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1 Penner’s $\lambda$-lengths

1.1 A coordinate-system for Teichm\"uller space

Let $D=\{z\in \mathbb{C}: |z|<1\}$ be the unit disk, a model of hyperbolic plane and

$SU(1,1)= \{(\frac{a}{b}\frac{b}{a}):a,$ $b\in \mathbb{C},$ $|a|^{2}-|b|^{2}=1\}$ .

Then $PSU(1,1)$ is the group of orientation preserving hyperbolic motions of D.

Let $G=G_{g,n}$ be the punctured surface group of type $(g, n)$ , where $2g-2+n>0$ :

$G=\langle a_{1},$ $b_{1},$
$\ldots,$ $a_{g},$ $b_{g},$ $d_{1},$

$\ldots,$
$d_{n}:( \prod_{k=1}^{g}a_{k}b_{k}a_{k}^{-1}b_{k}^{-1})d_{1}\cdots d_{n}=1\rangle$ .

A point of the Teichmuller space $\mathcal{T}=\mathcal{T}_{g,n}$ is a class of faithful Fuchsian represen-
tations of $G$ into $PSU(1,1)$ which have finite covolume. We denote points in $\mathcal{T}$ by
marked groups $\Gamma_{m}$ , where $\Gamma$ is a Fuchsian group and $m$ : $Garrow\Gamma$ is an isomorphism.

Elements $D_{1},\ldots,$ $D_{n}$ in $\Gamma_{m}\in \mathcal{T}$ corresponding to $d_{1},\ldots,$ $d_{n}$ are parabolic. Choose
a horocycle $H_{k}$ invariant under $D_{k}$ such that action of $D_{k}$ on $H_{k}$ is the translation of
length one. Then the identification of $\Gamma_{m}$ with $(\Gamma_{m}, H_{1}, \ldots, H_{n})$ gives the following
statement.

$\mathcal{T}_{g,n}$ Is naturally embedded in the decorated Teichm\"uller space $\tilde{\mathcal{T}}_{g,n}$ .

Therefore, by restricting them to this embedded subspace, Penner’s $\lambda$-length coor-
dinates for $\tilde{\mathcal{T}}_{g,n}$ give also global coordinates for the Teichm\"uller space $\mathcal{T}_{g,n}$ .

’A joint work with M. N\"a\"at\"anen. The author is grateful to Professor Robert Penner for helpful
dlscussions. He thanks Professor Michihiko FUjii for organizing a series of workshops on hyperbolic
geometry and its related topics.
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1.2 Distance between horocycles
Let $p$ be a point of the unit circle. A horvcycle $h$ at $p$ is a Euclidean circle in $D$

tangent at $p$ to the ‘unit circle. The point $p$ is called the base point of $h$ .
Let $h_{1}$ and $h_{2}$ be horocycles based at different points $p_{1}$ and $p_{2}$ and $\gamma$ the hyper-

bolic line between $p_{1}$ and $p_{2}$ . Define

$\lambda=e^{\delta/2}$ , (1)

where $\delta$ is the signed length of the portion of the geodesic $\gamma$ intercepted between the
two horocycles $h_{1}$ and $h_{2},$ $\delta>0$ if $h_{1}$ and $h_{2}$ are disjoint and $\delta<0$ otherwise. In
this way we can assign a positive number $\lambda$ to the pair $(h_{1}, h_{2})$ .

1.3 $\lambda$-length of an ideal arc
Let $S$ be the oriented closed surface of genus $g,$ $P=\{p_{1}, \ldots,p_{n}\}$ a set of $n$ points.
An ideal arc $c$ of $(S, P)$ is a path joining two points $p_{i}$ and $p_{j}$ in $S-P$. The ideal
arc $c$ is simple if $c\cap(S-P)$ is a simple arc.

Let $\Gamma_{m}\in \mathcal{T}_{g,n}$ , then there exists an orientation preserving homeomorphism

$f:S-Parrow D/\Gamma$

inducing $m$ . Let $\gamma$ be the geodesic representative in the homotopy class of $f(c)$ for
the Poincar\’e metric of the punctured surface $D/\Gamma$ . By the identification of $\Gamma_{m}$ with
$(\Gamma_{m}, H_{1}, \ldots, H_{n})$ , the horocycles at the endpoints of $\gamma$ defines the $\lambda$-length $\lambda(c, \Gamma_{m})$ .

