form and $GV(\mathcal{F}) = [\eta \wedge d\eta] \in H^3(X; \mathbb{R})$

Theorem 3 (Thurston) There is a one parameter family \mathcal{F}_t of cod. 1 foliations on S^3 such that

$$\mathrm{GV}(\mathcal{F}_t) = t \in H^3(S^3; \mathbb{R}) \cong \mathbb{R}$$

essential use of hyperbolic geometry

3 Gel'fand-Fuks cohomology of formal Hamiltonian vector fields

 \mathfrak{ham}_{2n} : Lie algebra of formal Hamiltonian vector fields on $(\mathbb{R}^{2n}, \omega)$

 $\mathrm{B}\Gamma_{2n}^{\omega}$: Haefliger classifying space for codimension 2n transversely symplectic foliation

 $H_{GF}^*(\mathfrak{ham}_{2n}, \mathrm{U}(n)) \longrightarrow H^*(\mathrm{B}\Gamma_{2n}^\omega; \mathbb{R})$ Gel'fand-Fuks cohomology

very difficult open question (mystery!):

 $H_{GF}^*(\mathfrak{ham}_{2n})$ infinitely generated? Gel'fand-Kalinin-Fuks: (cohomology is bigraded)

$$H^*_{GF}(\mathfrak{ham}_{2n},\operatorname{Sp}(2n,\mathbb{R}))_{(\leq 0)}\cong \mathbb{R}[\omega,p_1,p_2,\cdots,p_n]/\operatorname{Bott}$$
 vanishing

$$\omega^{k}p_{1}^{k_{1}}\cdots p_{n}^{k_{n}}=0$$

for
$$k + k_1 + 2k_2 + \cdots + nk_n > n$$

For the case n = 1, they also found

$$H_{GF}^*(\mathfrak{ham}_2, \mathrm{Sp}(2, \mathbb{R}))_{(k)} = 0 \text{ for } k = 1, 2, 3$$

But, \exists exotic class! in $H^7_{GF}(\mathfrak{ham}_2, \operatorname{Sp}(2, \mathbb{R}))_{(4)}$ Gel'fand-Kalinin-Fuks class (1972)

In 1999, Metoki found another exotic class in $H^9_{GF}(\mathfrak{ham}_2, \operatorname{Sp}(2, \mathbb{R}))_{(7)}$ Metoki class

On the other hand, **Perchik** (1975) obtained a formula for the Euler characteristics $\chi(H_{GF}^*(\mathfrak{ham}_2, \operatorname{Sp}(2, \mathbb{R}))_{(k)})$

$$\Rightarrow$$
 $\exists 57 - 4(-1)$ more exotic classes! He could not prove dim $H_{GF}^*(\mathfrak{ham}_2) = \infty$

Conjecture 4 (Folklore)

$$\dim H^*_{GF}(\mathfrak{ham}_{2n},\operatorname{Sp}(2n,\mathbb{R}))=\infty,\ \dim H^*_{GF}(\mathfrak{div}_n,\operatorname{SL}(n,\mathbb{R}))=\infty$$

 \mathfrak{div}_n : Lie algebra of formal divergence free vector fields on \mathbb{R}^n , $\mathfrak{ham}_2 = \mathfrak{div}_2$

4 Foliated cohomology

 (X, \mathcal{F}) : codimension n foliated manifold

Definition 5 (foliated cohomology)

$$\Omega^*_{\mathcal{F}}(X):=\Gamma(X,\Lambda^*(T^*_{\mathcal{F}}))=\Omega^*(X)/(forms\ vanishing\ on\ leaves)$$
 $H^*_{\mathcal{F}}(X)=H^*(\Omega^*_{\mathcal{F}}(X))$

wild object, hard to compute

5 Foliated cohomology in the symplectic case

$$\mathfrak{ham}_{2n}\cong \mathbb{R}[[x_1,\cdots,x_n;y_1,\cdots,y_n]]/\mathbb{R}\cong \prod_{k=1}^\infty S^k(\mathbb{R}^{2n},\omega)$$

