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1 Introduction
We recall first that a real valued continuous $C^{\infty}$-function $f$ defined on an
open interval $I=(\alpha, \beta)$ is said to be completely monotone if it satisfies the
following property

$(-1)^{\mathfrak{n}}f^{(n)}(t)\geq 0$ for all integers $n\geq 0$ .

The function is also said to be completely monotone if it is defined as a
continuous function on the closed interval $[\alpha, \beta]$ .

This class of functions (when $I$ is the half positive line) has been known
since the time of S.N.Bernstein by his characterization theorems of this class
known as $\dot{\prime}Little^{\dot{\prime}}$ and ‘Big‘ Bernstain theorem ( $cf.[1$ , Chap. 1.5]). In this lec-
ture we shall discuss relationship between matrix monotone functions (resp.
matrix convex functions) and this class of functions in the truncated form.
Relation between operator monotone functions and completely monotone
functions is known before whereas the relation between operator convex func-
tions and this class has been discussed only recentry. Furthermore, we discuss
special aspects of 2-monotonicity and 2-convexity in the theory of matrix
monotone functions and matrix convex functions.

In the following we refer most of those related results from the book [1]
except our works [2] and [3].

2 Discussion and results
Let $I$ be a nontrivial open interval of the real line $R$ . A real valued continuous
function $f$ on $I$ is said to be n-monotone if for any pair of selfadjoint matrices
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$a,$
$b$ of $M_{n}$ ( $n$ by $n$ matrix algebra) whose spectra are in $I$ we have that $a\leq b$

implies $f(a)\leq f(b)$ . Here the functional calculus $f(a)$ means the selfadjoint
matrix (an operator on $C^{n}$ ) defined as

$f(a)=(f(\lambda_{i}))$ for a diagonalized matrix $a=(\lambda_{i})$ .

We denote the set of all n-monotone functions for $I$ by $P_{n}(I)$ . On the
other hand we call $f$ on $I$ n-convex if for a pair of selfadjoint matrices $\{a, b\}$

satisfying the condition for spectra we have

$f(\lambda a+(1-\lambda)b)\leq\lambda f(a)+(1-\lambda)f(b)$ .

When the inequality becomes the other way around we say that the function
is n-concave. Write as $K_{n}(I)$ the set of all n-convex functions for $I$ . If we
have a continuous function having similar propertiess on the algebra of all
bounded linear algebras on an infinite dimensional Hilbert space we call such
function operator monotone and operator convex respectively. Denote them
as $P_{\infty}(I)$ and $K_{\infty}(I)$ . It is then not so difficult to see that the intersection
of $P_{n}(I)$ coincides with $P_{\infty}(I)$ . Similarly, the intersection of $K_{n}(I)$ coincides
with $K_{\infty}(I)$ . The class of completely monotone functions then appears in
the proof of Loewner’s most important result of the characterization of an
operator monotone function $f$ on the interval $(-1, \infty)$ having an analytic
extension to the upper lialf $p1_{r1_{\lrcorner}}^{t}i_{11}$ as a Pick function ( $\dot{r}LIlalyti(Y$ funct,ion defined
in the upper half plain whose range remains the same domain) in such a way
that $f’(t)$ is completely monotone in this interval.

Now actually we can see that the above result is not concerned with such
a particular interval but holds for an open interval in general. Moreover we
can obtain the following truncated forms for n-monotone functions as well
as for n-convex functions, which imply the results for operator inonotone
functions and operator convex functions.

We first remark that if $f$ is two monotone and $f’$ vanishes at some point
then $f$ becomes a constant. Similarly if $f$ is two convex and its second
derivative vanishes at some point it becomes linear. Therefore, in both cases
we may assume that $f’$ and $f$

” are strictly positive on $I$ in general.

Theorem 2.1 (Hansen-Tomiyama) Let $f$ be a function defined in an inter-
val of the form $(\alpha, \infty)$ for some real $\alpha$ .

(i) If $f$ is n-monotone and $2n-1$ times continuously differentiable, then

$(-1)^{k}f^{(k+1)}(t)\geq 0$ $k=0,1,$ $\ldots,$ $2n-2$ .

Therefore, the function $f$ and its even derivatives up to order $2n-4$ are
concave functions, and the odd derivatives up to order $2n-3$ are convex
functions.
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(ii) If $f$ is n-convex and $2n$ times continuously differentiable, then

$(-1)^{k}f^{(k+2)}(t)\geq 0$ $k=0,1,$ $\ldots,$ $2n-2$ .

Therefore, the function $f$ and its even deriivatives up to order $2n-2$ are
convex functions, and the odd derivatives up to order $2n-3$ are concave
functions.

As an immeadiate consequence we have, as in the case of an operator mono-
tone function,the following

Corollary 2.2 If $f$ is operator convex, then its second derivative $f$
” becomes

a completely monotone function.
We leave details of this fact to the reference [3]. A key point of the proof
of this theorem is a geometrical observation of the the following situation.
Namely, if $f$ is 2-monotone and in the class $C^{3}(I)f$ is written as

$f(t)= \frac{1}{c(t)^{2}}$ for a positive concave function $c(t)$ .

