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1 Introduction

A sub-Riemannian manifold $(M, D,g)$ is a differential manifold $M$ equipped
with a subbundle $D$ of the tangent bundle $TM$ of $M$ and a Riemannian metric
$g$ on $D$ . In particular, it is called a sub-Riemannian contact manifold if $D$ is
a contact structure, i.e., a subbundle of codimension 1 and non-degenerate.

An infinitesimal automorphism of a sub-Riemannian manifold
$(M, D, g)$ is a local vector field $X$ on $M$ such that $L_{X}D\subset D$ and $L_{X}g=$

$0$ . Denote by $\mathcal{L}$ the sheaf of the germs of infinitesimal automorphisms of
$(M, D, g)$ and by $\mathcal{L}_{a}$ the stalk of $\mathcal{L}$ at $a\in M$ . We say that $\mathcal{L}$ is transitive,
or $(M, D, g)$ is homogeneous if the evaluation map $\mathcal{L}_{a}\ni[X]_{a}\mapsto X_{a}\in T_{a}M$

is surjective for all $a\in M$ .
In this paper we study the structure of the Lie algebra $\mathcal{L}_{a}$ for a point

$a$ of a homogeneous sub-Riemannian contact manifold $(M, D, g)$ from the
viewpoint of nilpotent geometry. We show that the formal algebra $L$ of $\mathcal{L}_{a}$

(and therefore $\mathcal{L}_{a}$ ) is of finite dimension less than or equal to $(n+1)^{2}$ if
$\dim M=2n+1$ . We then completely determine the structures of the Lie
algebras $L$ which attain the maximal dimension, which then leads to the
determination of the Lie algebras $\mathcal{L}_{a}$ which attain the maximal dimension.
We also describe the standard concrete subriemannian manifolds on which
these Lie algebra sheaves are realized.
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2Sub-Riemannian contact transitive filtered
Lie algebras

Let $(M, D, g)$ be a homogeneous sub-Riemannian contact manifold of di-
mension $(2n+1)$ and $\mathcal{L}$ the sheaf of germs of infinitesimal automorphisms of
$(M, D, g)$ as defined in Introduction. First of all let us introduce the contact
filtration $\{\mathcal{L}_{a}^{p}\}_{p\in Z}$ of $\mathcal{L}_{a}$ defined inductively as follows:

(i) $\mathcal{L}_{a}^{p}=\mathcal{L}_{a}(p\leq-2)$

(ii) $\mathcal{L}_{a}^{-1}=\{[X]_{a}\in \mathcal{L}_{a};X_{a}\in D_{a}\}$

(iii) $\mathcal{L}_{a}^{0}=\{[X]_{a}\in \mathcal{L}_{a};X_{a}=0\}$

(iv) $\mathcal{L}_{a}^{p+1}=\{\xi\in \mathcal{L}_{a}^{p};[\xi,$ $\eta]\in \mathcal{L}_{a}^{p+q+1}$ for all $\eta\in \mathcal{L}_{a}^{q},$ $q<0\}(p\geq 0)$ .

Then it is easy to see that

$[\mathcal{L}_{a}^{p}, \mathcal{L}_{a}^{q}]\subset \mathcal{L}_{a}^{p+q}$ for all $p,$ $q\in Z$ ,

and that
$\dim \mathcal{L}_{a}^{p}/\mathcal{L}_{a}^{p+1}<\infty$ .

Passing to the projective limit by setting

$L= \lim_{arrow k}\mathcal{L}_{a}/\mathcal{L}_{a}^{k}$ ,

we obtain a Lie algebra $L$ , which also carries a filtration $\{L^{p}\}_{p\in Z}$ given by

$If= \lim_{arrow k}\mathcal{L}_{a}^{p}/\mathcal{L}_{a}^{k}$ .