Let $\Delta=\{c_{1}, c_{2}, \ldots, c_{q}\},$ $q=6g-6+3n$, be an ideal triangulation of $(S, P)$ . Then

Theorem 1 (Penner [1])

$\lambda_{\Delta}=\prod_{i=1}^{q}\lambda(c_{i}):\mathcal{T}_{g_{1}n}arrow(\mathbb{R}_{+})^{q}$

is an embedding.
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The image of $\lambda_{\Delta}$ is a real algebraic variety determined by $n$ polynomials. A
component of $S- \bigcup_{j=1}^{q}c_{j}$ is called a triangle in $\Delta$ . The image of $\lambda_{\Delta}$ is a real
algebraic variety determined by zero loci of $n$ algebraic equations $D_{1},\ldots,$ $D_{n}$ , where
$D_{k}$ is easily obtained by triangles abutting on the kth puncture $p_{k}$ .

$D_{k}( \lambda_{1}, \ldots, \lambda_{q})=\sum_{i=1}^{N}\frac{\lambda(e_{i})}{\lambda(a_{i})\lambda(b_{i})}-1$ . (2)

1.4 The Ptolemy identity
Let $\Delta=\{c_{1}, c_{2}, \ldots, c_{q}\}$ be an ideal triangulation of $(S, P)$ . Let $e\in\Delta$ and $T_{1}$ and
$T_{2}$ be triangles being on the different sides of $e$ . It is possible that $T_{1}=T_{2}$ . Lift
$T_{1}\cup e\cup T_{2}$ to a quadrangle $Q=\tilde{T}_{1_{\sim}}\cup\tilde{e}\cup\tilde{T}_{2}$ in D. Then $\tilde{e}$ is a diagonal of $Q$ . Let $\tilde{f}$

be the other diagonal and project $f$ to an ideal arc $f$ in $T_{1}\cup e\cup T_{2}$ . Then

$\Delta’=(\Delta-\{e\})\cup\{f\}$

is another ideal triangulation of $(S, P)$ . We say that $\Delta’$ arises from $\Delta$ by the ele-
mentary move on $e$
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Let $(\tilde{a},\tilde{b},\tilde{e})$ be the sides of $\tilde{T}_{1}$ and $(\tilde{c})\tilde{d},\tilde{e})$ be the sides of $\tilde{T}_{2}$ . Suppose that $\tilde{a}$ and
$\tilde{c}$ are opposite sides of $Q$ . Let $a,$ $b,$ $c,$ $d\in$ A $\cap\Delta’$ be the projections of $\tilde{a},\tilde{b},\tilde{c},\tilde{d}$.
The following theorems are proved in Penner’s paper:

Theorem 2 (the Ptolemy identity, Penner [1])
The $\lambda$-lengths function satisfy the identity

$\lambda(a)\lambda(c)+\lambda(b)\lambda(d)=\lambda(e)\lambda(f)$ (3)

This theorem describes the coordinate-change between $\lambda_{\Delta}(\mathcal{T})$ and $\lambda_{\Delta’}(\mathcal{T})$ :

$\lambda_{\Delta’}\circ\lambda_{\Delta}^{-1}(..., \lambda(a), \lambda(b), \lambda(c), \lambda(d), \lambda(e), \cdots)$

$=( \cdots, \lambda(a), \lambda(b), \lambda(c), \lambda(d), \frac{\lambda(a)\lambda(c)+\lambda(b)\lambda(d)}{\lambda(e)}, \cdots)$ (4)

Theorem 3 (Penner [1]) For arbitrary ideal triangulations $\Delta$ and $\Delta’$ of $(S, P)$ ,
there enists a finite sequence of ideal triangulations

$\Delta=\Delta_{0},$ $\Delta_{1},$
$\cdots,$

$\Delta_{m}=\Delta’$ ,

where each $\Delta_{i}$ arises from $\Delta_{i-1}$ by an elementary move.
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Using this theorem it can be shown that coordinate change between $\lambda$-length
coordinates associated with two ideal triangulations is a bi-rational map:

Theorem 4 If $\Delta$ and $\Delta$‘ are ideal triangulations of $F$ , then the coordinate change