Moreover, if $f$ is 2-convex and in $C^{4}(I)f$ is written as

$f(t)= \frac{1}{d(t)^{3}}$ for a positive concave function $d(t)$ .

Notice that as mentioned above we may assume here that $f’$ and $f$
” are

srictly positive according to each case.
The difference between the upper half plain for a Pick function and the

right half plain appeared in the Bernsein’s theorem seems to stem from the
difference between $f’$ and the function itself.

It should be also worthwhile to mention the degree of differentiability
of relevant matrix functions. In fact, in the above arguments we have put
the conditions such as $f$ belongs to the class $C^{3}(I)$ and so on. There are
results about automatic differentiability for n-monotone functions and n-
convex functions, but in general we can not ask for a two monotone function
three times continuous differentiability. There is however another argument
called regularization explained below, by which we may freely assume enough
differentiabily of a relevant function ( $cf.[1$ , Section 1..4]).

Let $\varphi(t)$ be a $C^{\infty}$ -function on the real line, vanishing out side the closed
interval [-1, 1]. We also assume that $\varphi(t)$ is nonnegative and even and nor-
malized as

$\int_{-1}^{1}\varphi(t)dt=1$ .
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This is a molifier used often in the theory of partial differential equations.
Now for a given positive $\in$ we consider the e-regularized function $f_{\epsilon}$ defined
as

$f_{\epsilon}(t)= \in\underline{1}\int\varphi(\frac{t-s}{\in})f(s)ds=\int\varphi(s)f(t-\in s)ds$ .

When a continuous function $f$ is defined on an open interval $(\alpha, \beta)$ this
regularization $f_{\epsilon}$ makes sense on the interval $(\alpha+\in, \beta-\in)$ . It is a $C^{\infty}-$

function and moreover becomes n-monotone and n-convex whenever $f$ is
n-monotone and n-convex respectively. Since $f_{\xi j}$ converges to $f$ uniformly on
any subinterval of $(\alpha+\in, \beta-\in)$ we may replace $f$ by the $C^{\infty}$-function $f_{\epsilon}$ in
our arguments. Furthermore, it is known that when $f$ is operator monotone
it becomes automatically a $C^{\infty}$-fUnction. This is also true for an operator
convex function.

We next consider the paticularlity of two monotonicity and two convex-
ity in the theory. We regard theory of these kinds of matrix functions as
non-commutative calculus meaning that we use matrix algebras as our basic
scaling. In case of usual calculus, we use scaling of numbers as the base in the
theory. Thus the class $P_{1}(I)$ and $K_{1}(I)$ are simply the classes of numerical
monotone functions and of numerical convex functions. In this sense, the
step from $P_{1}(I)$ and $K_{1}(I)$ to the classes of two monotone and two convex
functions is a big jump in the theory. A typical example to show this jump is
the pair of the functions, logt and expt on the positive half line. In calculus,
they make a good combination of mutually inverse monotone functions but
once non-commitativity comes in although logt becomes operator monotone
, that is, n-monotone for all (positive) integer $n$ , the exponential function
can not be even two monotone.

Now in the arguments of matrix functions we assume that a relevent
interval should be non-trivial. The reason of this assumption for operator
monotone and operator convex functions is usually explained by representa-
tions by integrals of those functions, very deep results. We can see however
that this is simply because of the change of aspects into non-commutative
setting. In fact, considering suitable differentiability if $f$ is two monotone or
two convex we can write $f’$ or $f$

” by means of positive concave functions $c(t)$

and $d(t)$ . Therefore, if $f$ is defined on the whole real line $c(t)$ , as well as $d(t)$ ,
be positive concave functions OIl R. A geometric aspect of a positive concave
function on the real line then easily tells us that $c(t)$ and $d(t)$ have to be
constant. Notice that if $c(t)$ (also $d(t)$ ) is considered on the positive half line
it can be an increasing function, but if it must be considered on the another
half line as positive concave function it has to be constant. This also shows
that the degree two is a turning point of the theory.

Thus, we obtain the following
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Proposition 2.3 A two monotone function defined on the whole real line is
linear, and a two convex function on the real line becomes (at most) quadratic.

From the degree two change of aspects of the theory towards more big degrees
stem mainly from meanings of the order. We however face quite often real
difficulty of non-commutativity from the step of the degree two to three.
The most typical example of such aspect is the problem of local property for
monotone and convex functions.

Theorem 2.4 (Local property theorem of n-monotone functions). Let $(\alpha, \beta)$

and $(\gamma, \delta)$ be two overlaping open intervals in this order. Suppose a function
$f$ be n-monotone both on $(\alpha, \beta)$ and on $(\gamma, \delta)$ , then $f$ is n-monotone on the
(connected) open interval $(\alpha, \delta)$ .

This most deep theorem, contrary to its simple formulation, was rather easily
proved in case of a two monotone function, but it took almost forty years
to obtain an exact whole proof ([1]), which is long enough. Moreover, the
corresponding (suspected) local property theorem (whose formulation will
be easily figured out) has been proved only recently for two convex functions
([3]). We believe to have the local property theorem for arbitrary n-convex
functions, but even for a three convex function the theorem is still out of our
ideas.
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