Then we see that $(L, \{L^{p}\})$ is a transitive filtered Lie algebra of depth 2 in
the sense of Morimoto[6]: A transitive filtered Lie algebra (TFLA) of depth
$\mu$ , with $\mu$ being a positive integer, is a Lie algebra $L$ endowed with a filtration
$\{L^{p}\}_{p\in Z}$ of subspaces of $L$ satisfying the following conditions:

(Fl) $L=L^{-\mu}$ ,

(F2) $L^{p}\supset L^{p+1}$ ,
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(F3) $[L^{p}, L^{q}]\subset L^{p+q}$ ,

(F4) $\bigcap_{p\in Z}L^{p}=0$ ,

(F5) $\dim L^{p}/L^{p+1}<\infty$ ,

(F6) $L^{p+1}=\{X\in U;[X,$ $L^{a}]\subset U^{+a+1}$ for all $a<0\}$ , for any $p\geq 0$ .

The TFLA $(L, \{L^{p}\})$ thus obtained is called the formal algebra of $\mathcal{L}$ at $a$ .
Let $[=\oplus 1_{p}$ be the graded Lie algebra associated to the TFLA $(L, \{L^{p}\})$

defined by
$1_{p}=L^{p}/L^{p+1}$ .

Then it is easy to see that $l=\oplus(_{p}$ satisfies the following properties:

(i) $[-= \bigoplus_{p<0}1_{p}$ is isomorphic to the $(2n+1)$-dimensional Heisenberg Lie al-

gebra $c_{-}(n)=c_{-2}(n)\oplus c_{-1}(n)$ , where $c_{-2}(n)=R,$ $c_{-1}(n)=R^{2n}$ , and
the bracket operation is given by $[e_{i}, e_{j}]$ $=\delta_{n_{1}j}$ f for $i<j$ and triv-
ial for the other pairs with respect to the standard bases $\{f\}$ and
$\{e_{1}, e_{2}, \ldots , e_{2n}\}$ of $c_{-2}(n)$ and $c_{-1}(n)$ respectively.

(ii) $\oplus 1_{p}$ is transitive, that is, the condition that $p\geq 0,$ $x\in l_{p}[x$ , $[-]$ $=0$

implies $x=0$ .

(iii) There exists a positive definite inner product $g$ : $\mathfrak{l}_{-1}\cross 1_{-1}arrow R$ such
that

$g([A, x], y)+g(x, [A, y])=0$ for all $A\in \mathfrak{l}_{0}$ and $x,$ $y\in t_{-1}$ .

A graded Lie algebra $\oplus I_{p}$ satisfying the above conditions will be called
a sub-Riemannian contact transitive graded Lie algebra (TGLA) and a fil-
tered Lie algebra $(L, \{L^{p}\})$ whose associated graded Lie algebra is a sub-
Riemannian contact TGLA will be called a sub-Riemannian contact transi-
tive filtered Lie algebra (TFLA).
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3Sub-Riemannian contact graded Lie alge-
bras

We call a pair $(1_{-}, g)$ a sub-Riemannian Heisenberg Lie algebra if $1_{-}=1_{-2}\oplus \mathfrak{l}_{-1}$

is a graded Lie algebra isomorphic to the Heisenberg Lie algebra $c_{-}(n)$ and
$g$ is an inner product on $\downarrow-1$ . Such pairs are classified as follows: For an
n-tuple of positive numbers $\lambda=$ $(\lambda_{1}, \ldots , \lambda_{n})$ such that $\lambda_{1}\geq\cdots\geq\lambda_{n}$ and
$\lambda_{1}\cdots\lambda_{n}=1$ , we define an inner product $g_{\lambda}$ on $c_{-1}(n)$ by

$g_{\lambda}(e_{i}, e_{j})=0(i\neq j),$ $g_{\lambda}(e_{k}, e_{k})=1,$ $g_{\lambda}(e_{n+k}, e_{n+k})=\lambda_{k}(1\leq k\leq n)$ ,

where $\{e_{1}, \ldots , e_{2n}\}$ is the basis of $c_{-1}(n)$ . From the normal form of a skew
symmetric matrix under the orthogonal group, we see:

Proposition 1 For an sub-Riemannian Heisenberg Lie algebra $(\mathfrak{l}_{-}, g)_{f}$ there
is a unique $\lambda=$ $(\lambda_{1}, \ldots , \lambda_{n})$ such that $(1_{-}, g)$ is isomorphic to $(c_{-}(n), g_{\lambda})$ .

