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its application to a uniqueness theorem for
nondecaying solutions of Navier-Stokes equations.
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1. INTRODUCTION

This is an announcement of our recent work [8]. In [6] the first author introduced
predual of generalized Campanato spaces. In this report, we show convergence
of some truncated Riesz transforms on the function spaces and its application to
a uniqueness theorem for nondecaying solutions of Navier-Stokes equations. Our

uniqueness theorem is an extension of Kato’s [3].

2. GENERALIZED CAMPANATO SPACE L, 4(R")

Let 1 <p < oo and ¢ : (0,00) — (0,00). For a ball B = B(z,r), we shall write
#(B) in place of ¢(r). The function spaces £, , = L, 4(R™) is defined to be the sets
of all f such that ||f]|z,, < co, where

1 1 > \'P
17 leys =09 (E /B /(@) - fl dz) |
1

Then L, 4 is a Banach space modulo constants with the norm ||fllz ,. If p =1
and ¢ = 1, then £, 4 = BMO. It is known that if ¢(r) = r* 0 < a < 1, then
L, = Lip,, and, if ¢(r) = r~™P, 1 < p < 0o, then L, =L".
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A function ¢ : (0,00) — (0,00) is said to satisfy the doubling condition if there
exists a constant C' > 0 such that

o1 () 1

Cl<—<£<C for -

é(s) 2

A function ¢ : (0,00) — (0,00) is said to be almost increasing (almost decreasing)
if there exists a constant C > 0 such that

o(r) < Cop(s) (p(r) > Cep(s)) for r <s.

T
<-<2
S

Lemma 2.1. Assume that ¢(r)r™P is almost increasing and that ¢(r)/7 is almost
decreasing. Then ¢ satisfies the doubling condition and

12,6 < CUQA + 12 Flloo + 11V flloo)-
That is S C Lp .

Proof. Let B = B(z,r).
Case 1: r < 1: In this case 7 < ¢(r). Then

1f(z) = FWI STV flleo S SNV flleo, v € B.

1/p
(i3 [ 7@ = fabas) % sup 17() = F@)] 5 )T f e

T, yEB
Case 2: 1 < r: In this case 1 < ¢(r)r™/? and

zintl 1/p
s < ML e [ip@ppar) ™ 5 10+ el e

Then

(Tlgl/,glf(x)“fslpdx)l/pSQ(I_;/BU(I)PM)V;D

n+1
< M B e < g1 + o)l

3. HI*/(R"), PREDUAL OF L; 4(R")

The space Hl[f 9 was introduced in (6], which is a generalization of Hardy space.
The duality (Ht[f”"]) = L 4 also proved in [6].
In this talk we recall the definition of H}¢’°°](R"), which is a special case of H,[f‘Q].

In what follows, we always assume that ¢(r)r™ is almost increasing and that

¢(r)/r is almost decreasing.
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Definition 3.1 ([¢, co]-atom). A function a on R™ is called a [¢, co]-atom if there
exists a ball B such that

(i) suppa C B,

(i) flallo < TBI6(B)’
(iii) /Rn a(z)dz = 0.

where ||a||oo is the L norm of a. We denote by A[¢, 0o] the set of all [¢, oo]-atoms.

If a is a [¢, oo]-atom and a ball B satisfies (i)—(iii), then, for g € Ly 4,
[ al@)g(@)ds| = | [ a@)la(e) - 95) dz

n B
< llello [ lo(a) = 951 dz

1 1
- —aald
< 7B J, ) ol

< ”g||C1,¢'

That is, the mapping g fmn agdz is a bounded linear functional on £, 4 with
norm not exceeding 1. Hence a is also in &', since S C L1 4.

Definition 3.2 (H!**). The space H*> (£, 4)* is defined as follows:

fE H§¢’°°] if and only if there exist sequences {a;} C A[¢, c0] and
positive numbers {\,} such that

(3.1)  f=YXajin(£14) and Y X < oo
J J
In general, the expression (3.1) is not unique. Let

1f 1 i1 = inf {Z /\j} ;
;

where the infimum is taken over all expressions as in (3.1). Then H }"”°°] is a Banach

space equipped with the norm || f|| Hi#=) and (H}"S’“}) =L 4.

