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1 Introduction and Combinatorial game
In this article we are going to present interesting combinatorial games that have been invented and

studied by high school students. Combinatorial games are very good topic for high school students to
study, and it is fairly easy for high school students to invent new combinatorial games, once they are
introduced to some games. After students invent an interesting game, they can study the game by using
computer algebra systems such as Mathematica. Mathematica has functions that are very useful to study
combinatorial game theory. Therefore combinatorial game theory will give a very good chance for high
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school students to do creative things by discovering new facts, if they can make the best of computer
algebra systems.

In Section 2,3 and 4 we are going to study games that have already been studied by many people. In
Section 5, 6 and 7 we are going to study games that have been introduced by the authors of this article.

In the followings we use the word option to mean “ choice of move”. In a combinatorial game there
are two players who take tums altemately. They continue playing until one of the players has no legal
options available.

Traditionally the two players of a combinatorial game are called Left (or just L) and Right (R).
The left options and the right options of a position are always the same in some games, then we

call such games impartial. In this article we study impartial games. For the details of the theory of
Combinatorial games see [2] and [3].

2 The Traditional Nim
Deflnition 1
$We$ are going to define a gam$e$ called $Nim$ . This game is played by the following rules. There are one or
more piles, and th$e$ players $al$temate by taking all or some of the $co$unters in a single heap. The player
who takes the last $co$unter or stack of $co$unters is the winner.
In Graph 2.1 we have three piles with 6, 8, 9 $co$unters.
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Graph 2.1

The theory of Nim is equivalent to the theory of a chocolate problem in Section 3. Therefore we are going
to study the theory of Nim in Section 3.

3 A Bitter Chocolate Problem 1
This is a bitter chocolate problem that is a very interesting variant of Nim, and it has been proposed

in [4].

Definition 2
Given the belo$w$ pieces of chocola$te$, where th$e$ light gray parts are sweet and th$e$ dark gray part is very
$bi$tter. Two players in tum break the chocola$te$ (in a straight line along th$e$ grooves) and $eats$ the piece
he breaks off. The player to leave his opponent with the single bitter part is the vvinner.

We are going to study this problem by using the chocolate in Graph 3.1 as an example.
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Example 1
It is easy to see that the pro $bl$em in Graph 3.1 is equivalent to the chocolate problem in Graph 3.2.

Graph 3.1 Graph 3.2

Ifyou look at the chocolate in Graph 3.2, then you can easily see that the $sol$ution of this game is the
same as that of the traditional $Nim$ with piles of {6,4,2,3}.

Now we are goin$g$ to study the theory of $Nim$ using $th$is chocolate problem as an example. In this
game there are two kin$ds$ ofpositions. On$e$ kind is a P-position, a previous-player-winning position. The
other is an N-position, a Next-player-winning position.

Let me explain about these positions. Our aim is to find all the P-positions.
By the definition of P-position an$d$ N-position $lt$ is clear that they have the following properties.

Graph 3.3

This chocolate in Graph 3.1 an$d$ Graph 3.2 has 6 rows over the red part, 4 columns on the right side, 2
rows under the red parts and 3 columns on the left side of the red part. We partitioned these numbers
6,4,2,3 into powers of two. Therefore $6=2+4,4=4,2=2$ and $3=1+2$. Thus we can make Graph
3.4.

Graph 3.4

We are going to check the ta$ble$ for each power of 2. For $2^{0}=1$ we have only 1 $occ$urrence. For $2^{1}=2$ we
have 3 $occ$urrences, an$d$ for $2^{2}=4$ we have 2 $occ$urrences. C.Bo$u$ ton [1] proved that we have a P-position
when each power of 2 occurs evenly often. Therefore we have an N-position in Graph 3.4.

We have to remove on$e$ row over the red part if you want to move to a P-position. See Graph 3.5. Here
each power of 2 $occ$urs evenly often.
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Graph 3.5

Another option is to remove 3 columns from th $e$ left side of the red part.

