Complexified Penner's coordinates and its applications

Toshihiro Nakanishi (Shimane University) *

1 Penner's λ -lengths

1.1 A coordinate-system for Teichmüller space

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk, a model of hyperbolic plane and

$$SU(1,1) = \left\{ \left(\begin{array}{cc} a & b \\ \overline{b} & \overline{a} \end{array}\right) : a, b \in \mathbb{C}, |a|^2 - |b|^2 = 1 \right\}.$$

Then PSU(1,1) is the group of orientation preserving hyperbolic motions of \mathbb{D} .

Let $G = G_{g,n}$ be the punctured surface group of type (g, n), where 2g - 2 + n > 0:

$$G = \langle a_1, b_1, ..., a_g, b_g, d_1, ..., d_n : (\prod_{k=1}^g a_k b_k a_k^{-1} b_k^{-1}) d_1 \cdots d_n = 1 \rangle.$$

A point of the *Teichmüller space* $\mathcal{T} = \mathcal{T}_{g,n}$ is a class of faithful Fuchsian representations of G into PSU(1,1) which have finite covolume. We denote points in \mathcal{T} by *marked* groups Γ_m , where Γ is a Fuchsian group and $m: G \to \Gamma$ is an isomorphism.

Elements $D_1,..., D_n$ in $\Gamma_m \in \mathcal{T}$ corresponding to $d_1,..., d_n$ are *parabolic*. Choose a horocycle H_k invariant under D_k such that action of D_k on H_k is the translation of length one. Then the identification of Γ_m with $(\Gamma_m, H_1, ..., H_n)$ gives the following statement.

 $\mathcal{T}_{g,n}$ is naturally embedded in the decorated Teichmüller space $\tilde{\mathcal{T}}_{g,n}$.

Therefore, by restricting them to this embedded subspace, Penner's λ -length coordinates for $\tilde{T}_{g,n}$ give also global coordinates for the Teichmüller space $\mathcal{T}_{g,n}$.

^{*}A joint work with M. Näätänen. The author is grateful to Professor Robert Penner for helpful discussions. He thanks Professor Michihiko Fujii for organizing a series of workshops on hyperbolic geometry and its related topics.

1.2 Distance between horocycles

Let p be a point of the unit circle. A horocycle h at p is a Euclidean circle in \mathbb{D} tangent at p to the unit circle. The point p is called the base point of h.

Let h_1 and h_2 be horocycles based at different points p_1 and p_2 and γ the hyperbolic line between p_1 and p_2 . Define

$$\lambda = e^{\delta/2},\tag{1}$$

where δ is the *signed* length of the portion of the geodesic γ intercepted between the two horocycles h_1 and h_2 , $\delta > 0$ if h_1 and h_2 are disjoint and $\delta < 0$ otherwise. In this way we can assign a positive number λ to the pair (h_1, h_2) .

1.3 λ -length of an ideal arc

Let S be the oriented closed surface of genus $g, P = \{p_1, ..., p_n\}$ a set of n points. An *ideal arc* c of (S, P) is a path joining two points p_i and p_j in S - P. The ideal arc c is simple if $c \cap (S - P)$ is a simple arc.

Let $\Gamma_m \in \mathcal{T}_{g,n}$, then there exists an orientation preserving homeomorphism

$$f: S - P \to \mathbb{D}/\Gamma$$

inducing *m*. Let γ be the geodesic representative in the homotopy class of f(c) for the Poincaré metric of the punctured surface \mathbb{D}/Γ . By the identification of Γ_m with $(\Gamma_m, H_1, ..., H_n)$, the horocycles at the endpoints of γ defines the λ -length $\lambda(c, \Gamma_m)$.

Let $\Delta = \{c_1, c_2, ..., c_q\}, q = 6g - 6 + 3n$, be an ideal triangulation of (S, P). Then **Theorem 1** (Penner [1])

$$\lambda_{\Delta} = \prod_{i=1}^{q} \lambda(c_i) : \mathcal{T}_{g,n} \to (\mathbb{R}_+)^q$$

is an embedding.