4. TRUNCATED RIESZ TRANSFORMS ON H"*/(R"™) AND MAIN RESULT

The Riesz transforms of f are defined by

R;f(x) .—_cnp.v./ IyTng(z—y)dy, j=1,---,n,
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where
cn =T((n+1)/2)n" (n+1)/2
Let )
Ch—— n >3,
B
k(z) = 1
Cylog —, n=2,
||
where
=T (n/2)(2(n — 2)7V?)7'  Cy = (2m)7L.
Then —Ak = 4.

It is known that
RyRuf(z) = pv. [ (0,000)(0)f (@ = ) dy = 8y (2),

for j,k=1,--- ,n, and
d_RAf=-1

j

Let ¢ € C°(R") be a radial function with 0 < < 1, 9(z) =0 for |z| < 1, and
Y(x) =1 for |z| > 2. Weset A\ =1—1. For 0 < e < 1/2 we define ¢ (z) = ¥(z/¢),
Ae(z) = A(ex), and k. = Ak so that supp k. C {z e < |z| < 2/e}.

Definition 4.1 (Rf;). Let 1 < 4,7 < n. For 0 < e < 1/4, the operators R;; are
defined by R{,f = 0;0;k. x f for f € S".

We consider the following condition.

d)(t) dt < oo ifn >3,

(4.1) /1 ¢ ) log(l +1)

dt < oo, ifn=2.

Theorem 4.1. Assume that ¢ satisfies (4.1). If o € S and [ ¢ =0, then
lim R ;0 = RiR;p in Hi#eol,

In particular, lim_o(—A)ke *x o = ¢ in H}¢’°°
Using the duality (H}d”w])* = L, 4 and the equality
lim < Z; R;;0;f, <p> = lim(f, (= A)kc x dip) = (f, Bip)
i=

for all ¢ € S, we have the following.
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Corollary 4.2. Assume that ¢ satisfies (4.1). For f € L4 4,

n

hrré R;;0;f = =0if in S
j=1

5. PROOF OF THE MAIN RESULT
To prove Theorem 4.1 we state two lemmas.

Lemma 5.1. Let ¢ be a continuous decreasing function from [0, 00) to (0, 00) such

that £(r)r? is almost increasing for some 6 < 1 and that

= o)

dt <
YT RS

Define
w(z) = (1 + |z|)"(|z]) for z € R™
If a function f satisfies

(5.1) wf e L>® and /f:(),

then f € H E‘p"x’], Moreover, there exist a constant C' > 0 such that

(5.2) 1l s < Cliwf o
where C is independent of f.
Lemma 5.2. Let ¢ be a continuous decreasing function from [0, 00) to (0,00) such
that £(r) > (1 +7)™""! and that
TILIQOZ(T) =0ifn >3, Tllr{)loé(r) logr =0 if n = 2.
Define
w(z) = (1 + |z))"*e(z|) for z € R™
IfopeS and [ ¢ =0, then
lim | (RS0 — RiBRyp)wloo = 0
Proof of Theorem 4.1. If (4.1) holds, then there exists a continuous decreasing func-

tion m such that lim m(r) = 0 and that
/‘j&Lﬁ<m, ifn >3
1 t2m(t)

/ o( t)log(l +t)

dt < oo, ifn=2
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Actually, if [° F(t)dt < oo, F(t) = ¢(t)/t? or ¢(t)log(1 + r)/t?, then we can take
a positive increasing sequence {r;} and a continuous decreasing function m such
that

1
/F S—g for 5=1,2,.---,

Tj
and

1
m(t) > ; for r; <t <rjn.

