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Culler and Shalen developed the theory which relates ideal points of the character
variety of a 3-manifold and incompressible surfaces. The theory has a great influence
on the study of 3-manifolds. Although their theory is powerful and beautiful, it is
difficult to find ideal points of the character variety of a 3-manifold. In this article,
we show a computable method for finding ideal points from an ideal triangulation
of a 3-manifold.

This article is organized as follows. In section 2, we review the basic notions.
In section 3, we explain ideal triangulations and a parametrization of PSL $($ 2, $\mathbb{C})-$

representations. In section 4, we give an exposition of logarithmic limit set. This
material is not essential to understand main theorem, but it might give some insight.
In section 5, we state the main theorem. In section 6 we give an example of $9_{32}$

knot complement case.
In this article we assume that a113-manifolds are compact orientable with torus

boundary.

2. IDEAL POINTS AND INCOMPRESSIBLE SURFACES

In this section we review the notions of character varieties and ideal points and
the relationship between ideal points and incompressible surfaces. The original
work was done by Culler and Shalen [Cu-Sh]. For PSL$(2, \mathbb{C})$ case, see [Bo-Zh],
[He-Po].

2.1. Ideal points of a character variety. Let $M$ be a 3-manifold with torus
boundary $T=\partial M$ . Let $R(M)$ be the affine algebraic set consisting of PSL $($2, $\mathbb{C})$

representations of the fundamental group of $M$ i.e. $R(M)=Hom$($\pi_{1}(M)$ , PSL(2, $\mathbb{C})$ ).
PSL $($2, $\mathbb{C})$ acts on $R(X)$ by conjugation: $\rho\mapsto g\rho g^{-1}$ . The character variety of $M$ is
the algebraic geometric quotient of $R(M)$ by the action of PSL $($ 2, $\mathbb{C})$ . It is known
that $X(M)$ also has a structure of an affine algebraic set.

Let $C$ be a complex affine algebraic curve. Let $\tilde{C}$ be the smooth projective
model of $C$ . Roughly speaking an ideal point of $C$ is a point of $\tilde{C}-C$ . For precise
definition, see [Cu-Sh]. Let $\mathbb{C}[C]$ be the coordinate ring of $C$ and $\mathbb{C}(C)$ be the
function field of $C$ . There is a correspondence between points on $C$ and valuations
of $\mathbb{C}(C)$ . A valuation of $\mathbb{C}(C)$ is a function $\mathbb{C}(C)arrow \mathbb{Z}$ satisfying the following
conditions:

(i) $v(fg)=v(f)+v(g)$ ,
(ii) $v(f+g) \geq\min\{v(f),v(g)\}$ .

数理解析研究所講究録
第 1660巻 2009年 85-91 85



The valuation $v$ corresponding to an ideal point satisfies $v(f)<0$ for some $f\in \mathbb{C}[C]$ .
An ideal point represents a point at infinity of $C$ . So an ideal point of a character
variety represents a degeneration of PSL $($ 2, $\mathbb{C})$ -representations. Culler and Shalen
showed that for each ideal point of the character variety, there is a corresponding
essential surface.

Let $S$ be an properly embedded orientable surface in M. $S$ is called incompress-
ible if $\pi_{1}(S)arrow\pi_{1}(M)$ is injective. An incompressible surface is called essential if
$S$ is not boundary parallel. The boundary of an essential surface is a slope on the
boundary torus $T$ . It is called the boundary slope. Boundary slopes are extensively
studied. Hatcher showed that the set of all boundary slopes is finite [Ha]. For knot
complement case, there are a lot of works of essential surfaces and their boundary
slopes. For example there is an algorithm to compute boundary slopes of Mon-
tesinos knot complements [Ha-Oe]. But there are few works on boundary slopes for
non-Montesinos knot complements.

2.2. A-polynomial. In general it is difficult to find ideal points and corresponding
boundary slopes from the definition. But if we know the A-polynomial of $M$ , it is
easy.