$id\downarrow \mathcal{T}\mathcal{T}arrow^{arrow\lambda_{A’}\lambda_{A}}\lambda_{\Delta},(\mathcal{T})\subset(\mathbb{R}_{+}^{+})^{q}\lambda_{\Delta}(\mathcal{T})\subset(\mathbb{R})^{q}I^{\lambda_{A’}}\circ\lambda^{\frac{}{A}1}$

extends to a mtional transformation of $\mathbb{R}^{q}$

Let $\mathcal{M}C=\mathcal{M}C_{g,n}$ denote the mapping class group of $(S, P)$ . Each $\varphi\in \mathcal{M}C$ acts
on the Teichm\"uller space $\mathcal{T}$ . The theorem above yields

Theorem 5 The comespondence

$\phi\mapsto\phi_{*}=\lambda_{\varphi^{-1}(\Delta)}0\lambda_{\Delta}^{-1}$

gives an isomorphism of $\mathcal{M}C$ to a group of mtional transformations.

2 $SL(2, \mathbb{C})$-representation space of a punctured sur-
face group

Let $\mathcal{R}=\mathcal{R}_{g,n}$ be the space of classes of faithful representations $[m]$ of the punctured
surface group $G$ into $SL(2, \mathbb{C})$ such that $m(d_{i})$ is parabolic with tr $m(d_{i})=-2$ for
$i=1,2,$ $\ldots,$

$n$ . The Teichm\"uller space $\mathcal{T}_{g,n}$ is a subspace of $\mathcal{R}_{g,n}$ .
Our purpose is to give a $coordinatearrow system$ for $\mathcal{R}_{g,n}$ whose restriction to $\mathcal{T}_{g,n}$

coincides with Penner’s $\lambda$-lengths coordinate-system.

2.1 Parabolic elements of $SL(2, \mathbb{C})$

Define
$\mathcal{P}=$ { $P\in SL(2,$ $\mathbb{C})$ : $P$ is parabolic with tr$P=-2$}.

If $P_{1}$ and $P_{2}\in P$ do not commute, then the square root of $-P_{1}l*$ in $SL(2, \mathbb{C})$

$Q= \pm\frac{1}{\sqrt{2-trP_{1}P_{2}}}(I-P_{1}P_{2})$ , $\langle$ 5)

is unique up to sign and satisfies

$P_{2}=Q^{-1}P_{1}Q$ . (6)

For the rest of this paper, the diagram

$P_{1}arrow^{Q}P_{2}$
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will mean that $Q^{2}=-P_{1}P_{2}$ .
Cycles of parabolic elements

Let $P_{1},$
$\ldots,$

$P_{n},$ $P_{n+1}=P_{1}\in \mathcal{P}$ . Suppose that no consecutive elements $P_{i}$ and
$P_{i+1}$ commute. Let $Q_{i}$ be a square root of $-P_{i}P_{i+1},$ $(i=1,2, .., n)$ . Then, since
$P_{i+1}=Q_{i}^{-1}P_{i}Q_{i},$ $Q_{1}Q_{2}\cdots Q_{n}$ commutes with $P_{1}$ ,

$trQ_{1}Q_{2}\cdots Q_{n}=+2$ or $-2$ . (7)

Definition
$(Q_{1}, Q_{2}, \ldots, Q_{n})$ is a $(+)$ -system or a $(-)$-system according to if tr$Q_{1}Q_{2}\cdots Q_{n}=+2$

or-2.

2.2 A trace identity of Ptolemy type
Let $P_{1},$ $P_{2},$ $P_{3}$ and $P_{4}$ . Suppose that $P_{i}$ and $P_{j}$ do not commute unless $i=j$ . Choose
$Q_{1},$ $Q_{2},$ $Q_{3},$ $Q_{4},$ $Q_{5},$ $Q_{6},$ $Q_{5}’,$ $Q_{6}’\in SL(2, \mathbb{C})$ so that

$Q_{1}^{2}=-P_{1}P_{2}$ , $Q_{2}^{2}=-P_{2}P_{3}$ , $Q_{3}=-P_{3}P_{4}$ ,
$Q_{4}^{2}=-P_{4}P_{1}$ , $Q_{6}^{2}=-P_{3}P_{1}$ , $Q_{6}=-P_{2}P_{4}$ ,
$(Q_{5}’)^{2}=-P_{1}P_{3}$ , $(Q_{6}’)^{2}=-P_{4}P_{2}$ ,

where
$Q_{5}’=P_{1}Q_{5}P_{1}^{-1}$ , $Q_{6}’=P_{4}Q_{6}P_{4}^{-1}$ .