Fm R
[ mm- Z/ ) < 258 <o

Tj 7j=1
We may assume that m(r)r is almost increasing for some small v > 0. Let £ be a

Then

continuous decreasing function from [0, 00) to (0, 00) such that, for r > 1,

_Jm(r), if n > 3,
“”“{mmﬂ%u+m,ﬁn=z

Then ¢ satisfies the assumption of both Lemmas 5.1 and 5.2.
Using the following relations,

wf € L® and /f =0, Lemmad.1 IIfHHy,oo] < Cllwflloo;

pesand [p=0 “EE pim|(R e - RBpul = 0
we have that, if p € S and [ ¢ = 0, then

RS jo — RiRjooll yrol < CII(R ;0 — RiRjp)wlloo — 0,
as e — 0. O

6. APPLICATION

Let n > 2. We are concerned with the uniqueness of solutions for the Navier-
Stokes equation,

(6.1) u — Au+ (v, V)u+Vp=0 in (0,7) x R",
(6.2) divu=0 1in (0,T) x R",
with initial data u|,—o = up, where u = u(t,z) = (wi(t,z), -+ ,un(t,z)) and p =

p(t, z) stand for the unknown velocity vector field of the fluid and its pressure field
respectively, while ug = ug(z) = (uj(z), - ,ug(z)) is the given initial velocity

vector field.



77

It is well known (see [2]) that for initial data up € L°(R™) the equations (6.1),

(6.2) admit a unique time-local (regular) solution u with

P = Zn: RzRJ’U,z’U,J

i,5=1
In this report, following J. Kato [3], by ”a solution in the distribution sense” we

mean a weak solution in the following sense.

Definition 6.1. We call (u,p) the solution of the Navier-Stokes equations (6.1),
(6.2) on (0,7) x R™ with initial data uo in the distribution sense if (u,p) satisfy
divu =01in &' for a.e. ¢t and

©3) [ {@@%&@@»+WU®%A¢®»+<w>H0@%V¢®»

+ (p(s), div (P(s))} ds = —(ug, ®(0))

for ® € C'(]|0,T] x R™) satisfying ®(s,-) € S(R") for 0 < s < T, and ®(T,-) =0,
where ((u x u),V®) = >0 _ (uu;,0;®;). Here S denotes the space of rapidly
decreasing functions in R™ and &’ denotes the space of tempered distributions in
the sense of Schwartz. The space S’ is the topological dual of & and its canonical

pairing is denoted by (, ).
J. Kato [3] proved the following uniqueness theorem.

Theorem 6.1 (J. Kato [3]). Let ug € L™ with divug = 0. Suppose that (u,p) is
the solution in the distribution sense satisfying

(6.4) w€ L=((0,T) x R*), p € Lb((0,T); BMO).

Then (u,Vp) is uniquely determined by the initial data up. Moreover, Vp =
St _ L VR Ru'w in S’ for a.e. t.

1,7=1

On the other hand, Galdi and Maremonti [1] showed that if u and Vu are bounded
in (0, T) x R3, then the uniqueness of classical solutions holds provided that for some
C > 0 and some € > 0 the inequality

(6.5) Ip(t, z)| < C(1 + |z])'~

holds. See also [9] and [4]. The assumption (6.4) does not imply (6.5).
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To prove Theorem 6.1, Kato [3] used the duality (H')* = BMO and the following
fact: If o € S and [ =0, then

P_I}(l) R ;o= R;Rjp in H!

1

The duality (H}¢'°°]) . L, 4 is known and we have proved in Theorem 4.1 that
if p € S and [ =0, then

1

lim R{ jo = RiR;ip in HP),
Then we have the following.

Theorem 6.2. Assume that ¢ € G satisfies (4.1). Let ug € L with divug = 0.
Suppose that (u,p) is the solution of (6.1), (6.2) in the distribution sense satisfying

(6.6) we L®((0,T) x RY), p€ L ((0,T); L1).

Then (u,Vp) is uniquely determined by the initial data ug. Moreover, Vp =
St VRRu'w inS' for a.e. t.

1,7=1

For example, let

r" for O0<r<1
7 r) = ’
(6.7) o(r) {r(log(l +7))""7 for r>1,

where § > 1ifn >3 and 8 > 2 if n = 2. In this case
L£14 D L' UBMO
and £, 4 contains functions f such that
[f(@)] < Co(1 +|z]) = C(1 + [z])(log(2 + [2]))™” for z € R™

Therefore, our result is an extension of both Kato’s theorem and the result of Galdi
and Maremonti. Note that, if 8 = 0, then the uniqueness fails (see [2]).
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