The inclusion $\partial Marrow M$ induces the algebraic $r:X(M)arrow X(\partial M)$ . Let $(\mathcal{M}$ ,
$\mathcal{L})$ be a set of generators of $\pi_{1}(\partial M)$ . Let $\Delta\subset R(\partial M)$ be the set of all diagonal
representations on the boundary. Define $M$ and $L$ by

$\rho(\mathcal{M})=\pm(^{\sqrt{M}}0$ $\sqrt{M}^{-1)}0$ , $\rho(\mathcal{L})=\pm(^{\sqrt{L}}0$ $\sqrt{L}^{-1)}0$

where $\rho\in\Delta$ . Then $\Delta$ can be regarded as $\mathbb{C}^{*}\cross \mathbb{C}^{*}$ . Let $t_{\Delta}$ : $\Deltaarrow X(\partial M)$ be the
quotient map. For each curve $Y\subset X(Af),$ $t^{-1}(r(Y))\subset \mathbb{C}^{*}\cross \mathbb{C}^{*}$ defines a plane
curve $D_{M}$ . The defining equation of $D_{M}$ is denoted by $A(M, L)$ and called the
A-polynomial [CCGLS].

Let $A(M, L)= \sum c_{OJ}M^{i}L^{j}$ be the A-polynomial of $M$ . The Newton polygon
of $A$ is the convex hull of the set $\{(i,j)\in \mathbb{Z}^{2}|c_{OJ}\neq 0\}$ . Let $p/q$ be the slope of
an edge of the Newton polygon. Then there is a corresponding valuation $v$ of $D_{M}$

satisfying $-v(M)/v(L)\cdot=p/q$ .

3. IDEAL TRIANGULATION AND PARAMETRIZATION OF
PSL $($ 2, $\mathbb{C})$ -REPRESENTATIONS

3.1. Ideal tetrahedron. Let $\mathbb{H}^{3}$ be the upper half space model of the hyperbolic
3-space. $\mathbb{C}P^{1}$ can be regarded as the ideal boundary of $\mathbb{H}^{3}$ . PSL $(2, \mathbb{C})$ acts on
the $\mathbb{H}^{3}$ and also its ideal boundary $\mathbb{C}P^{2}$ . An ideal tetrahedron is a convex hull of
distinct 4 points of $\mathbb{C}P^{1}$ in $\mathbb{H}^{3}$ . We assume that every ideal tetrahedron has an
orientation. Let $(z_{0}, z_{1}, z_{2}, z_{3})$ be distinct points of $\mathbb{C}P^{1}$ . For an edge $(z_{0}, z_{1})$ , we
define the complex parameter by cross ratio:

$z=[z_{0}:z_{1}:z_{2}:z_{3}]= \frac{(z_{2}-z_{1})(z_{3}-z_{0})}{(z_{2}-z_{0})(z_{3}-z_{1})}$ ,

where $(z_{0}, z_{1}, z_{2}, z_{3})$ forms the orientation of the ideal tetrahedron. Because $z_{0},$ $\ldots,$ $z_{3}$

are distinct, this complex number is not equal to $0$ or 1. We can easily show that
edge $(z_{2}, z_{3})$ has same complex parameter. The edges $(z_{1}, z_{2})$ and $(z_{0}, z_{3})$ have
complex parameter $\frac{1}{1-z}$ and the edges $(z_{1}, z_{3})$ and $(z_{0}, z_{2})$ have complex parameter
$1- \frac{1}{z}$ .
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3.2. Ideal triangulation and developing map. Let $M$ be a 3-manifold with
torus boundary. A (topological) ideal $tri$angulation of $M$ is a cell complex $K$ formed
by gluing tetrahedra along their faces so that $K-N(K^{(0)})$ is homeomorphic to $M$ .
Let $K$ be an ideal triangulation of $M$ with $n$ ideal tetrahedra. Give a complex
parameter for each ideal tetrahedron of $K$ . We denote these complex parameters
by $z_{\nu}(\nu=1, \ldots, n)$ . For each l-simplex $e_{k}$ of $K$ , there are the edges of ideal
tetrahedra which are adjacent to $e_{k}$ . There are complex parameters corresponding
to these edges. They are $z_{\nu},$ $\frac{1}{1-z_{\nu}}$ or 1 $-1/z_{\nu}$ . Let $R_{k}$ be the multiplication of
these complex parameters. $R_{k}=- 1$ is called the gluing equation of $e_{k}$ . There are $n$