Theorem 6 If $(Q_{1}, Q_{2}, Q_{5}),$ $(Q_{5}’, Q_{3}, Q_{4})$ and $(Q_{1}, Q_{6}, Q_{4})$ are $(-)- systems$, then

tr$Q_{5}trQ_{6}=$ tr$Q_{1}trQ_{3}+$ tr$Q_{2}trQ_{4}$ (8)
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3 Complexified $\lambda$-length

3.1 Definition of $\lambda$-length
A point of $\mathcal{R}$ is represented by a marked group $\Gamma_{m}$ . Let $\mathcal{P}_{+}(\Gamma)$ be the set of parabolic
elements in $[m(d_{1})]\cup\cdots\cup[m(d_{n})]$ , where $[m(d_{i})]$ is the conjugacy class of $m(d_{i})$ .

Let $c$ be an ideal arc in $(S, P)$ . Then for each $\Gamma_{m}\in \mathcal{R},$ $c$ defines two parabolic
elements $P_{1},$ $P_{2}$ of $\mathcal{P}_{+}(\Gamma)$ , see the following figure. We define the $\lambda$ -length of $c$ with
respect to $\Gamma_{m}$ by

$\lambda(c, \Gamma_{m})=trQ$ , (9)
where $Q$ is a square root of $-P_{1}P_{2}$ . The $\lambda$-length is defined up to sign.

3.2 $\lambda$-length coordinates for $\mathcal{R}_{g,n}$

Let $\Delta=(c_{1}, c_{2}, \ldots, c_{q})$ be an ideal triangulation of $(S, P)$ . Let $T$ be a triangle in $\Delta$ .
$T$ inherites the orientation of the surface $S$ . Label the sides of $T$ by $a,$ $b,$ $c$ in order.
Then those sides determine matrices $Q_{a},$ $Q_{b},$ $Q_{c}$ whose traces give $\lambda$-lengths of $a,$ $b$

and $c$ for $\Gamma_{m}$ .

Lemma 1 It is possible to choose branches of $\lambda$-length functions $\lambda(c_{1}),$ $\lambda(c_{2}),$
$\ldots$ ,

$\lambda(c_{q})$ so that $(Q_{a}, Q_{b}, Q_{c})$ is a $(-)$ -system for each triangle $T$ in $\Delta$ .

With the choice of branches of $\lambda$-lengths as depicted in the lemma, we obtain

Theorem 7 For each ideal triangulation $\Delta_{f}$

$\lambda_{\Delta}=\prod_{i=1}^{q}\lambda(\alpha):\mathcal{R}_{g_{i}n}arrow(\mathbb{C}^{*})^{q}$

is an embedding. The image is contained in an algebraic variety.

3.3 Rational representation of the mapping class group
As in the case of $\mathcal{T}$, the Ptolemy identity (8) yields

Theorem 8 The mapping class group $\mathcal{M}C$ acts on $\mathcal{R}$ as a group of mtional tmns-
formations.
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4 Invariant holomorphic two-form
Let $T_{1},\ldots,$ $T_{p},$ $p=4g-2$, be triangles in an ideal triangulation of a once-punctured
surface. Let the sequence of sides $a_{i},$ $b_{i},$

$c_{i}$ of $T_{i}$ agree with the positive orientation
of $T_{i}$ , then the 2-form

$\sum_{i=1}^{p}(d\log\lambda(a_{i})\wedge d\lambda(b_{i})+d\log\lambda(b_{i})\wedge d\log\lambda(c_{i})+d\log\lambda(c_{i})\wedge d\log\lambda(a_{i}))$ (10)

is invariant under the mapping class group $\mathcal{M}C$ . The proof is similar to the one of
the corresponding result in [2].