Next we define $c_{0}(n, g_{\lambda})$ to be the Lie algebra consisting of all $\alpha\in$

$Hom$ ( $l_{-}$ , [- $)$ such that

$\{\begin{array}{l}(i) \alpha(1_{p})\subset b, p<0(ii) \alpha([x, y])=[\alpha(x), y]+[x, \alpha(y)], x, y\in \mathfrak{l}_{-}(iii) g(\alpha(x), y)+g(x, \alpha(y))=0, x, y\in \mathfrak{l}_{-1}.\end{array}$

From (i) and (ii) the matrix representation of $X\in c_{0}(n, g_{\lambda})$ with respect to
the basis $\{f, e_{1}, \ldots, e_{2n}\}$ has the following form.

$X=(\begin{array}{ll}0 00 A\end{array})+c(\begin{array}{llll}2\ddots 0 1\ddots \ddots 0 1\end{array})$ ,

where

$A=(\begin{array}{ll}A_{ll} A_{l2}A_{2l} A_{22}\end{array})\in sp(n, R)$ ,
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that is, $A_{22}=-{}^{t}A_{11},$ $A_{12}$ and $A_{21}$ are symmetric matrices of degree $n$ . Then

by (iii) we have
${}^{t}\tilde{A}K+K\tilde{A}=0$ ,

where

$\tilde{A}=A+cI_{2n}$ , $K=(\begin{array}{llllll}1 \ddots 0 1 \lambda_{l} 0 \ddots \lambda_{n}\end{array})$

It follows from this that the trace of $A$ vanishes, but $A\in sp(n, R)$ is also
traceless, therefore we see that the constant $c=0$ . Using these facts, we
have the following proposition.

Proposition 2 If $[= \bigoplus_{p}\mathfrak{l}_{p}$
is a subriemannian contact TGLA, then $1_{p}=0$

for $p\geq 1$ , and therefore [ is finite dimensional.

The dimension of $c_{0}(n, g_{\lambda})$ will be maximal, when all the eigenvalues
coincide, i.e., $\lambda=(1, \ldots, 1)$ . Then $X\in c_{0}(n, g_{\lambda})$ can be expressed as:

$X=(\begin{array}{llll}0 0 A_{11} A_{12}0 -A_{12} A_{1l}\end{array})$ ,

where $A_{11}$ is skew symmetric and $A_{12}$ is symmetric. It then turns out that
$c_{0}(n, g_{(1,\ldots,1)})$ is isomorphic to $u(n)$ , the Lie algebra of unitary group. Thus
we have shown:

Proposition 3 If a sub-Rriemannian contact TGLA [has the maximal di-
mension $(n+1)^{2}$ , it is $isomo\varphi hic$ to the TGLA $t_{-2}\oplus t_{-1}\oplus t_{0_{f}}$ where $t_{-2}=R$ ,
$t_{-1}=C^{n}\cong R^{2n},$ $t_{0}=u(n)$ , and the bracket opemtion is given by

(i) $[$ , $]$ $:t_{-2}\cross t_{0}arrow 0$
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(ii) $[$ , $]$ : $t_{0}\cross t_{-1}arrow t_{-1}$ ; $[A, x]$ $:=Ax(A\in t_{0}, x\in t_{-1})$

(iii) $[$ , $]$ : $t_{0}\cross t_{0}arrow t_{0}$ ; $[X, Y]:=XY-YX$ $(X, Y\in t_{0})$

(iv) $[$ , $]$ : $t_{-1}\cross t_{-1}arrow t_{-2}$ ; $[Z, W]$ $:={\rm Im} h(Z, W)$ , where $h(,$ $)$ is the canon-
ical $Hem\iota itian$ product on $C^{n}$ .