The image of λ_{Δ} is a real algebraic variety determined by *n* polynomials. A component of $S - \bigcup_{j=1}^{q} c_j$ is called a *triangle* in Δ . The image of λ_{Δ} is a real algebraic variety determined by zero loci of *n* algebraic equations D_1, \ldots, D_n , where D_k is easily obtained by triangles abutting on the *k*th puncture p_k .

$$D_k(\lambda_1, ..., \lambda_q) = \sum_{i=1}^N \frac{\lambda(e_i)}{\lambda(a_i)\lambda(b_i)} - 1.$$
(2)

1.4 The Ptolemy identity

Let $\Delta = \{c_1, c_2, ..., c_q\}$ be an ideal triangulation of (S, P). Let $e \in \Delta$ and T_1 and T_2 be triangles being on the different sides of e. It is possible that $T_1 = T_2$. Lift $T_1 \cup e \cup T_2$ to a quadrangle $Q = \tilde{T}_1 \cup \tilde{e} \cup \tilde{T}_2$ in \mathbb{D} . Then \tilde{e} is a diagonal of Q. Let \tilde{f} be the other diagonal and project \tilde{f} to an ideal arc f in $T_1 \cup e \cup T_2$. Then

$$\Delta' = (\Delta - \{e\}) \cup \{f\}$$

is another ideal triangulation of (S, P). We say that Δ' arises from Δ by the *elementary move* on *e*

Let $(\tilde{a}, \tilde{b}, \tilde{e})$ be the sides of \tilde{T}_1 and $(\tilde{c}, \tilde{d}, \tilde{e})$ be the sides of \tilde{T}_2 . Suppose that \tilde{a} and \tilde{c} are opposite sides of Q. Let $a, b, c, d \in \Delta \cap \Delta'$ be the projections of $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}$. The following theorems are proved in Penner's paper :

Theorem 2 (the Ptolemy identity, Penner [1]) The λ -lengths function satisfy the identity

$$\lambda(a)\lambda(c) + \lambda(b)\lambda(d) = \lambda(e)\lambda(f)$$
(3)

This theorem describes the coordinate-change between $\lambda_{\Delta}(\mathcal{T})$ and $\lambda_{\Delta'}(\mathcal{T})$:

$$\lambda_{\Delta'} \circ \lambda_{\Delta}^{-1}(\cdots, \lambda(a), \lambda(b), \lambda(c), \lambda(d), \lambda(e), \cdots)$$

= $(\cdots, \lambda(a), \lambda(b), \lambda(c), \lambda(d), \frac{\lambda(a)\lambda(c) + \lambda(b)\lambda(d)}{\lambda(e)}, \cdots)$ (4)

Theorem 3 (Penner [1]) For arbitrary ideal triangulations Δ and Δ' of (S, P), there exists a finite sequence of ideal triangulations

$$\Delta = \Delta_0, \Delta_1, \cdots, \Delta_m = \Delta',$$

where each Δ_i arises from Δ_{i-1} by an elementary move.

Using this theorem it can be shown that coordinate change between λ -length coordinates associated with two ideal triangulations is a bi-rational map:

Theorem 4 If Δ and Δ' are ideal triangulations of F, then the coordinate change

$$\begin{array}{cccc} \mathcal{T} & \xrightarrow{\lambda_{\Delta}} & \lambda_{\Delta}(\mathcal{T}) \subset (\mathbb{R}_{+})^{q} \\ id & & & \downarrow^{\lambda_{\Delta'} \circ \lambda_{\Delta}^{-1}} \\ \mathcal{T} & \xrightarrow{\lambda_{\Delta'}} & \lambda_{\Delta'}(\mathcal{T}) \subset (\mathbb{R}_{+})^{q} \end{array}$$

extends to a rational transformation of \mathbb{R}^q

Let $\mathcal{MC} = \mathcal{MC}_{g,n}$ denote the mapping class group of (S, P). Each $\varphi \in \mathcal{MC}$ acts on the Teichmüller space \mathcal{T} . The theorem above yields

Theorem 5 The correspondence

$$\phi \mapsto \phi_* = \lambda_{\varphi^{-1}(\Delta)} \circ \lambda_{\Delta}^{-1}$$

gives an isomorphism of MC to a group of rational transformations.

2 $SL(2,\mathbb{C})$ -representation space of a punctured surface group

Let $\mathcal{R} = \mathcal{R}_{g,n}$ be the space of classes of faithful representations [m] of the punctured surface group G into $SL(2,\mathbb{C})$ such that $m(d_i)$ is parabolic with tr $m(d_i) = -2$ for i = 1, 2, ..., n. The Teichmüller space $\mathcal{T}_{g,n}$ is a subspace of $\mathcal{R}_{g,n}$.

Our purpose is to give a coordinate-system for $\mathcal{R}_{g,n}$ whose restriction to $\mathcal{T}_{g,n}$ coincides with Penner's λ -lengths coordinate-system.