Now we are going to study the bitter chocolate problem in general. This problem is a typical example
of traditional Nim. We can represent the gam$e$ with 4-numbers $(x_{1}, x_{2}, x_{3}, x_{4})$ . When it is your turn,
you choose one of the 4 coordinates and subtract a number that is smaller than the coordinate. These
4 coordinates are independent, i.e., you can take a number from one coordinate without affecting other
coordinates.

Theorem 3
In the game of above chocolate problem we have a P-position when each power of 2 $occ$urs evenly often.

We omit the proof, because this is a well known fact about the game of Nim. This theorem was proved
in [1] for the first time.

By Theorem 3 the P-positions of this chocolate problem can be obtained by mathematical theory, but
in many combinatorial games it is difficult to get a strategy to win mathematically. Usually we can get
the list of P-positions only by calculation of computer, and one the most important tool for that is the
Grundy Number.

Here we are going to define Grundy Number using the Nim in this section as an example.
First we define a very important function Mex$[]$ .

Definition 4
The $Mex$ of a set of nonnegative integers is the least nonnegative integer not in the set.

Example 2
$Mex[0,1,4,5,6]=2$ an$dMex[1,4,5,6]=0$ .

Deflnition 5
For any position $x$ we denote by $Move[x]$ the set of all the positions that players can reach directly from
the position $x$.

Example 3
Let $x=\{1,1,1,2\}$ . Then this position is the following chocolate. See Graph 3.6.

囲
Graph 3.6

Ilrom this position the player can reach $\{0,1,1,2\},$ $\{1,0,1,2\},$ $\{1,1,0,2\},$ $\{1,1,1,1\},$ $\{1,1,1,0\}$ .
These positions are the following $cho$colates. See Graph 3.7.
Therefore $Move[x]=\{\{0,1,1,2\}, \{1,0,1,2\}, \{1,1,0,2\}, \{1,1,1,1\}, \{1,1,1,0\}\}$ .
$s^{\aleph}\infty:\^{*g_{i}}k^{\wp_{\backslash \Re s_{\vee}}};^{a_{:}}\varphi\wedge.\wedge\ovalbox{\tt\small REJECT}.\cdot\ovalbox{\tt\small REJECT}$

Graph 3.7

We are going to define the $Gr$undy Number $G(x)$ for any position $x$.

175



Deflnition 6
Let $P_{0}$ be the set of positions from which the players can have no legal option.
For any position $x\in P_{0}$ we define $G(x)=0$.
Let $N_{1}$ be the set of positions from which the players can choose a proper option that leads to $P_{0}$ .
For any position $x\in N_{1}$ we define $G(x)=l$ .
For any position $x$ we define $G(x)rec$ursively.
$G(x)=Mex[G[y],y\in Move[x]]$ .
For the details of the Grun$dy$ Number see [2].

By the theory of Grundy Number we know that $x$ is a P-position if and only if $G(x)=0$ . Therefore we
can find P-positions by calculating Grundy Number $G(x)$

We are going to use Grundy number in Section 5.

4 A Strip with Coins.
This is a variant of Nim, and you can play the game with coins and a strip.

Definition 7
There are $k$ coins and there are $nsqu$ares in the strip, and the strips are $n$umbered with $1,2,3,\ldots,n$ .
We are goin$g$ to move the coins by the following rules (1), (2) and (3).
$(l)If$ there is a coin in the $m$ th place and no coin in the $(m+l)th$ place, then a player can move the coin
to th$e(m+l)th$ place.
(2) If there are coins in the $m$ th place an$d$ in the $(m+l)th$ place an$d$ no coin in the $(m+2)th$ place, then
a player can move the coin in the $m$ th place to the $(m+2)th$ place.
(3) The game with $k$ coins ends when these coins are on$e$ each on the right end of the strip.

Example 4
In the following example we let $n=15$ an$dk=3$. See Graph 4.1.
123456789 1011 1213 14 15

Graph 4. 1

By the rule (1) and (2) of Definition 7 players can move from the position of Graph 4.1 to the positions
of Graph 4.2.