 $ham_{2n}^0 = ham_{2n}$ without constant term

Kontsevich: transversely symplectic codimension 2n foliated manifold (X, \mathcal{F})

$$H^*_{GF}(\mathfrak{ham}^0_{2n}, \mathrm{U}(n)) \longrightarrow H^*_{\mathcal{F}}(X) \xrightarrow{\wedge \omega^n} H^{*+2n}(X; \mathbb{R})$$

$$H^*_{GF}(\mathfrak{ham}_{2n}^0, \mathrm{U}(n)) \longrightarrow H^{*+2n}(\mathfrak{ham}_{2n}, \mathrm{U}(n)) \longrightarrow H^{*+2n}(\mathrm{B}\Gamma\omega_{2n}; \mathbb{R})$$

 \Rightarrow for any symplectic manifold (M, ω)

$$H^*_{GF}(\mathfrak{ham}^0_{2n},\mathrm{U}(n)) \longrightarrow H^*(\mathrm{Symp}^\delta(M,\omega);\mathbb{R})$$

Furthermore

$$\mathfrak{ham}_{2n}^1 = \mathfrak{ham}_{2n}^0$$
 without linear term $\Rightarrow H_{GF}^*(\mathfrak{ham}_{2n}^0, \operatorname{Sp}(2n, \mathbb{R})) \cong H_{GF}^*(\mathfrak{ham}_{2n}^1; \mathbb{R})^{\operatorname{Sp}}$

⇒ obtain homomorphisms

$$H^*_{GF}(\mathfrak{ham}^1_{2n};\mathbb{R})^{\operatorname{Sp}}{\longrightarrow} H^{*+2n}(\mathfrak{ham}_{2n},\operatorname{Sp}(2n,\mathbb{R})))$$

$$H^*_{GF}(\mathfrak{ham}^1_{2n};\mathbb{R})^{\operatorname{Sp}} {\longrightarrow} H^*(\operatorname{Symp}(M,\omega);\mathbb{R})$$

in the case of (Σ_g, ω) , what is

$$H^*_{GF}(\mathfrak{ham}_2^1)^{\operatorname{Sp}} {\longrightarrow} H^{*+2}_{GF}(\mathfrak{ham}_2,\operatorname{Sp}(2,\mathbb{R})))?$$

$$H_{GF}^*(\mathfrak{ham}_2^1)^{\operatorname{Sp}} \longrightarrow H^*(\operatorname{Symp}(\Sigma_a, \omega); \mathbb{R})?$$

detects Gel'fand-Kalinin-Fuks and Metoki classes?

Answer: yes for GKF class

 \exists unique element $\eta \in H^5(\mathfrak{ham}_2^1)^{\operatorname{Sp}}$ s.t.

$$\mathrm{GKF}\ \mathrm{class} = \eta \wedge \omega \in H^7(\mathfrak{ham}_2, \mathrm{Sp}(2, \mathbb{R}))$$

merits of this approach:

(*) the stable cohomology

$$\lim_{n\to\infty} H^*_{GF}(\mathfrak{ham}_{2n}) \cong \mathbb{R}[\omega]$$

is uninteresting (Guillemin-Shnider), but the stable cohomology

$$\lim_{n o \infty} H^*_{GF}(\mathfrak{ham}^1_{2n})^{\operatorname{Sp}}$$

seems to be highly non-trivial!

- (**) $H_{GF}^*(\mathfrak{ham}_{2n}^1)^{\operatorname{Sp}}$ is easier than $H_{GF}^*(\mathfrak{ham}_{2n})$ we are trying to decompose **Metoki class**, and possibly define new exotic classes
- (***) similarly for the case of div_n

$$\exists \eta \land \text{volume form} \in H^{5+n}(\mathfrak{div}_n, \mathrm{SL}(n, \mathbb{R}))$$
?