2.1 Parabolic elements of $SL(2, \mathbb{C})$

Define

 $\mathcal{P} = \{ P \in SL(2, \mathbb{C}) : P \text{ is parabolic with } trP = -2 \}.$

If P_1 and $P_2 \in P$ do not commute, then the square root of $-P_1P_2$ in $SL(2, \mathbb{C})$

$$Q = \pm \frac{1}{\sqrt{2 - \text{tr}P_1 P_2}} (I - P_1 P_2), \tag{5}$$

is unique up to sign and satisfies

$$P_2 = Q^{-1} P_1 Q. (6)$$

For the rest of this paper, the diagram

 $P_1 \xrightarrow{Q} P_2$

will mean that $Q^2 = -P_1P_2$.

Cycles of parabolic elements

Let $P_1, ..., P_n, P_{n+1} = P_1 \in \mathcal{P}$. Suppose that no consecutive elements P_i and P_{i+1} commute. Let Q_i be a square root of $-P_iP_{i+1}$, (i = 1, 2, ..., n). Then, since $P_{i+1} = Q_i^{-1}P_iQ_i, Q_1Q_2 \cdots Q_n$ commutes with P_1 ,

$$\operatorname{tr} Q_1 Q_2 \cdots Q_n = +2 \text{ or } -2. \tag{7}$$

Definition

 $(Q_1, Q_2, ..., Q_n)$ is a (+)-system or a (-)-system according to if $\operatorname{tr} Q_1 Q_2 \cdots Q_n = +2$ or -2.

2.2 A trace identity of Ptolemy type

Let P_1 , P_2 , P_3 and P_4 . Suppose that P_i and P_j do not commute unless i = j. Choose $Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q'_5, Q'_6 \in SL(2, \mathbb{C})$ so that

$$\begin{array}{ll} Q_1^2 = -P_1 P_2, & Q_2^2 = -P_2 P_3, & Q_3 = -P_3 P_4, \\ Q_4^2 = -P_4 P_1, & Q_5^2 = -P_3 P_1, & Q_6 = -P_2 P_4, \\ (Q_5')^2 = -P_1 P_3, & (Q_6')^2 = -P_4 P_2, \end{array}$$

where

$$Q_5' = P_1 Q_5 P_1^{-1}, \qquad Q_6' = P_4 Q_6 P_4^{-1}.$$

Theorem 6 If (Q_1, Q_2, Q_5) , (Q'_5, Q_3, Q_4) and (Q_1, Q_6, Q_4) are (-)-systems, then $trQ_5 trQ_6 = trQ_1 trQ_3 + trQ_2 trQ_4$ (8)

3 Complexified λ -length

3.1 Definition of λ -length

A point of \mathcal{R} is represented by a marked group Γ_m . Let $\mathcal{P}_+(\Gamma)$ be the set of parabolic elements in $[m(d_1)] \cup \cdots \cup [m(d_n)]$, where $[m(d_i)]$ is the conjugacy class of $m(d_i)$.

Let c be an ideal arc in (S, P). Then for each $\Gamma_m \in \mathcal{R}$, c defines two parabolic elements P_1 , P_2 of $\mathcal{P}_+(\Gamma)$, see the following figure. We define the λ -length of c with respect to Γ_m by

$$\lambda(c, \Gamma_m) = \mathrm{tr}Q,\tag{9}$$

where Q is a square root of $-P_1P_2$. The λ -length is defined up to sign.

3.2 λ -length coordinates for $\mathcal{R}_{q,n}$

Let $\Delta = (c_1, c_2, ..., c_q)$ be an ideal triangulation of (S, P). Let T be a triangle in Δ . T inherites the orientation of the surface S. Label the sides of T by a, b, c in order. Then those sides determine matrices Q_a, Q_b, Q_c whose traces give λ -lengths of a, b and c for Γ_m .

Lemma 1 It is possible to choose branches of λ -length functions $\lambda(c_1)$, $\lambda(c_2)$, ..., $\lambda(c_q)$ so that (Q_a, Q_b, Q_c) is a (-)-system for each triangle T in Δ .

With the choice of branches of λ -lengths as depicted in the lemma, we obtain

Theorem 7 For each ideal triangulation Δ ,

$$\lambda_{\Delta} = \prod_{i=1}^{q} \lambda(c_i) : \mathcal{R}_{g,n} \to (\mathbb{C}^*)^q$$

is an embedding. The image is contained in an algebraic variety.

3.3 Rational representation of the mapping class group

As in the case of \mathcal{T} , the Ptolemy identity (8) yields

Theorem 8 The mapping class group \mathcal{MC} acts on \mathcal{R} as a group of rational transformations.

