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0. IN THE FIRST TALK we presented a succinct account of our recent work [10]. That is in
fact a rework of our old file on an explicit spectral decomposition of the mean value

$M_{2}(g;A)= \int_{-\infty}^{\infty}|\zeta(\frac{1}{2}+it)|^{4}|A(\frac{1}{2}+it)|^{2}g(t)dt$ , (0.1)

which has been left unpublished since September 1994, though its summary account is given
in [6] (see also [8, Section 4.6]). Here

$A(s)= \sum_{n}\alpha_{n}n^{-s}$
(0.2)

is a finite Dirichlet series and $g$ an appropriate test function. At this occasion we included

(1) a rigorous treatment of generalized Kloosterman sums associated with arbitrary $\Gamma_{0}(q)$ ,
(2) an in-depth treatment of the Mellin transform

$Z_{2}(s;A)= \int_{1}^{\infty}|\zeta(\frac{1}{2}+it)|^{4}|A(\frac{1}{2}+it)|^{2}t^{-s}dt$ . (0.3)

Because of their independent interest, we shall give the most salient aspects of these two
subjects in the following sections.
IN THE SECOND TALK we discussed the three problems which had been personally shown to
us by Atle Selberg who passed away on 6 August 2007. With this, we tried to briefly relate
three of his many great contributions to mathematics–the elementary proof of the prime
number theorem, the $\Lambda^{2}$-sieve, and the theory of the zeta-functions. Details of this part of
our talk will be published in a future occasion.

1. Let $\Gamma$ be a discrete subgroup of PSL$(2,\mathbb{R})$ which has a fundamental domain of finite
volume. We call $\mathfrak{a}\in$ RUoo a cusp of $\Gamma$ if and only if there exists a $\sigma\in\Gamma$ such that $\sigma$ is
parabolic and $\sigma(a)=a$ . Let $\Gamma_{\mathfrak{a}}$ be the stabilizer of $\alpha$ . There exits a $\sigma_{a}$ such that $\sigma_{a}$ (oo) $=a$
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(1.4)

and $\sigma_{a}^{-1}\Gamma_{\mathfrak{a}}\sigma_{\mathfrak{a}}=\Gamma_{\infty}=[S]$ with $S=(\begin{array}{l}l11\end{array})$ . Then a generalized Kloosterman sum associated
with the two cusps $a,$ $b$ of $\Gamma$ is defined to be the trigonometrical sum

$S(m, n;c;a, b)=\sum_{g}\exp(2\pi i(am+dn)/c)$
, (1.1)

where $g$ runs over the representatives of $\Gamma_{a}\backslash \Gamma/\Gamma_{b}$ such that $\sigma_{\mathfrak{a}}^{-l}g\sigma_{\ddagger},$ $=(\begin{array}{l}bacd\end{array})$ with the same
$c>0$ . This does not depend on the choice of $\sigma_{\alpha},$ $\sigma_{b}$ , modulo a unitary multiplier.

In order to develop the sum formulas of R.W. Bruggeman and N.V. Kuznetsov over $\Gamma$ ,
or the spectral theory of sums of $S(m, n;c;a, b)$ , we need first of all to prove that there exists
a constant $\tau<2$ such that for any non-zero integers $m,$ $n$ and for any pair of cusps $a,$ $b$

$\sum_{c}\frac{1}{c^{\tau}}|S(m,n;c;\mathfrak{a}, b)|\ll|mn|^{\eta}$ , (1.2)

with an appropriate constant $\eta$ , where $c$ runs over all positive values with which (1.1) is
defined. In the case of the full modular group, this is a consequence of non-trivial bounds,
such as Weil’s, for ordinary Kloosterman sums. In literature it is often claimed either explicitly
or implicitly that the same holds with any Hecke congruence subgroup $\Gamma_{0}(q)$ . However, it
appears to us that until recently no rigorous proof of this fundamental assertion had been
given in print, excepting [6] and [7] where the case with $q$ square-hee is explicitly discussed.
With this situation, Bruggeman provided us with a treatment [1] of the sums using a partly
adelic reasoning; and it is now assured that (1.2) indeed holds with any $\Gamma_{0}(q)$ . Here we shall
prove the same with an altemative elementary method.

Thus, we note that a complete representative set of cusps inequivalent $mod \Gamma_{0}(q)$ is given
by

$\{\frac{u}{w}$ : $w|q,$ $(u, w)=1,$ $umod (w, q/w)\}$ . (1.3)

We have

$\Gamma_{u/w}=\{(\begin{array}{ll}\nu l+\frac{u}{w} -\nu\frac{u^{2}}{w^{2}}\nu \nu 1-\frac{u}{w}\end{array}):\nu\equiv 0mod [w^{2}, q]\}$ .