l-simplices of $K$ but there is one relation among $R_{1},$
$\ldots,$

$R_{n}$ . So we only have to
consider $n-1$ gluing equations. We define integers $(p_{k,v},p_{k,\nu},pk_{\nu})$ by

$R_{k}= \prod_{\nu=1}^{n}z_{\nu}^{p_{k,\nu}}(\frac{1}{1-z_{\nu}})^{p_{k,\nu}’}(1-\frac{1}{z_{\nu}})^{p}$

鉱 $\nu$

$= \prod_{\nu=1}^{n}(-1)^{p_{i,\nu}’’}z_{\nu}^{r_{\acute{i},\nu}}(1-z_{\nu})^{r_{\nu}’’}\dot{\cdot}$, $(k=1, \ldots n-1)$ .

We $pu\underline{tr}_{k,\nu}’=p_{k,\nu}-p_{k,\nu}’’$ and $r_{k,\nu}’’=p_{i,\nu}’’-p_{k_{t}\nu}’$ .
Let $M$ be the universai covering of $M$ . If $z_{1},$ $\ldots,$ $z_{n}$ satisfies the gluing equations,

we can construct a $\pi_{1}(M)$-equivariant map $\tilde{M}arrow \mathbb{H}^{3}$ as follows. Put one ideal
tetrahedron parametrized by $z_{1}$ on IHI3. Then develop adjacent ideal tetrahedron
in $\overline{M}$ to $\mathbb{H}^{3}$ . By continuing this process, we obtain the $\pi_{1}(M)$-equivariant map
$\overline{M}arrow \mathbb{H}^{3}$ . $\cdot$Let

$\mathcal{D}(M, K)=\{(z_{1}, \ldots, z_{n})\in(\mathbb{C}-\{0,1\})^{n}|R_{i}=1, i=1, \ldots, n-1\}$

We denote $\mathcal{D}(M, K)$ by $\mathcal{D}(M)$ for short. Each point of $\mathcal{D}(M)$ gives a developing
map $Marrow \mathbb{H}^{3}$ . The holonomy map of the developing map gives a PSL $(2, \mathbb{C})-$

representation. This defines a representation $\pi_{1}(M)arrow$ PSL $(2, \mathbb{C})$ . So we obtain
the algebraic map $\mathcal{D}(M)arrow X(M)$ . By construction we can show that this map is
algebraic. So we can study ideal points of $X(M)$ from ideal points of $\mathcal{D}(M)$ . We
remark that the defining equation of $\mathcal{D}(M)$ is very simple. In fact each equation is
only a product of $z_{\nu}$ and $1-z_{\nu}$ . In general it is much more complicated to describe
defining equations of $X(M)$ in terms of relations and generators of the fundamental
group.

On the boundary torus $\partial M$ , we choose a set of generators $\mathcal{M},$ $\mathcal{L}$ of $H_{1}(\partial M;\mathbb{Z})$ .
We can choose a pair of integers $(m_{i}’, m_{i}’’)$ and $(l_{i}’, l_{i}’’)$ so that

$M= \pm\prod_{j=1}^{n}z_{j}^{m_{j}’}(1-z_{j})^{m_{j}’’}$ , $L= \pm\prod_{j=1}^{n}z_{j}^{l_{j}’}(1-z_{j})^{t_{j}’’}$ .