4 Invariant holomorphic two-form

Let $T_1,..., T_p$, p = 4g - 2, be triangles in an ideal triangulation of a once-punctured surface. Let the sequence of sides a_i, b_i, c_i of T_i agree with the positive orientation of T_i , then the 2-form

$$\sum_{i=1}^{p} \left(d \log \lambda(a_i) \wedge d\lambda(b_i) + d \log \lambda(b_i) \wedge d \log \lambda(c_i) + d \log \lambda(c_i) \wedge d \log \lambda(a_i) \right) \quad (10)$$

is invariant under the mapping class group \mathcal{MC} . The proof is similar to the one of the corresponding result in [2].

5 A characterization of the rational map induced by a mapping class

5.1 Example: Once punctured torus

The Teichmüller space $\mathcal{T}_{1,1}$ of once punctured tori is represented as the subspace of $(\mathbb{R}_+)^3$ defined by

$$x^2 + y^2 + z^2 = xyz, (11)$$

where x, y, z are λ -length functions related to an (essentially unique) triangulation of the once punctured torus (or x, y, z are trace functions $\operatorname{tr}_A, \operatorname{tr}_B, \operatorname{tr}_{AB}$, with $\{A, B\}$ the canonical generator-system of $G_{1,1}$.)

The mapping class group $\mathcal{MC}_{1,1}$ has generators

$$\sigma(x,y,z)=(x,z,rac{x^2+z^2}{y}) \quad ext{and} \quad au(x,y,z)=(rac{x^2+y^2}{z},y,x),$$

with relations

$$(\tau \circ \sigma)^3 = 1, \quad (\sigma \circ \tau \circ \sigma)^2 = 1.$$

Since $\mathcal{MC}_{1,1}$ acts on $\mathcal{T}_{1,1}$, the group of rational transformations generated by σ and τ preserves the equation (11) and (x, y, z) = (3, 3, 3) gives integer solutions of (11).

Theorem 9 (Markoff) All positive integer solutions of (11) are in the oribit of (3,3,3) under the action of $\mathcal{MC}_{1,1}$.

The viewpoint of understanding the Markoff transformations as mapping classes action on $\mathcal{T}_{1,1}$ is given in Penner's paper [1].

With λ -length coordinates, the Teichmüller space $\mathcal{T}_{g,n}$ is determined by n algebraic equations and the group of rational transformations induced by the mapping class group $\mathcal{MC}_{g,n}$ keep this space. So we can pursue analogies of the above result.

5.2 Example: twice punctured torus

Let Δ be the ideal triangulation of the twice punctured torus as depicted in the following figure.

twice punctured torus

Consider the λ -lengths

$$\lambda_a, \lambda_b, \lambda_c, \lambda_d, \lambda_e$$

associated with Δ . Then it holds that $\lambda_e = \lambda_f$. The Teichmüller space $\mathcal{T}_{1,2}$ (or the space $\mathcal{R}_{1,2}$) is represented by the λ -lengths as the space

$$\frac{\lambda_e}{\lambda_a \lambda_b} + \frac{\lambda_a}{\lambda_b \lambda_e} + \frac{\lambda_b}{\lambda_a \lambda_e} + \frac{\lambda_c}{\lambda_d \lambda_e} + \frac{\lambda_d}{\lambda_c \lambda_e} + \frac{\lambda_e}{\lambda_c \lambda_d} = 1$$
$$\lambda_c \lambda_d (\lambda_a^2 + \lambda_b^2 + \lambda_e^2) + \lambda_a \lambda_b (\lambda_c^2 + \lambda_d^2 + \lambda_e^2) = \lambda_a \lambda_b \lambda_c \lambda_d \lambda_e.$$
(12)

The mapping class group $\mathcal{MC}_{1,2}$ (as a group of rational transformations) has generators

$$\begin{split} \omega_{1*}(\lambda_a, \lambda_b, \lambda_c, \lambda_d, \lambda_e) &= (\lambda_d, \lambda_b, \lambda_c, \frac{\lambda_e^2 + \lambda_d^2}{\lambda_a}, \lambda_e) \\ \omega_{2*}(\lambda_a, \lambda_b, \lambda_c, \lambda_d, \lambda_e) &= (\lambda_d, \lambda_a, \lambda_b, \lambda_c, \frac{\lambda_a \lambda_c + \lambda_b \lambda_c}{\lambda_e}) \\ \omega_{3*}(\lambda_a, \lambda_b, \lambda_c, \lambda_d, \lambda_e) &= (\lambda_a, \frac{\lambda_b^2 + \lambda_e^2}{\lambda_c}, \lambda_b, \lambda_d, \lambda_e), \end{split}$$

with relations

 $\omega_{2*}^2 \omega_{1*} \omega_{2*}^2 = \omega_{3*} \qquad \omega_{1*} \omega_{3*} = \omega_{3*} \omega_{1*}$ $(\omega_{1*} \omega_{2*})^3 = 1, \qquad (\omega_{3*} \omega_{2*})^3 = 1$