We write
$q=cd=vw=(v,w)^{2}v^{*}w^{*}$ , $v^{*}= \frac{v}{(v,w)},$ $w^{*}= \frac{w}{(v,w)}$ ; (1.5)

then we may put
$\sigma_{u}/w=\varpi_{u}/w^{\mathcal{T}}v^{*}$ ’

(1.6)

where

$\varpi_{u/w}=(\begin{array}{ll}u \frac{uu-l}{w}w \overline{u}\end{array})$
$\tau_{v}*=$

$(\sqrt{v^{*}}$ $\frac{1}{\sqrt{v^{*}}})$ , (1.7)
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with $u\overline{u}\equiv 1mod w$ . In fact we have

$\Gamma_{\tau\iota/w}=\sigma_{u/w}\Gamma_{\infty}\sigma_{u/w}^{-1}=\varpi_{u/w}[S^{v}.]\varpi_{u/w}^{-1}$ . (1.8)

With this, we rewrite the Kloosterman sum $S(m, n;c;u_{1}/w_{1}, u_{2}/w_{2})$ with $u_{i}/w_{i}$ in (1.3)
and (1.6) in force, employing the Bruhat decomposition; that is, in the big cell of PSL $($ 2, $\mathbb{R})$

we have
$(\begin{array}{ll}a bc d\end{array})=(\begin{array}{ll}l a/c 1\end{array})(c -l/c)$ $(^{1}$ $d/c1)=B[a, d;c]$ , (1.9)

say. Let $\chi_{q}$ be the characteristic function of the set $\Gamma_{0}(q)\subset$ PSL $($ 2, $\mathbb{R})$ . Then we have

$S(m, n;c;u_{1}/w_{1}, u_{2}/w_{2})$

$= \sum_{ad\equiv 1mod c}Jt_{q}(\varpi_{u_{1}/w_{1}}B[a, d;c]\varpi_{u_{2}/w_{2}}^{-1})\exp(2\pi i(\frac{ma}{v_{1}c}*+\frac{nd}{v_{2}^{*}c}I)$ , (1.10)

$a$ $mod v_{1}^{*}c$

$dmod v_{2}^{\sim}c$

where $v_{i}^{*}$ and $\varpi_{u./w}$: are as in (1.5) and (1.7). In fact, it suffices to observe that the Kloost-
erman sum on the left is associated with the double coset decomposition

$\Gamma_{u_{1}/w_{1}}\backslash \Gamma_{0}(q)/\Gamma_{u_{2}/w_{2}}=\varpi_{u_{1}/w_{1}}[S^{v_{1}^{*}}]\backslash \varpi_{u_{1}/w_{1}}^{-1}\Gamma_{0}(q)\varpi_{u_{2}/w_{2}}/[S^{v_{2}^{*}}]\varpi_{u_{2}/w_{2}}^{-1}$

$=\varpi_{u}1\Gamma_{\infty}\backslash \tau_{i}^{-1}\varpi_{u_{1}/w_{1}}^{-1}\Gamma_{0}(q)\varpi_{u_{2}/w_{2}}\tau_{v_{2}}\cdot/\Gamma_{\infty}\varpi_{u_{2}/w_{2}}^{-1}$ , (1.11)

as (1.8) holds. We remark also that $\chi_{q}(\varpi_{u_{1}/w_{1}}B[a, d;c]\varpi_{u2/w_{2}}^{-1})$ is a function of a $mod v_{1}^{*}c$ ,
$dmod v_{2}^{*}c$ . To see this, we note the relation

$\varpi_{u_{1}/w_{1}}B[a+a’, d+d’;c]\varpi_{u_{2}/w_{2}}^{-1}$

$=\varpi_{u_{1}/w_{1}}(\begin{array}{ll}1 a’/c 1\end{array})\varpi_{u_{1/w_{1}}}^{-1}\cdot\varpi_{u_{1}/w_{1}}B[a, d;c]\varpi_{u_{2}/w_{2}}^{-1}\cdot\varpi_{u_{2}/w_{2}}$ $(^{1}$ $d’/c1)\varpi_{u_{2}/w_{2}}^{-1}$ ; (1.12)

and

$\varpi_{u_{1}/w_{1}}$
$(^{1}$ $a_{1}’/c)\varpi_{u_{1}/w_{1}}^{-1}\in\Gamma_{u_{1}/w_{1}}\subset\Gamma_{0}(q)$ ,