5 A characterization of the rational map induced
by a mapping class

5.1 Example: Once punctured torus
The Teichm\"uller space $\mathcal{T}_{1,1}$ of once punctured tori is represented as the subspace of
$(\mathbb{R}_{+})^{3}$ defined by

$x^{2}+y^{2}+z^{2}=xyz$ , (11)
where $x,$ $y,$ $z$ are $\lambda$-length functions related to an (essentially unique) triangulation
of the once punctured torus (or $x,$ $y,$ $z$ are trace functions $tr_{A}$ , tr$B$ , tr$AB$ , with $\{A, B\}$

the canonical generator-system of $G_{1,1}.$ )

The mapping class group $\mathcal{M}C_{1,1}$ has generators

$\sigma(x,y, z)=(x, z,\frac{x^{2}+z^{2}}{y})$ and $\tau(x, y, z)=(\frac{x^{2}+y^{2}}{z}, y, x)$ ,

with relations
$(\tau 0\sigma)^{3}=1$ , $(\sigma 0\tau 0\sigma)^{2}=1$ .

Since $\mathcal{M}C_{1,1}$ acts on $\mathcal{T}_{1_{t}1}$ , the group of rational transformations generated by $\sigma$

and $\tau$ preserves the equation (11) and $(x, y, z)=(3,3,3)$ gives integer solutions of
(11).

Theorem 9 (Markoff) All positive integer solutions of (11) are in the oribit of
(3, 3, 3) under the action of $\mathcal{M}C_{1,1}$ .

The viewpoint of understanding the Markoff transformations as mapping classes
actiong on $\mathcal{T}_{1,1}$ is given in Penner’s paper [1].

With $\lambda$-length coordinates, the Teichm\"uller space $\mathcal{T}_{g,n}$ is determined by $n$ alge-
braic equations and the group of rational transformations induced by the mapping
class group $\mathcal{M}C_{g,n}$ keep this space. So we can pursue analogies of the above result.
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5.2 Example: twice punctured torus
Let $\Delta$ be the ideal triangulation of the twice punctured torus as depicted in the
following figure.

$twi\infty$ punctured torus

Consider the $\lambda$-lengths
$\lambda_{a},$ $\lambda_{b},$ $\lambda_{c},$ $\lambda_{d},$ $\lambda_{e}$

associated with $\Delta$ . Then it holds that $\lambda_{e}=\lambda_{f}$ . The Teichm\"uller space $\mathcal{T}_{1_{2}2}$ (or the
space $\mathcal{R}_{1,2}$ ) is represented by the $\lambda$-lengths as the space

$\frac{\lambda_{e}}{\lambda_{a}\lambda_{b}}+\frac{\lambda_{a}}{\lambda_{b}\lambda_{e}}+\frac{\lambda_{b}}{\lambda_{a}\lambda_{e}}+\frac{\lambda_{c}}{\lambda_{d}\lambda_{e}}+\frac{\lambda_{d}}{\lambda_{c}\lambda_{e}}+\frac{\lambda_{\epsilon}}{\lambda_{c}\lambda_{d}}=1$

or
$\lambda_{c}\lambda_{d}(\lambda_{a}^{2}+\lambda_{b}^{2}+\lambda_{e}^{2})+\lambda_{a}\lambda_{b}(\lambda_{c}^{2}+\lambda_{d}^{2}+\lambda_{e}^{2})=\lambda_{a}\lambda_{b}\lambda_{c}\lambda_{d}\lambda_{e}$ . (12)

The mapping class group $\mathcal{M}C_{1,2}$ (as a group of rational transformations) has
generators

$\omega_{1*}(\lambda_{a},\lambda_{b},\lambda_{c},\lambda_{d},\lambda_{e})\omega_{2*}(\lambda_{a},\lambda_{b},\lambda_{c},\lambda_{d},\lambda_{e})$ $==$ $( \lambda_{d},\lambda_{b},\lambda_{c},\frac{\lambda_{e}^{2}}{\lambda_{c},\lambda}(\lambda_{d},\lambda_{a},\lambda_{b},\frac{+\lambda_{d}^{2}\prime f_{a}\lambda_{c}’+\lambda_{b}\lambda_{c}\lambda_{e})}{\lambda_{e}})$

$\omega_{3*}(\lambda_{a}, \lambda_{b}, \lambda_{c}, \lambda_{d}, \lambda_{e})$ $=$ $( \lambda_{a}, \frac{\lambda_{b}^{2}+\lambda_{e}^{2}}{\lambda_{c}}, \lambda_{b}, \lambda_{d}, \lambda_{e})$,

with relations
$\omega_{2*}^{2}\omega_{1*}\omega_{2*}^{2}=\omega_{3*}$ $\omega_{1*}\omega_{3*}=\omega_{3*}\omega_{1*}$

$(\omega_{1*}\omega_{2*})^{3}=1$ , $(\omega_{3*}\omega_{2*})^{3}=1$

The point $p=(6,6,6,6,6)$ gives integer solutions of (12). An analogous result to
the Markoff equation holds:

Theorem 10 The orbit $\{\varphi_{*}(6,6,6,6,6) : \varphi\in \mathcal{M}C_{1,2}\}$ , gives integer solutions of
(12), but not all of its integer solutions.
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5.3 Diophantine equations
We consider a once punctured surface.