I23456789101112131415

$1234567S910111213141S$

Graph 4.2

We are going to omit the theory of this game, since it has been studied by many people.

After the authors studied the theory of Section 1,2,3 and 4, they began to make new combinatorial
games. In Sections 5,6 and 7 you are going to see the results of the research.
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5 A Bitter Chocolate Problem 2
This variant of the chocolate problem has been introduced by the authors.

Since the game itself is very difficult to treat generally, we are going to study it by an example.

Example 5
Suppose that you have the following chocolate. See Graph 5.1. The light gray parts are sweet, but the
dark gray part is very bitter. Two players in tum breaks the chocolate (in a straight line along the
grooves) an$d$ eats the piece he breaks off The player to leave his opponen$t$ with the single bitter part is
the winner.

$\mathbb{A}$

$\ovalbox{\tt\small REJECT}^{}\ovalbox{\tt\small REJECT}^{\{}A^{d}E1$

Graph 5. 1

The problem in Graph 3.1 is different from the problem in Graph 5.1. In Graph 5.1 you can cut the
chocolate in 6 ways, so it is appropriate to represent it with 6 numbers $(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6})$ . We represent
the position in Graph 5.1 with {2,1,2,1,2,1} and the 6th position in Graph 5.2 with {0,1,0,1,1,1}.

Note that these 6 coordinates are not independent, i.e., in some cases you cannot take a number from
one coordinate without affecting other coordinates.

In fact we have 6 inequalities between these 6 coordinates.
$x_{1}\leq x_{2}+x_{6},$ $x_{2}\leq x_{1}+x_{3}+1,$ $x_{3}\leq x_{2}+x_{4},$ $x_{4}\leq x_{3}+x_{5}+1,$ $x_{5}\leq x_{4}+x_{6},$ $x_{6}\leq x_{5}+x_{1}$

As far as we know there have been no research on the Nim conditioned by inequalities. Therefore we
are studying a new kind of Nim.

Example 6
Here we are going to calcula$te$ all the P-positions of this game. Since there is no method to find all the
P-position theoretically, we are going to find all of them by calculation of Mathematica. Because this
game has a complicated structure, the Mathematica program for this game is a little bit complicated.

Clear [ss , al, allcases] ;
ss . 1: al .
Flatten [Table $[\{a.b.c , d,e.f\}.\{a.0. ss +2\},$ $\{b,0$ , ss $\}$ . $\{c.0$ ,
ss $+2\}.\{d.0$ .ss $\}$ . $\{e.0.ss +2\}.\{f.0$ .ss $\}]$ ,51 ;
allcases $\approx$

Select $[$al, $ $[[1]]+*[[3]]+1>\cdot\#[[2]]\ \ \#[[2]]+\#[[4]]>=\#[[$

3$]]$ &&# $[[3]]+\#[[5]]+1>\approx\#[[4]]\ \ \#[[4]]+\#[[6]]>\cdot\#[[$

5$]]$ g&# $[[5]]+\#[[1]]+1>**[[6]]\ \ \#[[6]]+\#[[2]]>\Leftrightarrow\#[[$

$1]]\ ]$ ; ( $*$allcases are the set of all possible shapes of the
chocolate. Note that the above inequality are the necessary
and sufficient conditions for {a,b, c,d, e,f} to be a possible
shape of the chocolate. $*$ )
$num\cdot Length$ [allcasesl :
( $*num$ is the number of all the $cases*$ )
$xl\cdot allcases$ [Cnum] $]$ ;
( $*x1$ is the case with which we start the $fme*$ )

pos [x-List, y-List] $:-$

Block [$\{s.t.u.v\}.u\Leftrightarrow x;v-y;t\cdot Apply$[Plus, v) ;
$s=Position[v.t][[1.1]]$ ;
$u[[s]]-u[[s]]-t;\{{\rm Min}[u[[6]]+u[[2]].u[[1]]]$ ,
${\rm Min}[u[[1]]+u[[3]]+1.u[[2]]]$ .
${\rm Min}[u[[2]]+u[[4]],u [[3]]]$ ,
${\rm Min}[u[[3]]+u[[5]]+1,u [[4]]]$ ,
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${\rm Min}[u[[5]]+u[[l]]+l.u[[6]{\rm Min}[u[[4]]+u[[6]].u[[5]]](*pos[x,y]returnsthecasethatj]\}];$

you will get after removing
$y$ from $x$ .