(****) we could try to prove

$$\dim H^*_{GF}(\mathfrak{ham}^1_{2n})^{\operatorname{Sp}}=\infty$$

6 The GV classes and foliated cohomology

The Godbillon-Vey classes

$$GV = h_1 c_1^n \in H^{2n+1}_{GF}(\mathfrak{a}_n, O(n))$$

are NOT stable classes, but they can be decomposed as

$$h_1c_1^n = h_1 \wedge c_1^n$$
 where $h_1 \in H^1_{GF}(\mathfrak{a}_n^0, \mathcal{O}(n))$

is a stable leaf invariant! coming from the determinant of the holonomy

 $a_n^0 = a_n$ without constant term

$$(X,\mathcal{F}) \colon \text{codimension } n \text{ foliated manifold} \Rightarrow H^1_{\mathcal{F}}(X) \ni h_1(\mathcal{F}) \xrightarrow{\wedge c_1^n} GV(\mathcal{F}) \in H^{2n+1}(X;\mathbb{R})$$

So if
$$h_1(\mathcal{F}) = 0$$
, then $GV(\mathcal{F}) = 0$ as well.

We have proved that the original GKF class can be decomposed into a leaf invariant η times ω

7 Sketch of proof

Metoki gave a formula for GKF class, 15 lines (with about 100 terms!)

10 lines are multiple of the symplectic form ω others are not, but we expected that the remaining terms will also be multiple of ω by adding suitable coboundaries

 \mathfrak{ham}_{2n}^1 is a graded Lie algebra \Rightarrow

 $H^*_{GF}(\mathfrak{ham}^1_{2n})^{\operatorname{Sp}}$ is bigraded and furthermore $C^*_{GF}(\mathfrak{ham}^1_{2n})^{\operatorname{Sp}}$ is a direct sum of

finite subcomplexes

We looked at the part $(H := (\mathbb{R}^{2n}, \omega))$

$$C_{11}[32] = 0 \xrightarrow{\theta} C_{10}[30] \cong (\Lambda^{10}S^3H)^{\operatorname{Sp}} \xrightarrow{\theta} C_{9}[28] \cong (\Lambda^{8}S^3H \otimes S^4H)^{\operatorname{Sp}} \xrightarrow{\theta}$$

$$C_8[26] \cong ((\Lambda^7 S^3 H \otimes S^5 H) \oplus (\Lambda^6 S^3 H \otimes \Lambda^2 S^4 H))^{\operatorname{Sp}} \stackrel{\theta}{\longrightarrow}$$

 \cdots more and more complicated terms $\cdots \xrightarrow{\vartheta}$

$$C_2[14] \cong ((\Lambda^2 S^7 H) \oplus (S^3 H \otimes S^{11} H) \oplus \cdots))^{\operatorname{Sp}} \xrightarrow{\theta} C_1[12] \cong (S^{12} H)^{\operatorname{Sp}} \xrightarrow{\theta} C_0[10] = 0.$$

$$\Rightarrow$$
 compute $H_{GF}^{5}(\mathfrak{ham}_{2n}^{1})_{(20)}^{Sp}$

For n = 1, we found that rank is given by 0, 0, 0, 0, 4, 12, 9, 3, 1, 0

$$\Rightarrow \chi = -1$$
 and $H^5_{GF}(\mathfrak{ham}^1_2)^{\operatorname{Sp}}_{(20)} \cong \mathbb{R}$

8 Big open problem

Problem 6 Prove that the GKL class is geometrically non-trivial as an element of

$$H^5(\operatorname{Symp}^{\delta}(\Sigma_g,\omega);\mathbb{R})$$

or as an element of

$$H^7(\mathrm{B}\Gamma_2^\omega;\mathbb{R}).$$

What kind of geometry should we use? Probably hyperbolic geometry would be

insufficient