$\varpi_{u_{2}/w_{2}}$
$(^{1}$ $d’/c1)\varpi_{u_{2}/w_{2}}^{-1}\in\Gamma_{u_{2}/w_{2}}\subset\Gamma_{0}(q)$ , (1.13)

provided $v_{1}^{*}|(a’/c),$ $v_{2}^{*}|(d’/c)$ , which proves the assertion.
Next, we shall show that if $ad\equiv 1$ mod $c$ , then

$x_{q}(\varpi_{u_{1}/w_{1}}B[a, d;c]\varpi_{u_{2}/w_{2}}^{-1})=\chi_{q}(\varpi_{\overline{c}u_{1}/w_{1}}B[a, d;c_{0}]\varpi_{\overline{c}u_{2}/w_{2}}^{-1})$ , (1.14)
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where $c=c_{0}c^{*}$ with $c_{0}=(c, q^{\infty})$ , and $\overline{c^{*}}c^{*}\equiv 1mod q$ ; note that $\overline{c^{*}}u_{i}/w_{i}$ are cusps of $\Gamma_{0}(q)$ .
In fact, computing the lower-left element of $\varpi_{u_{1}/w_{1}}B[a, d;c]\varpi_{u_{2}/w_{2}}^{-1}$ , we see that the value of
the left side equals 1 if and only if

$\overline{u_{2}}(aw_{1}+c\overline{u}_{1})\equiv w_{2}(w_{1}(ad-1)/c+d\overline{u_{1}})mod q$ ; (1.15)

and this is equivalent to the congruence

$\overline{\overline{c^{*}}u_{2}}(aw_{1}+c_{0}\overline{\overline{c^{*}}u_{1}})\equiv w_{2}(w_{1}(ad-1)/c_{0}+d\overline{c^{*}}u_{1})mod q$, (1.16)

which immediately implies (1.14).
Hence we have

$S(m, n;c;u_{1}/w_{1}, u_{2}/w_{2})$

$= \sum_{ad\equiv 1mod c}x_{q}(\varpi_{c^{*}u_{1}/w_{1}}-B[a, d;c_{0}]\varpi_{c^{*}u_{2}/w_{2}}^{-1}-)\exp(2\pi i(\frac{ma}{v_{1}^{*}c}+\frac{nd}{v_{2}^{*}c}))$ . (1.17)

$a$ $mod v_{1}^{*}c$

$dmod v2c$

Here we have
$\frac{1}{v_{i}^{*}c}\equiv\frac{\tilde{c_{i}^{*}}}{v_{i}^{*}c_{0}}+\frac{\overline{v_{i}^{*}c_{0}}}{c}*mod 1$ , (1.18)

with $\tilde{c_{i}^{*}}c^{*}\equiv 1mod v_{i}c_{0},\overline{v_{i}^{*}c_{0}}v_{i}^{*}c_{0}\equiv 1$ mod $c^{*}$ . Inserting this into (1.17), putting $a\equiv a_{0}$ mod
$v_{1}^{*}c_{0},$ $a\equiv a^{*}mod c^{*},$ $d\equiv d_{0}mod v_{1}^{*}c_{0},$ $d\equiv d^{*}mod c^{*}$ , and further, noting the congruence
property of $Jt_{q}$ shown above, we may rewrite (1.17) as

$S(m, n;c;u_{1}/w_{1}, u_{2}/w_{2})= \sum_{ad\equiv 1mod c}x_{q}(\varpi_{\overline{c^{*}}u_{1}/w_{1}}B[a_{0}, d_{0};c_{0}]\varpi_{\overline{c^{*}}u_{2}/w_{2}}^{-1})$

a mod $vic$
dmod $v_{2}c$

$\cross\exp(2\pi i(\frac{\tilde{c_{1}^{*}}ma_{0}}{v_{1}^{*}c_{0}}+\frac{\tilde{c_{2}^{*}}nd_{0}}{v_{2}^{*}c_{0}}))\cdot\exp(2\pi i(\frac{\tilde{v_{1}^{*}c_{0}}ma^{*}}{c}*+\frac{\overline{v_{2}^{*}c_{0}}n\delta^{*}}{c}*I)\cdot$ (1.19)

We have thus obtained the factorization

$S(m, n;c;u_{1}/w_{1}, u_{2}/w_{2})$

$=S(\tilde{c_{1}^{*}}m,\tilde{c_{2}^{*}}n;c_{0};\overline{c^{*}}u_{1}/w_{1},\overline{c^{*}}u_{2}/w_{2})S(\overline{v_{1}^{*}c_{0}}m,\overline{v_{2}^{*}c_{0}}n;c^{*})$, (1.20)

where the last factor is an ordinary Kloosterman sum. In particular, the Weil bound yields
that