For exanple let $x=\{1.2.1.2.1.2\}$ and $y\overline{-}\{1,0.0.0.0,0\}$ .
from $thelstc\circ ordinateofx:thatis\{l,l,2.l.2,l\}*)$
th $os[]$
$ci_{ear\mathfrak{c}move.z}$ .p. $t1,t2.t3.t4,t5,t6j$ ;
move $[z_{-}];\cdot Block\mathfrak{c}\{p\}.p=z$ ;

$Tab1e\mathfrak{c}\circ s\mathfrak{c}\{0.0.t3.0.0,0\}J.\{t3.l.p[[3]]\}]Table\mathfrak{c}p\circ s\mathfrak{c}p.\{0.t2.0.0.0.0\}J.\{t2.l.p[[2]Union\mathfrak{c}Tab1e\mathfrak{c}pos\mathfrak{c}p.\{t1,0,0,0,0,0\}J.\{t1,ljp[[1]]\}]\}].\cdot$

$TT\tau aabbllee\mathfrak{c}\mathfrak{c}ppp\circ oss\mathfrak{c}\mathfrak{c}ppp.\{\{00^{\cdot}00.00^{\cdot}t04t05^{\cdot}00\}\}JJ,\{\{ttt46,5^{\cdot}111.ppp[[[[45\Vert\}]\}]\}],$

$1$

$J$

$(*move[x]$ returns all the cases you can get from $x$ when

$Mex[L]:\cdot{\rm Min} rComplement\mathfrak{c}Range\mathfrak{c}0,Length[L]].L3l;Gr\mathfrak{c}z_{-}\overline{J}:\cdot Gr[z]\cdot Nex\mathfrak{c}Nap\mathfrak{c}Gr.move[z]JJ_{j}youremoveapartofx*)$

By the Mathematica program in Example 6 we can flnd all the P-positions. (For this scale of problem
you can find all the P-position only with pen and paper.) This Graph 5.2 contains all the P-positions. All
the other positions are N-position. As you can see easily the initial position in Graph 5.1 is an N-position,
because you cannot find the initial position in Graph 5.2. Therefore you are sure to win if you start the
game as the first player.

1 2 3 4 5 6 7

A $v$ $\ovalbox{\tt\small REJECT}$

$\mathbb{R}$
$\Psi$

$\ovalbox{\tt\small REJECT}$ $\ovalbox{\tt\small REJECT}$

Graph 5.2

By the P-positions in Graph 5.2 we can make Graph 5.3. In this graph N-positions are colored in dark
gray and P-positions are colored in light gray. If you start with the original position in Graph 5.1, then
by using Graph 5.3 you can win easily.

Graph 5.3

6 A Chocolate Problem 3
Deflnition 8
Suppose that we have the chocola$te$ in Graph 6.1, where the dark gray part is very bitter. Two players
in turn break the chocolate (in a straight line along the grooves) and $eats$ the piece he breaks offThe
player to leave his opponent with the single bitter part is the winner.
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This variant of the Bitter Chocolate Problem is very different from the original one. This problem is
interesting for people who use only their brains to solve, but this can be a challenging problem for those
who are going to solve this with computers.
By using computer we can find all the P- positions and N-positions. For this scale of problem you can
find all the P-position only with pen and paper.
We can make a chart of positions by which you can win the game. See Graph 6.2.
All positions are numbered. For P-positions see Graph 6.3, and for For N-positions see Graph 6.4.