4 Cohomology group $H(t_{-}, t)$

In order to determine the TFLA’s whose associated graded Lie algebras are
isomorphic to $t$ , we need to study the cohomology group $H(t_{-}, t)$ . Let us
now recall the definition of the cohomology group $H(9-,\mathfrak{g})$ for a transitive
graded Lie algebra $\mathfrak{g}$ . We set $9-= \bigoplus_{p<0}\mathfrak{g}_{p}$

, which is a nilpotent subalgebra of

$g$ , and consider the cohomology group associated with the adjoint represen-
tation of 9- on 9, namely the cohomology group $H(\emptyset-, \mathfrak{g})=\oplus H^{p}(9-, \mathfrak{g})$

of the cochain complex $(Hom(\wedge^{p}g_{-}, \mathfrak{g}), \partial)$ , where the coboundary operator
$\partial$ : $Hom(\wedge^{p}\mathfrak{g}-, \mathfrak{g})arrow Hom(\wedge^{p+1}\mathfrak{g}-, \mathfrak{g})$ is defined by

$(\partial\omega)(X_{1}, X_{2}, \ldots, X_{p+1})$

$=$ $\sum_{i=1}^{n+1}(-1)^{i-1}[X_{i}, \omega(X_{1}, \ldots,\hat{X}_{i}, \ldots, X_{p+1})]$

$+$
$\sum_{1\leq i<j\leq p+1}(-1)^{i+j}\omega([X_{i}, X_{j}], X_{1}, \ldots,\hat{X}_{i}, \ldots,\hat{X}_{j}, \ldots, X_{p+1})$

for $\omega\in Hom(\wedge^{p}g_{-}, \mathfrak{g}),$ $X_{1},$ $X_{2},$
$\ldots$ , $X_{p+1}\in 9-\cdot$ Since both g-and $g$ are

graded, we can define a bigradation $\oplus H_{r}^{p}(9-, \mathfrak{g})$ of $H(9-, \mathfrak{g})$ as follows: De-
note by $Hom(\wedge^{p}\mathfrak{g}-, \mathfrak{g})_{r}$ the set of all homogeneous p-cochains $\omega$ of degree $r$

$($ i.e., $\omega(\mathfrak{g}_{a1}\wedge\cdots\wedge \mathfrak{g}_{a_{p}})\subset \mathfrak{g}_{a1+\cdots+a_{p}+r}$ for any $a_{1},$ $\ldots,$
$a_{p}\leq 0)$ , and set

$Hom(\wedge 9-, \mathfrak{g})_{r}=\bigoplus_{p}Hom(\wedge^{p}\mathfrak{g}_{-}, \mathfrak{g})_{r}$
.

Note that $\partial$ preserves the degree. Hence $Hom(\wedge \mathfrak{g}_{-}, g)_{r}$ is a subcomplex and
the direct sum decomposition

$Hom(\wedge \mathfrak{g}-, \mathfrak{g})=\bigoplus_{r}Hom(Ag_{-}, g)_{r}$
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yields that of the cohomology group:

$H(9-, \mathfrak{g})=\oplus H_{r}(9-, \mathfrak{g})=\oplus H_{r}^{p}(9-, \mathfrak{g})$ .

On the other hand we note that 90 naturally acts on $Hom(\wedge^{p}\mathfrak{g}_{-}, \mathfrak{g})_{r}$ , and we
denote its representation by $\rho$ , which is given by: for $X_{1},$

$\ldots$ , $X_{p}\in 9-$ ,

$( \rho(A)\alpha)(X_{1}, \ldots, X_{p})=[A, \alpha(X_{1}, \ldots, X_{p})]-\sum_{i=1}^{p}\alpha(X_{1}, \ldots, [A, X_{i}], \ldots, X_{p})$ .

Then we have
$\partial\rho(A)=\rho(A)\partial$ for any $A\in 90$ .

Therefore it induces the representation $\overline{\rho}$ of 90 on $H_{r}^{p}(9-, \mathfrak{g})$ . Now we define
the set of all 90-invariant elements by

$IH_{r}^{p}(9-, \mathfrak{g})=\{\alpha\in H_{r}^{p}(9-,$ $\mathfrak{g});\overline{\rho}(A)\alpha=0$ for all $A\in \mathfrak{l}_{0}\}$ .

Then we have the following proposition for the subriemannian contact TGLA
$t$ of dimension $(n+1)^{2}$ :

Proposition 4 (i) $IH_{1}^{2}(t_{-}, t)=0$ .