represent the squares of eigenvalues of $\rho(\mathcal{M})$ and $\rho(\mathcal{L})$ , where $\rho$ is a holonomy repre-
sentation associated to $(z_{1}, \ldots, z_{n})\in \mathcal{D}(A^{l}f)$ . We denote $m=(m_{1}’, m_{1}’’\ldots, m_{n},’ m_{n}’’)$

and $l=$ $(l_{1}’, l_{1}’’, \ldots, l_{n}’, l_{n}’’)$ .
Let $x=$ $(x_{1}’, \ldots , x_{n}’, x_{1}^{l/}, \ldots x_{n}’’)$ and $y=(y_{1}’, \ldots, y_{n}’,y_{1}^{;/}, \ldots y_{n}’’)$ . We define the

symplectic form of $\mathbb{R}^{2n}$ by

$x \wedge y=\sum_{j=1}^{n}x_{j}’y_{j}’’-x_{j}’’y_{j}’$ .
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FIGURE 1. Newton polygon of $z+w-1$ and its spherical dual.

Let $r_{k}=(r_{k,1}’, r_{k,1}’’, \ldots, r_{k,\dot{n}}’, r_{k,n}’’)$ and $[R]=span_{R}\langle r_{1,\ldots-1}r.\rangle$ . We denote the

orthogonal complement of $[R]$ with respect to $\wedge$ by $[R]^{\perp}$ . The wedge product is
useful and natural to describe some combinatorial formula (see [Ne-Za] and [Ne]).

4. LOGARITHMIC LIMIT SET AND REAL VALUATIONS

In this section we explain the logarithmic limit of a subvariety of $(\mathbb{C}^{*})^{n}$ . Tillman’s
paper [Til] is a good reference for these materials. [Ti2], [Mo-Sh] and [Yo] relate
the logarithmic limit set to degenerations of PSL $($2, $\mathbb{C})$-representations. We denote
$\mathbb{C}[x_{1}^{\pm}, \ldots, x_{n}^{\pm}]$ by $\mathbb{C}[X]$ . We use the multi-index $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{Z}^{n}$ and denote
$x_{1}^{\alpha_{1}}\ldots x_{n}^{\alpha_{n}}$ by $X^{\alpha}$ .

4.1. Logarithmic limit set. Let $V$ be a subvariety of $(\mathbb{C}^{*})^{n}$ . The logarithmic
limit set of $V$ is the set of limit points on $S^{n-1}$ of the following set:

$t\frac{(\log|x_{1}|,\ldots,\log|x_{n}|)}{\sqrt{1+\sum(\log|x_{i}|)^{2}}}x\in V\}\subset B^{n}$

where $B^{n}=\{x\in \mathbb{R}^{n}||x|\leq 1\}\subset \mathbb{R}^{n}$ . We denote the logarithmic limit set by $V_{\infty}^{(a)}$ .

4.2. Real valuation. Let $J$ be the ideal corresponding to $V$ . A (real) valuation
on $\mathbb{C}[X]/J$ is a function $v$ : $\mathbb{C}[X]/Jarrow \mathbb{R}$ satisfying the conditions of 2.1. We define

the subset $V_{\infty}^{(b)}$ of $S^{n-1}$ as the set of $(-v(x_{1}), \ldots, -v(x_{n}))$ where $v$ runs over all
real valuations of $\mathbb{C}[X]/J$ . If $V$ is an algebraic curve, we only have to consider
discrete valuations.

4.3. Newton polytope and spherical dual. Let $f= \sum_{\alpha}a_{\alpha}X^{\alpha}\in \mathbb{C}[X^{\pm}]$ . The

Newton polytope of the polynomial $f$ is the convex hull of $s(f)=\{\alpha|a_{\alpha}\neq=0\}$ in
$\mathbb{R}^{n}$ i.e. Newt$(f)=C\sigma nv(s(f))$ . The set of $\xi\in S^{n-1}$ such that the maximum value

of the dot product $\xi\cdot x$ is achieved for more than one as $x$ runs over New$(f).$. For
example Newton polygon and its spherical dual of $z+w-1$ are shown in Figure

1. We define
$V_{\infty}^{(c)}= \bigcap_{f\neq 0\in J}Sph(f)$

.