Graph 6.1

$O19$ $O|\int$ \copyright 1
$\bullet$ $\Phi$ $<$

\copyright � �

$\varphi$

Graph 6.3

7 A Strip with Coins 2.

Graph 6.2

\copyright 1 $O1\int$ \copyright 1

塾へ $\varphi$

$O16$ $\otimes 1$ �

L $E$ $\infty$

$O10$ ��

$\infty$ $[$
��

Graph 6.4

This is a new game you can play with coins and a strip, and it has been introduced by the authors.
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Deflnition 9
We have $k$ coins an$d$ a strip $wi$th $n$ squares, and squares are $n$umbered with 1,2, $3,\ldots,n$ . The shape of the
strip is not a straight line here.
The strip consists of sub-strips {1, 2, 3, 4, 5} , {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}, $\ldots$ .
The rule of the game is very similar to that of the game in Section 4.
(1) The difference is that you cannot make $a$ coin jump over another coin when they are at the corner.

We are going to study this game by Example 7.

Example 7
We let $n=15$ and $k=3$. See Graph 7.1.

12345
678910

1112131415

Graph 7.1

Here we are going to study the rule (1) of Definition 9. If you have the position of Graph 7.2, then you
can move to the position of Graph 7.3. You cannot move to the position of Graph 7.4.
Another option is move the coin in the 9th square to the 10th $sq$uare.

12345
678910

1112131415

Graph 7.2

12345
678910

1112131415

Graph 7.3

12345
678910

1112131415

Graph 7.4
Ifyou have the position of Graph 7.5, then you can move to the position of Graph 7.6. You cannot move
to the position of Graph 7.7.
Another option is move the coin in the 9th square to the 10th square.

12345
678910

1112131415

Graph 7.5

12345
678910

1112131415

Graph 7.6

Example 8

12345
$678910$

1112131415

Graph 7.7

Here we are going to calculate all the P-positions of this game. Since the authors have not discovered
a method to Iind all the P-position theoretically, we are going to find all of them by calculation of
Mathematica. Mathematica has many functions that are very useful to calcula$te$ the Grundy Number,
and it is fairly easy to find all the P-positions of this game.
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Po [pos-] $:=$

Union [ReplaceList $[$pos, {X.--, 1, $0,$ $Y_{-}\}->$ {X, $0.1$ . $Y\}]$ .
ReplaceList $[$pos, {X---, 1, 1, $0$ . $Y_{-}\}->$ {X, $0$ . 1. 1. $Y\}]$ .
ReplaceList $[$pos, {X--, 1, 2, $0$ . $Y_{-}\}->$ {X, $0.2$ . 1. $Y\}]]$ ;

Mex $[L_{-}]$ $:={\rm Min}$ [Complement [Range $[0$ . Length [L]], $L]$ ] ;
Gr [pos-] $:=$ Gr [pos] $=$ Mex [Map [Gr, Po [pos]]] ;
Clear[data]; yy. {1,1,1,0,0,2,0,0,0,0,0,2,0,0,0,0,0};
data $[0]=$ $\{\}$ ;

data[l] $\approx$ Join $[\{yy\}$ . Po $[yyl];n=1$ ; Wh $i$ le $[$

Length [dat a [nl] $>$ Length [data $[n-1]$ ] ,
data $[n+1]$ . Union [data $[n]$ , Flatten [Map [Po, data $[n]]$ . $1]$ ];
$n\cdot n+1]_{j}$ gote Select $[data[n]$ . Gr $[\# 1 \Rightarrow 0 \ ]$ ;
gote2 Reverse [gotel ;

ff[s-l $:=$ Whi$ch[s<6$ . $s$ . $s<12,$ $s-1,$ $s>11$ . s–21; gote3 .
Map [Map $[ff$ , Flatten [Position $[*$ . $1]]]$ &, gote2];

The following is th$e$ lis $t$ of all the P-positions produced by Mathematica.
We have not discovered general formulas to produce this list of P-position, and hence calculation by
computers is the only way to find P-positions.