(ii) $IH_{2}^{2}(t_{-}, t)$ is l-dimensional and genemted by the equivalence class $[\omega]$

of a cocycle $\omega\in Hom(\wedge^{2}t_{-1}, t_{0})$ given by;

$\{\begin{array}{l}\omega(e_{i}\wedge e_{j})=\omega(e_{n+i}\wedge e_{n+j})=-E_{ij}+E_{ji}\omega(e_{i}\wedge e_{n+j})=\sqrt{-1}(E_{ij}+E_{ji}+2\delta_{ij}I_{n}),\end{array}$

where $\{e_{1}, e_{2}, \ldots , e_{2n}\}$ is the standard basis of $\mathfrak{k}_{-1}$ and $E_{ij}$ denotes the
$(i,j)$ matrit unit in $gl(n, C)$ . Moreover, $\omega$ itself is $t_{0}$ -invariant, that is,
$\rho(A)\omega=0$ for $A\in t_{0}$ , where $\rho$ is the representation of $t_{0}$ on $Hom(t_{-}, t)$ .

(iii) $H_{r}^{2}(t_{-}, t)=0$ for $r\geq 3$ .

The proof of the proposition is based on the decomposition of the complex

$Hom(t_{-}, t)_{r}arrow Hom(\wedge^{2}t_{-}, t)_{r}arrow Hom(\wedge^{3}t_{-}, k)_{r}$
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into

$Hom(t_{-2}, t_{r-2})$ $arrow$ $Hom(t_{-2}\otimes t_{-1}, t_{r-3})$ $arrow$ $Hom(t_{-2}\otimes\wedge^{2}t_{-1}, t_{r-4})$

$\searrow$ $\lambda$

$Hom(t_{-1}, t_{r-1})$ $arrow$ $Hom(\wedge^{2}t_{-1}, t_{r-2})$ $arrow$ $Hom(\wedge^{3}t_{-1}, t_{r-3})$

and uses the knowledge on irreducible u(n)-modules informed from Y. Agaoka.
A detailed proof of the proposition will be published elsewhere.

5 Maximal sub-Riemannian contact transi-
tive filtered Lie algebras

5.1 Main theorem

We define, for each $\epsilon\in R$ , a TFLA $K_{\epsilon}$ as follows: Let the underlying
vector space of $K_{\epsilon}$ to be the graded vector space $t=t_{-2}\oplus t_{-1}\oplus t_{0}$ , and
define the filtration $\{K_{\epsilon}^{p}\}_{p\in Z}$ of $K_{\epsilon}$ by $K_{\epsilon}^{p}= \bigoplus_{i\geq p}t$

, and the bracket operation

$[,]_{\epsilon}:K_{\epsilon}\cross K_{\epsilon}arrow K_{\epsilon}$ by

$[x, y]_{\epsilon}=[x, y]_{t}+\epsilon\omega(x, y)$ for $x,$ $y\in K_{\epsilon}$ ,

where $[x, y]_{t}$ denotes the bracket of the graded Lie algebra $t$ and $\omega$ is the
cocycle in $Hom(\wedge^{2}t_{-1}, t_{0})$ given in Proposition 4 (ii) (regarded as an element
of $Hom(\wedge^{2}e, e)$ in an obvious manner). Now our main theorem may be stated
as follows:

Theorem 1 If $K$ is a TFLA and if there is an isomorphism $\phi$ : $grKarrow$

$f$ of gmded Lie algebras, then there exists a unique real number $\epsilon$ and an
isomorphism $\Phi$ : $Karrow K_{\epsilon}$ of filtered Lie algebms such that the associated
map $gr\Phi$ equals to $\phi$ .

By using proposition 4 it is shown that the theorem holds. A detailed proof
of the theorem is given in [3].
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5.2 Realizations

Let us see how the filtered Lie algebras $K_{\epsilon}$ are realized on sub-Riemannian
manifolds.