$S(m, n;c;u_{1}/w_{1}, u_{2}/w_{2})\ll qc_{0}((m, n,c^{*})c^{*})\not\in+\epsilon$, (1.21)
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(2.3)

with the implied constant depending only on $\epsilon$ an arbitrary small positive constant. Therefore,
we have obtained

Theorem 1. Any $\Gamma_{0}(q)$ satisfies (1.2) with $\tau>\frac{3}{2}$ .

REMARK. The decomposition (1.20) extends to a full localization, with which we may replace
(1.21) by the best possible bound. To this we shall return elsewhere.

2. Our argument reduces $M_{2}(g;A)$ to sums of Kloosterman sums $S(m,\overline{d}n;ck)$ where $(ck, d)=$

$1$ and $d\overline{d}\equiv 1mod ck$ . To capture these sums, we consider the combination of the cusps $1/q$

and $1/c$ of the group $\Gamma_{0}(q),$ $q=cd$.
However, we first modify (1.6) as

$\sigma_{u/w}=\xi_{u/w}\tau_{v}\cdot$ , $\xi_{u/w}=\varpi_{u/w}S^{f/(v,w)}$ , (2.1)

with
$fw^{*}\equiv-\overline{u}mod v^{*}$ , $u\overline{u}\equiv 1mod w$ . (2.2)

A simple congruence consideration gives that for any $v_{i}w_{i}=q$ with $(v_{i}, w_{i})=1$ ,

$\xi_{1/w_{1}}^{-1}\Gamma_{0}(q)\xi_{1/w_{2}}=\{(\begin{array}{ll}(v_{1},w_{2})k v_{2}(v_{1},)l(w_{1},w_{2})r (w_{1},v_{2})s\end{array})\in$ SL(2, Z), $k,$ $l,$ $r,$ $s\in Z\}$

(cf. [4, p. 534]; note that there $q$ is square-free but here not assumed to be so). We then have

$\Gamma_{1/w_{1}}\backslash \Gamma_{0}(q)/\Gamma_{1/w_{2}}=\sigma_{1/w_{1}}\Gamma_{\infty}\tau_{v_{1}}^{-1}\xi_{1/w_{1}}^{-1}\backslash \Gamma_{0}(q)/\xi_{1/w_{2}}\tau_{v_{2}}\Gamma_{\infty}\sigma_{1/w_{2}}^{-1}$

$\Leftrightarrow$ $\Gamma_{\infty}\backslash \tau_{v_{1}}^{-1}\xi_{1/w_{1}}^{-1}\Gamma_{0}(q)\xi_{1/w_{2}}\tau_{v_{2}}/\Gamma_{\infty}$

$\Leftrightarrow$ $\Gamma_{\infty}\backslash \{(\begin{array}{ll}w_{2})r\sqrt{v_{2}}/v_{1}(v_{1} (v_{1},v_{2})l/\sqrt{v_{1}v_{2}}(w_{1},w_{2})k\sqrt{v_{1}v_{2}} (w_{1},v_{2})s\sqrt{v_{1}}/v_{2}\end{array})\}/\Gamma_{\infty}$

$\Leftrightarrow$ classifying the solutions of $(v_{1}, w_{2})(w_{1}, v_{2})rs-(w_{1}, w_{2})(v_{1}, v_{2})kl=1$

according to $(v_{1}, w_{2})r\sqrt{v_{2}/v_{1}},$ $(w_{1}, v_{2})s\sqrt{v_{1}/v_{2}}mod (w_{1}, w_{2})k\sqrt{v_{1}v_{2}}$

$\Leftrightarrow$ the moduli of the generalized Kloosterman sums have the form $(w_{1}, w_{2})k\sqrt{v_{1}v_{2}}$

with $((v_{1},w_{2})(w_{1}, v_{2}), k)=1$ and
$(v_{1},w_{2})(w_{1}, v_{2})rs\equiv 1mod (w_{1}, w_{2})(v_{1},v_{2})k$

$(v_{1}, w_{2})rmod v_{1}(w_{1}, w_{2})r rmod (v_{1},v_{2})(w_{1},w_{2})k$
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$(w_{1}, v_{2})smod v_{2}(w_{1}, w_{2})krightarrow smod (v_{1}, v_{2})(w_{1}, w_{2})k$