Then we have the following theorem:

Theorem 4.1 (Bergman [Be], Bieri-Groves [Bi-Gr]).
$V_{\infty}^{(a)}=V_{\infty}^{(b)}=V_{\infty}^{(c)}$ .
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4.4. For $\mathcal{D}(M)$ case. Let $w_{\nu}=1-z_{\nu}$ then $\mathcal{D}(M)$ can be regarded as a subvariety
of $(\mathbb{C}^{*})^{2n}$ :

$\mathcal{D}(M)=\{(w_{1}^{-1}, z_{1}, \ldots, w_{n}^{-1}, z_{n})\in(\mathbb{C}^{*})^{2n}|z_{\nu}+w_{\nu}=1$ $(\nu=1, \ldots n)$ ,

$R_{k}=$ 圭 $\prod_{\nu=1}^{n}z_{\nu}^{r_{k,\nu}’}w_{\nu^{k,\nu}}^{r’’}=1$ $(k=1, \ldots, n-1)\}$

(We take coordinate $(w_{1}^{-1},$
$z_{1},$ $\ldots,$

$)$ because it is suitable for the wedge product.)
In this case, we have

(4.1)

$\mathcal{D}(M)_{\infty}^{(c)}\subset\bigcap_{\nu=1}^{n}Sph(z_{\nu}+w_{\nu}-1)\cap\overline{\bigcap_{\nu=1}^{n1}}Sph(R_{k}-1)$

$=( \prod_{\nu=1}^{n}(0$

where $e_{i}$ is the i-th unit vector. We remark that the right hand side can be computed
by only using linear algebra.

5. MAIN THEOREM

In the previous section, we observed that there is a necessary condition that
valuations of $\mathbb{C}(\mathcal{D}(M))$ satisfy. In this section we give a criterion to ensure that
they are really valuations of $\mathbb{C}(\mathcal{D}(M))$ (so there exist corresponding ideal points).

Let $I=(i_{1}, \ldots, i_{n})\in\{1,0, \infty\}^{n}$ and call it a degeneration index. A degeneration
index $I$ describes how each ideal tetrahedron degenerates $(z_{\nu}arrow 1,0 or \infty)$ . For a
degeneration index $I$ , we define

$r(I)_{k,\nu}=\{\begin{array}{ll}r_{k,\nu}’’ if i_{\nu}=1r_{k,\nu}’ if i_{\nu}=0-r_{k,\nu}^{l}-r_{k,\nu}’’ if i_{\nu}=\infty.\end{array}$

$r(I)_{k,\nu}$ represents the main contribution from $\nu$-th simplex on gluing equation at
l-simplex $e_{k}$ . Then let

$d(I)_{\nu}=(-1)^{\nu+1}\det(\begin{array}{lllll}r(I)_{l,l} \cdots r\overline{(I)_{1,\nu}} \cdots r(I)_{1,n}| | |r(I)_{n-l,1} \cdots r(\overline{I)_{n-l,\nu}} \cdots r(I)_{n-l,n}\end{array})$ .

Then we define a degeneration vector by

$d(I)=(d(I)_{1}, d(I)_{2}, \ldots, d(I)_{n})\in \mathbb{Z}^{n}\subset \mathbb{R}^{n}$ .
Let $\rho_{1}=(1,0),$ $\rho 0=(0, -1)$ and $\rho_{\infty}=(-1,1)$ . A simple calculation shows that if
all the coefficient of $d_{\nu}$ are non-negative, normalized $(d_{1}\rho_{i_{1}}, \ldots , d_{n}\rho_{i_{n}})$ is in the rig
hand side of the inclusion (4.1). The following is our main theorem:

Theorem 5.1 ([Ka]). Let $I=(i_{1}, \ldots, i_{n})$ be an element of $\{1, 0, \infty\}^{n}$ . If $d(I)>0$
or $d(I)<0$ then there are ideal points of $\mathcal{D}(M)$ corresponding to I. The number
of the ideal points is $gcd(d(I)_{1}, \ldots,d(I)_{n})$ .
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$Edg\cdot\cdot quation\epsilon:l00000000010001000000000010000001000000000$

$01000i010100100000000000000000010000000100$$001000000001000001000000100000100000000010$$1010000000000000l0000000001000000000000011$$010000000000000000000000110000000001110000$
000100100001010000100001000000000000000000
$000010000010000100000000000010001000000001$$000001000000000101110000000100000000000l00$$000010001000000000001100000010000100l00000$$000100i00000000000000000000001000001000000$
000000011000001000000010000000000110001000
$000000000i00100010001100000000000000000000$oooooooooooooloooooooooioooiooioooiooioooo
$0000000000000000000i00l0001001010000001000$

$Cu\epsilon p\cdot quat1on\epsilon:000000100-1000100arrow 1000arrow 1001000000000000000000$

$110- 110arrow 3026000-3-102-10-140-1-30-1000-11arrow 10100-10010- 1$

FIGURE 2. A system of gluing equations of $9_{32}$ . The k-th row of
Edge equations represents $(p_{k,1},p_{k,1}’,p_{k,1}’’,p_{k,2}, \ldots)$ of subsection
3.2.

6. COMPUTATIONS

In this section we give an example for knot complement case. As mentioned
before, Hatcher and Oertel [Ha-Oe] gave an algorithm to compute boundary slopes
of Montesinos knots. So we give an example to compute boundary slopes of non-
Montesinos knots. In general, computation of the degeneration vector for a $dearrow$

generation index is very easy. But for finding ideal points, we try to compute all
degeneration vectors to find degeneration vectors which satisfy the condition of our
theorem. If the number of the ideal tetrahedra is $n$ , we have to compute degenera-
tion vectors $3^{n}$ times. So when the number of ideal tetrahedra increases, we have
to compute much more number of degeneration vectors.

6.1. The knot $9_{32}$ . The knot $9_{32}$ is a non-Montesinos knot [Du]. By using SnapPea
[We], we can find an ideal triangulation of the complement of $9_{32}$ with 14 ideal
tetrahedra. By using Snap [Go] we can obtain the gluing equations for this ideal
triangulation (Figure 2). In this case we have to compute $3^{14}=4782969$ number
of degeneration vectors! But a modern computer calculates these about 3 hours!!
The degeneration indices which satisfy our theorem are

$(0, \infty,0,1,1,0,1, \infty, 1,1,1, \infty,0,0)$

$(0, \infty, \infty, 1, \infty, 0,1,1,1,1,1,1,1,0)$

$(1, \infty, \infty, 1, \infty, 0,1,1, \infty, 1,1,1,1,0)$

$(\infty, 1,0, \infty, \infty, 1,1,0,1,0, \infty, \infty, 1, \infty)$

and corresponding degeneration vectors and $(v(M),v(L))$ are
$-(1,2,1,2,1,1,1,1,1,1,1,1,1,1)$ $(1, -8)$

$-(1,3,3,3,1,2,1,2,1,4,3,2,1,1)$ $(1, -18)$

(1, 3, 3, 3, 1, 3, 1, 2, 1, 4, 2, 2, 1, 1) $(1, -14)$

(3, 5, 1, 5, 4, 1, 5, 5, 2, 1, 3, 4, 1, 2) $(-1,24)$ .
$v$ is the valuation corresponding to the ideal point and $M$ and $L$ are the elements
of $\mathcal{D}(M)$ defined as the square of the eigenvalues of $\rho(\mathcal{M})$ and $\rho(\mathcal{L})$ . By a similar
argument to [CCGLS], we can show that the corresponding boundary slopes are 8,
18, 14 and 24.
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