If $e=0$ , then the filtered Lie algebra $K_{\epsilon}$ is isomorphic to $t_{-2}\oplus t_{-1}\oplus t_{0}$ . It
is realized as the Lie algebra of the infinitesimal automorphisms of the space
$(R^{2n+1}, D, g)$ , where $D$ is the contact structure on $R^{2n+1}(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z)$

defined by

$dz- \frac{1}{2}\sum_{j=1}^{n+1}(x_{j}dy_{j}-y_{j}dx_{j})=0$ ,

and the metric $g$ on $D$ is given by

$g=(dx_{1}|_{D})^{2}+\cdots+(dx_{n}|_{D})^{2}+(dy_{1}|_{D})^{2}+\cdots+(dy_{n}|_{D})^{2}$ .

If $\epsilon$ is positive, then the filtered Lie algebra $K_{\epsilon}$ is isomorphic to
$(n(n+1), \{F^{p}\}_{p\in Z})$ , where $\{F^{p}\}_{p\in Z}$ is a filtration of $u(n+1)$ given by:

$)|\lambda\in R,$ $\xi=(\xi_{1}, \ldots, \xi_{n})\in C^{n},$ $A\in u(n)\}$ $(p\leq-2)$ ,$F^{p}=\{(-{}^{t}\overline{\xi}\lambda i$

$A\xi$

$)\xi=(\xi_{1}, \ldots, \xi_{n})\in C^{n},$ $A\in\iota\downarrow(n)\}$ ,$F^{-1}=\{(-{}^{t}\overline{\xi}0$

$A\xi$

$)\{A\in u(n)\}$ , $F^{q}=0$ $(q\geq 1)$ .$F^{0}=\{(00$
$A0$
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It is realized as the Lie algebra of the infinitesimal automorphisms of the
sphere $(S^{2n+1}, D, g|_{D})$ , where $S^{2n+1}$ is the set of all $(x_{1}, y_{1,}x_{n+1}, y_{n+1})\in$

$R^{2n+2}$ such that

$(x_{1})^{2}+(y_{1})^{2}+\cdots+(x_{n+1})^{2}+(y_{n+1})^{2}=1$ ,

and $D$ is defined by

$\sum_{i}^{n+1}x_{i}dy_{i}-y_{i}dx_{i}|_{S^{2n+1}}=0$

and
$g=(dx_{1})^{2}+(dy_{1})^{2}+\cdots+(dx_{n+1})^{2}+(dy_{n+1})^{2}$ .

If $\epsilon$ is negative, then the filtered Lie algebra $K_{\epsilon}$ is isomorphic to $(u(n, 1), \{F^{p}\}_{p\in Z})$ ,
where $\{F^{p}\}_{p\in Z}$ is a filtration of $u(n, 1)$ given by:

$(p\leq-2)$ ,$F^{p}=\{(\begin{array}{ll}\lambda i \xi{}^{t}\overline{\xi} A\end{array})\lambda\in R,$ $\xi=(\xi_{1}, \ldots, \xi_{n})\in C^{n},$ $A\in u(n)\}$

$)\xi=(\xi_{1}, \ldots, \xi_{n})\in C^{n},$ $A\in u(n)\}$ ,$F^{-1}=\{(0{}^{t}\overline{\xi}$

$A\xi$

$)A\in u(n)\}$ , $F^{q}=0$ $(q\geq 1)$ .$F^{0}=\{(00$
$A0$

It is realized as the Lie algebra of infinitesimal automorphisms of the hyper-
surface $(\Sigma^{2n+1}, D, g|_{D})$ , where $\Sigma^{2n+1}$ is the set of all $(x_{1}, y_{1}, \ldots, x_{n+1}, y_{n+1})\in$

$R^{2n+2}$ such that

$(x_{1})^{2}+(y_{1})^{2}+\cdots-(x_{n+1})^{2}-(y_{n+1})^{2}=-1$
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and $D$ is defined by

$\sum_{j=1}^{n}(y_{j}dx_{j}-x_{j}dy_{j})-(y_{n+1}dx_{n+1}-x_{n+1}dy_{n+1})=0$,

and

$g=(dx_{1})^{2}+(dy_{1})^{2}+\cdots+(dx_{n})^{2}+(dy_{n})^{2}-(dx_{n+1})^{2}-(dy_{n+1})^{2}$

is a pseudo-Riemannian metric on $R^{2n+2}(x_{1}, y_{1}, \ldots, x_{n+1}, y_{n+1})$ , whose re-
striction $g|_{D}$ on $D$ is a positive definite inner product.