$<\Rightarrow$ $\gamma=(w_{1}, w_{2})k\sqrt{v_{1}v_{2}},$ $((v_{1}, w_{2})(w_{1}, v_{2}), k)=1$ ,

$S(m, n; \gamma;1/w_{1},1/w_{2})=(v_{1},w_{2})(w_{1},v_{2})rs\equiv 1mod (v_{1},v_{2})(w_{1},w_{2})k\sum_{r,smod (v_{1},v_{2})(w_{1},w_{2})k}$

$\exp(\frac{2\pi i(rm+ns)}{(v_{1},v_{2})(w_{1},w_{2})k})$

$=S(\overline{(v_{1},w_{2})}m,\overline{(w_{1},v_{2})}n;(v_{1},v_{2})(w_{1}, w_{2})k)$ , (2.4)

where the last member is an ordinary Kloosterman sum. In particular, we find that if $q=cd$,
$(c, d)=1$ , and $(k, d)=1$ , then

$S(m, n;ck\sqrt{d};1/q, 1/c)=S(m,\overline{d}n;ck)$ (2.5)

under the specification (2.1).
A combination of Theorem 1 and (2.5) allows us to decompose $M_{2}(g;A)$ according to

the spectral structure of the space of cusp forms over $\Gamma_{0}(q)$ with varying $q$ ; the details are
fully developed in [10] which is quite involved as might be expected.

It then transpires that

Theorem 2. Provided $\alpha_{n}>0$ for square-free $n$ $and=0$ otherwise, the function $Z_{2}(s;A)$

has infinitely many simple poles on the line ${\rm Re} s= \frac{1}{2}$ , which come from eigenvalues of the
hyperbolic Laplacian acting over the space of $\Gamma_{0}(q)$ -automorphic forms with $q$ varying.

This restriction on $\alpha_{\tau\iota}$ is made solely for the sake of a convenience to develop the relevant

discussion in [10]. It can be lifted in various fashions.

Our result suggests strongly that the Mellin transform

$Z_{3}(s;1)= \int_{1}^{\infty}|\zeta(\frac{1}{2}+it)|^{6}t^{-s}dt$ (2.6)

should have the line ${\rm Re} s= \frac{1}{2}$ as a natural boundary, for $|\zeta|^{6}=|\zeta|^{4}|\zeta|^{2}$ and $|\zeta|^{2}$ may be

replaced by a finite expression similar to $|A|^{2}$ via the approximate functional equation. The

same has been speculated also by a few people other than us (see [3][5] for instance), but

it appears that our theorem is so far the sole explicit evidence supporting this conjectural
assertion. It entails naturally

Problem: Is the set $\bigcup_{q\geq 1}$ Sp $(\Gamma_{0}(q))$ dense in the half line $( \frac{1}{4},$ $\infty)$ ?

3. Here are additional discussion: As we noted already at a few occasions, the reason of the

success with $M_{2}(g;1)$ lies definitely in the fact that the Eisenstein series in the hamework
of SL $(2,\mathbb{R})$ is closely related to the product of two zeta-values and in that the group is of
real rank one, with the observation that the later is reflected in that the integral for $M_{2}(g;1)$

is single (as is inferred from the arguments developed in e.g. [2][9]). Extrapolating this, we
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surmise that a proper formulation of the sixth moment of the zeta-function be expressed in
terms of a double integral unlike $M_{2}(g;1)$ , and thus $Z_{3}(s;1)$ be replace by a double Mellin
transform, for the group SL $($ 3, $\mathbb{R})$ is closely related to the product of three zeta-values and
it is of real rank 2. Nevertheless, it seems worth considering $M_{2}(g;A)$ , as it stands between
the pure fourth and sixth moments and requires less machineries than the plausible direct
approach to the sixth moment via the spectral theory of $L^{2}$ (PSL(3, $Z)\backslash$PSL $(3,$ $\mathbb{R})$ ) such as
proposed in [8, Section 5.4].

We comment further that in order to deal with $M_{2}(g;A)$ there are at least three ways
for us to proceed along. The first is the argument that we took in [8], the second is a
representation theoretic approach developed in [2], and the third is the one in [9] which is
more representation theoretic and in fact generalizes to quite a wide extent. We took in [10]
again the first way, for it appears to be the most explicit and allow us to exploit best the
peculiarity of our problem, i.e., the presence of the square of the zeta-function in place of
the first power of an automorphic L-function. Nevertheless, it should be stressed that the
methods in [2] and [9] have a definite advantage over that in [8], for they are independent of
the spectral theory of Kloosterman sums.
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