Lemma 2 Let $(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q})$ be the $\lambda$-length coordinate-system for $\mathcal{R}_{g,1}$ associated
to an ideal triangulation $(c_{1}, c_{2}, \ldots, c_{q})_{f}$ where $q=6g-3$. Then the $\lambda$ -length of a
simple ideal arc $c$ is expressed by a rational function of the form

$\frac{P(\lambda_{1},\lambda_{2}.’.\cdot\cdot.\cdot,\lambda_{q})}{\lambda_{1}^{m_{1}}\lambda_{2}^{m_{2}}\lambda_{q}^{m_{q}}}$, (13)

where $P(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q})$ is a homogeneous polynomial of degree

$d=1+m_{1}+m_{2}+\cdots+m_{q}$ ,

with positive integer coefficients and $m_{i}$ is the geometric intersection number of $c$

and $c_{i}$ in $S-P$ for $i=1,2,$ $\ldots,$
$q$

For $\varphi\in \mathcal{M}C_{g,1}$ let $\varphi_{*}$ denote the rational transformation induced by $\varphi$ . Then
entries of $\varphi_{*}(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q})$ are of the form as in (13). This fact leads us to the
following observation.

Let
$D(\lambda_{1}, \ldots, \lambda_{q})=0$ (14)

be the algebraic equation which determines $\mathcal{T}_{g,1}$ in the $\lambda$-length coordinates. Then
the rational transformation $\varphi_{*}$ induced by $\varphi\in \mathcal{M}C_{g,1}$ preserves $D(\lambda_{1}, \ldots, \lambda_{q})$ . $Morearrow$

over, if
$(\lambda, \lambda, \ldots, \lambda)$

gives integer solutions of (14), then so does $\varphi_{*}(\lambda, \lambda, \ldots, \lambda)$ .
We remark that it is not true in general that all integer solutions are in the orbit

of $(\lambda, \lambda, \ldots, \lambda)$ under $\mathcal{M}C$ .

6 3-manifolds which fiber over the circle
Let $\varphi\in \mathcal{M}C_{g_{\gamma}n}$ . Let $M_{\varphi}$ be a manifold which fibers over the circle and whose
monodoromy is $\varphi$ . If $\varphi_{*}$ denotes the action of $\varphi$ on the fundamental group $G=$
$G_{g,n}$ of the surface $S$ of type $(g, n)$ , then the fundamental group of $M_{\varphi}$ has the
presentation

$\tilde{G}=\langle G,$ $t$ : $\varphi_{*}(g)=tgt^{-1}$ for all $g\in G\rangle$ (15)

If $m:\tilde{G}arrow SL(2, \mathbb{C})$ is a faithful representation of $\tilde{G}$ , then for all $g\in G$

$(\varphi_{*}\circ m)(g)=m(t)m(g)m(t)^{-1}$ .
Henoe the class $[m]$ is a fixed point of $\varphi_{*}$ for its action on $\mathcal{R}_{g,n}$ .
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The $\lambda$-length coordinates of $\mathcal{R}_{g,n}$ represent $\varphi_{*}$ as a rational function. Hence the
fixed point $[m]$ corresponds to a solution of the algebraic equation

$\varphi_{*}(\lambda_{1}, \ldots, \lambda_{q})=(\lambda_{1}, \ldots, \lambda_{q})$ . (16)

If $\varphi$ is reducible, then one of the solutions of (16) gives a faithful and discrete
representation $m$ of $G$ . We can find the M\"obius transformation $m(t)$ easily, because
$m(t)$ sends the fixed point of $m(g)$ to that of $m(\varphi_{*}(g))$ for each parabolic element
$g\in G$ . In this way hyperbolization of $M_{\varphi}$ can be done. However, to carry this
hyperbolization program into effect, we need efficient discreteness criteria.
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