Summarizing the above discussion, we have, in particular:

Theorem 2 If $K$ is a maximal sub-Riemannian contact TFLA, then $K$ is
isomorphic to $K_{\epsilon}$ for $\epsilon=-1,0$ or 1.

It should be noted that there exists a Cartan connection associated with
a sub-Riemannian structure (satisfying certain regularity conditions)[8]. By
using this Cartan connection we can prove that $\mathcal{L}_{a}^{p}=0$ if $p$ is large enough,
which implies that $\mathcal{L}_{a}$ is in fact isomorphic to $L$ . Thus the results above for
$L$ hold also for $\mathcal{L}_{a}$ , and we have:

Theorem 3 Let $(M, D,g)$ be a homogeneous sub-Riemannian contact man-
ifold of dimension $2n+1$ , and let $\mathcal{L}_{a}$ be the stalk at $a\in M$ of the sheaf $\mathcal{L}$

the of infinitesimal automorphisms of $(M, D, g)$ . If $\mathcal{L}_{a}$ attains the maximal
dimension $(n+1)^{2}$ , then $\mathcal{L}_{a}$ is $isomo7phic$ to $K_{\epsilon}$ for $\epsilon=-1,0$ or 1.

6 A remark on transitive filtered Lie algebras

In [6] Morimoto studied transitive filtered Lie algebras (TFLA’s) of depth
$\mu\geq 1$ and established the fundamental structure theorems which describe
how a TFLA is built on its associated transitive graded Lie algebra (TGLA).

In this paper we have followed his method to study the structure of sub-
Riemannian contact TFLA’s. While applying it to our concrete problems we
have obtained some improvement of his general theorems. In particular, we
can extend Theorem 4.3 ([6], p.69) as follows:
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Theorem 4 Let $L_{i}(i=1,2)$ be complete TFLA’s, and let $k$ be an integer
$\geq 0$ such that

$H_{r}^{1}($gr-L, $grL)=IH_{r}^{2}($gr-L, $grL)=0$ for $i=1,2,$ $r\geq k+1$ .

Then $L_{1}$ and $L_{2}$ are isomorphic if and only if $Trun_{k}L_{1}$ and $Trun_{k}L_{2}$ are
isomorphic.

Here we follow the notation of [6]. In particular, we refer to it for the
definition of a truncated transitive filtered Lie algebra $Tkun_{k}L$ of order $k$ ([6],
p.57). As defined in section 4, $IH_{r}^{2}(gr_{-}L, grL)$ denotes the space of $gr_{0}L-$

invariant elements in $H_{r}^{2}(gr_{-}L, grL)$

Our theorem asserts that the condition $H_{r}^{2}\{gr_{-}L,$ $grL)=0$ in the origi-
nal theorem can be replaced by the weaker condition $IH_{r}^{2}(gr_{-}L, grL)=0$ .
Roughly speaking, given a TGLA $\mathfrak{g}$ , we can take the smaller space $IH_{r}^{2}(9-,$ $\mathfrak{g})$

instead of $H_{r}^{2}(9-, \mathfrak{g})$ as a parameter space of the moduli of the TFLA’s whose
associated TGLA’s are equal to $\mathfrak{g}$ .

The proof of the theorem is similar to that of the original one if we
properly interpret that the formula $(2.21)_{k}$ , ii) ([6], p.67) actually leads to
our condition $IH_{r}^{2}(gr_{-}L, grL)=0$ .

The improvement observed here seems useful also in other applications
of the theorem. As a corollary of the theorem above, we have also:

Corollary 1 If $L$ is a TFLA satisfying $H_{r}^{1}$ $($gr-L, $grL)=IH_{r}^{2}($gr-L, $grL)=$
$0$ for $r\geq 1$ , then $L$ is gmded, that is, $L$ can be embedded into the completion

of the gmded Lie algebm $grL$ .
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