$\{\{l, 2,3\},$ $\{1,2,5\}$ , {], 3, 6}, {1, 3, 8}, {1, 3, 10}, {1, 3, I 2}, {1, 3, 14}, {1, 4, 5}, {1, 4, 7}, {1, 4, 9}, {], 4, 11}, {1, 4, 13}, {1, 4,
15}, $\{J, 5,6\},$ $\{1,5_{J}8\},$ $\{1,5,10\},$ $\{1,5_{l}J2\},$ $\{1,5_{l}14\},$ $\{1,6,9\},$ $\{1,6,11\},$ $\{1,6, I3\},$ $\{1,6_{J}15\},$ $\{1,7,8\},$ $\{I, 7,10\},$ $\{1,7,12\},$ $\{1$ ,
7, 14$\}$ , $\{$ 1, 8, 11 $\}$ , $\{$ 1, 8, 13$\}$ , $\{]$ , 8,15$\}$ , $\{$ 1, $9_{J}10\},$ $\{1,9,12\}$ , $\{]$ , 9,14$\}$ , $\{$ 1, 10, 11 $\}$ , $\{$ 1, 10, 13 $\}$ , $\{$ 1, 10, $l_{\mathcal{T}}5\},$ $\{1,11,14\},$ $\{1,12,13\},$ $\{1$ ,
12, 15$\}$ , $\{$ 1, 14, $l_{1}5\},$ $\{2,3,4\},$ $\{2,3,7\},$ $\{2,3,9\},$ $\{2,3,11\},$ $\{2,3,13\},$ $\{2,3,15\},$ $\{2,4,6\},$ $\{2,4,8\},$ $\{2,4,10\},$ $\{2,4,12\},$ $\{2,4$ , J4$\}$ ,
$\{$ 2, 5, 7$\}$ , $\{$ 2, 5, 9 $\}$ , $\{$ 2, 5, 11 $\}$ , $\{$ 2, 5, $l3\})\{2,5,15\},$ $\{2,6,8\},$ $\{2,6,10\},$ $\{2,6,12\},$ $\{2,6,14\},$ $\{2,7,9\},$ $\{2,7,11\},$ $\{2,7_{J}13\},$ $\{2,7$,
15}, {2, 8, 10}, $\{$ 2, 8, J2$\}$ , {2, 8, 14}, $\{$ 2, 9, 11}, {2, 9, 13}, $\{$ 2, 9, 15$\}$ , $\{$ 2, $l0,12\},$ $\{2,$ $l0,14\},$ $\{2,1J,$ $13\},$ $\{2_{J}11,15\},$ $\{2,12,14\},$ $\{2$,
13, 15$\}$ , $\{$ 3, 4, 5$\}$ , $\{$ 3, 5, 6$\}$ , $\{$ 3, 5, 8$\}$ , $\{$ 3, $5_{r}10\},$ $\{3,5,12\},$ $\{3,5,14\},$ $\{3,6,9\},$ $\{3,6,11\},$ $\{3,6,13\},$ $\{3,6,15\},$ $\{3,7,8\},$ $\{3,7,10\}$ ,
$\{$ 3, 7, $l2\},$ $\{3_{2}7,14\},$ $\{3,8,$ Il $\}$ , $\{$ 3, 8, $l3\},$ $\{3,8,$ $l5\},$ $\{3,9,10\},$ $\{3,9,$ $l2\},$ $\{3,9,$ $l4\},$ $\{3,$ $l0,$ $ll\},$ $\{3,$ $l0,$ $l3\},$ $\{3,$ $l0,$ $l5\},$ $\{3,$ $ll,$ $l4\}\}$

Since the game of Definition $9is$ not simple enough, we are going to study a simpler version.

Deflnition 10
We use the strip an$d$ coins in Graph 7.8. The rule is the same as that of $DeBni$tion 9.

1 2 $\bullet\bullet\bullet$

67 8 ’ 10

Graph 7.8

By the same method we used Example 8 we can find all the P-positions and the N-positions, and from
them we can make a chart in Graph 7.9. By using this chart you can win the game.
In this chart P-positions are colored in light gray and N-positions are colored in dark gray.
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Graph 7.9

If you have read this article, you can appreciate the rich possibilities of combinatorial games in education
and research. With a proper use of computer algebra system, even high school students can do many
creative research.
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