The point p = (6, 6, 6, 6, 6) gives integer solutions of (12). An analogous result to the Markoff equation holds:

Theorem 10 The orbit $\{\varphi_*(6, 6, 6, 6, 6) : \varphi \in \mathcal{MC}_{1,2}\}$, gives integer solutions of (12), but not all of its integer solutions.

or

5.3 Diophantine equations

We consider a once punctured surface.

Lemma 2 Let $(\lambda_1, \lambda_2, ..., \lambda_q)$ be the λ -length coordinate-system for $\mathcal{R}_{g,1}$ associated to an ideal triangulation $(c_1, c_2, ..., c_q)$, where q = 6g - 3. Then the λ -length of a simple ideal arc c is expressed by a rational function of the form

$$\frac{P(\lambda_1, \lambda_2, \dots, \lambda_q)}{\lambda_1^{m_1} \lambda_2^{m_2} \cdots \lambda_q^{m_q}},\tag{13}$$

where $P(\lambda_1, \lambda_2, ..., \lambda_q)$ is a homogeneous polynomial of degree

$$d=1+m_1+m_2+\cdots+m_q,$$

with positive integer coefficients and m_i is the geometric intersection number of c and c_i in S - P for i = 1, 2, ..., q

For $\varphi \in \mathcal{MC}_{g,1}$ let φ_* denote the rational transformation induced by φ . Then entries of $\varphi_*(\lambda_1, \lambda_2, ..., \lambda_q)$ are of the form as in (13). This fact leads us to the following observation.

Let

$$D(\lambda_1, \dots, \lambda_q) = 0 \tag{14}$$

be the algebraic equation which determines $\mathcal{T}_{g,1}$ in the λ -length coordinates. Then the rational transformation φ_* induced by $\varphi \in \mathcal{MC}_{g,1}$ preserves $D(\lambda_1, ..., \lambda_q)$. Moreover, if

 $(\lambda, \lambda, ..., \lambda)$

gives integer solutions of (14), then so does $\varphi_*(\lambda, \lambda, ..., \lambda)$.

We remark that it is not true in general that all integer solutions are in the orbit of $(\lambda, \lambda, ..., \lambda)$ under \mathcal{MC} .

6 3-manifolds which fiber over the circle

Let $\varphi \in \mathcal{MC}_{g,n}$. Let M_{φ} be a manifold which fibers over the circle and whose monodoromy is φ . If φ_* denotes the action of φ on the fundamental group $G = G_{g,n}$ of the surface S of type (g, n), then the fundamental group of M_{φ} has the presentation

$$\tilde{G} = \langle G, t : \varphi_*(g) = tgt^{-1} \text{ for all } g \in G \rangle$$
(15)

If $m: \tilde{G} \to SL(2,\mathbb{C})$ is a faithful representation of \tilde{G} , then for all $g \in G$

$$(\varphi_* \circ m)(g) = m(t)m(g)m(t)^{-1}.$$

Hence the class [m] is a fixed point of φ_* for its action on $\mathcal{R}_{g,n}$.

$$\varphi_*(\lambda_1, ..., \lambda_q) = (\lambda_1, ..., \lambda_q). \tag{16}$$

If φ is reducible, then one of the solutions of (16) gives a faithful and *discrete* representation m of G. We can find the Möbius transformation m(t) easily, because m(t) sends the fixed point of m(g) to that of $m(\varphi_*(g))$ for each parabolic element $g \in G$. In this way hyperbolization of M_{φ} can be done. However, to carry this hyperbolization program into effect, we need efficient discreteness criteria.

References

- [1] Penner, R. C., The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys. 113 (1987), 299-339.
- [2] Penner, R. C., Weil-Petersson volumes. J. Differential Geom. 35 (1992), 559– 608.
- [3] T. Nakanishi and M. Näätänen, Complexification of lambda length as parameter for SL(2, ℂ) representation space of punctured surface groups, J. London Math. Soc., 70 (2004), 383-404.
- [4] T. Nakanishi, A trace identity for parabolic elements of SL(2, C), Kodai Math.
 J., 30 (2007) 1–18.