Convergence of some truncated Riesz transforms on predual of generalized Campanato spaces and its application to a uniqueness theorem for nondecaying solutions of Navier-Stokes equations.

大阪教育大学 教育学部 中井 英一 (Eiichi Nakai)

Department of Mathematics

Osaka Kyoiku University

アリゾナ州立大学 米田 剛 (Tsuyoshi Yoneda)
Department of Mathematics
Arizona State University

1. Introduction

This is an announcement of our recent work [8]. In [6] the first author introduced predual of generalized Campanato spaces. In this report, we show convergence of some truncated Riesz transforms on the function spaces and its application to a uniqueness theorem for nondecaying solutions of Navier-Stokes equations. Our uniqueness theorem is an extension of Kato's [3].

2. Generalized Campanato space $\mathcal{L}_{p,\phi}(\mathbb{R}^n)$

Let $1 \leq p < \infty$ and $\phi : (0, \infty) \to (0, \infty)$. For a ball B = B(x, r), we shall write $\phi(B)$ in place of $\phi(r)$. The function spaces $\mathcal{L}_{p,\phi} = \mathcal{L}_{p,\phi}(\mathbb{R}^n)$ is defined to be the sets of all f such that $||f||_{\mathcal{L}_{p,\phi}} < \infty$, where

$$||f||_{\mathcal{L}_{p,\phi}} = \sup_{B} \frac{1}{\phi(B)} \left(\frac{1}{|B|} \int_{B} |f(x) - f_{B}|^{p} dx \right)^{1/p},$$

$$f_{B} = \frac{1}{|B|} \int_{B} f(x) dx.$$

Then $\mathcal{L}_{p,\phi}$ is a Banach space modulo constants with the norm $||f||_{\mathcal{L}_{p,\phi}}$. If p=1 and $\phi\equiv 1$, then $\mathcal{L}_{1,\phi}=\mathrm{BMO}$. It is known that if $\phi(r)=r^{\alpha},\ 0<\alpha\leq 1$, then $\mathcal{L}_{p,\phi}=\mathrm{Lip}_{\alpha}$, and, if $\phi(r)=r^{-n/p},\ 1\leq p<\infty$, then $\mathcal{L}_{p,\phi}=L^p$.

2000 Mathematics Subject Classification. Primary 35Q30, 76D05, Secondary 42B35, 42B30. Key words and phrases. Campanato space, Hardy space, Navier-Stokes equation, uniqueness.

A function $\phi:(0,\infty)\to(0,\infty)$ is said to satisfy the doubling condition if there exists a constant C>0 such that

$$C^{-1} \le \frac{\phi(r)}{\phi(s)} \le C$$
 for $\frac{1}{2} \le \frac{r}{s} \le 2$.

A function $\phi:(0,\infty)\to(0,\infty)$ is said to be almost increasing (almost decreasing) if there exists a constant C>0 such that

$$\phi(r) \le C\phi(s) \quad (\phi(r) \ge C\phi(s)) \quad \text{for} \quad r \le s.$$

Lemma 2.1. Assume that $\phi(r)r^{n/p}$ is almost increasing and that $\phi(r)/r$ is almost decreasing. Then ϕ satisfies the doubling condition and

$$||f||_{\mathcal{L}_{p,\phi}} \le C(||(1+|x|^{n+1})f||_{\infty} + ||\nabla f||_{\infty}).$$

That is $S \subset \mathcal{L}_{p,\phi}$.

Proof. Let B = B(z, r).

Case 1: r < 1: In this case $r \lesssim \phi(r)$. Then

$$|f(x) - f(y)| \lesssim r ||\nabla f||_{\infty} \lesssim \phi(r) ||\nabla f||_{\infty}, \quad x, y \in B.$$

$$\left(\frac{1}{|B|}\int_{B}|f(x)-f_{B}|^{p}\,dx\right)^{1/p}\lesssim \sup_{x,y\in B}|f(x)-f(y)|\lesssim \phi(r)\|\nabla f\|_{\infty}.$$

Case 2: $1 \le r$: In this case $1 \lesssim \phi(r)r^{n/p}$ and

$$|f(x)| \le \frac{\|(1+|x|^{n+1})f\|_{\infty}}{1+|x|^{n+1}}, \quad \left(\int |f(x)|^p dx\right)^{1/p} \lesssim \|(1+|x|^{n+1})f\|_{\infty}.$$

Then

$$\left(\frac{1}{|B|} \int_{B} |f(x) - f_{B}|^{p} dx\right)^{1/p} \leq 2 \left(\frac{1}{|B|} \int_{B} |f(x)|^{p} dx\right)^{1/p}$$

$$\lesssim \frac{\|(1 + |x|^{n+1})f\|_{\infty}}{|B|^{1/p}} \lesssim \phi(r) \|(1 + |x|^{n+1})f\|_{\infty}. \quad \Box$$

3.
$$H_I^{[\phi,\infty]}(\mathbb{R}^n)$$
, predual of $\mathcal{L}_{1,\phi}(\mathbb{R}^n)$

The space $H_U^{[\phi,q]}$ was introduced in [6], which is a generalization of Hardy space. The duality $\left(H_U^{[\phi,q]}\right)^* = \mathcal{L}_{q',\phi}$ also proved in [6].

In this talk we recall the definition of $H_I^{[\phi,\infty]}(\mathbb{R}^n)$, which is a special case of $H_U^{[\phi,q]}$. In what follows, we always assume that $\phi(r)r^n$ is almost increasing and that $\phi(r)/r$ is almost decreasing.

Definition 3.1 ($[\phi, \infty]$ -atom). A function a on \mathbb{R}^n is called a $[\phi, \infty]$ -atom if there exists a ball B such that

(i) supp
$$a \subset B$$
,
(ii) $||a||_{\infty} \leq \frac{1}{|B|\phi(B)}$,

(iii)
$$\int_{\mathbb{R}^n} a(x) \, dx = 0.$$

where $||a||_{\infty}$ is the L^{∞} norm of a. We denote by $A[\phi, \infty]$ the set of all $[\phi, \infty]$ -atoms.

If a is a $[\phi, \infty]$ -atom and a ball B satisfies (i)-(iii), then, for $g \in \mathcal{L}_{1,\phi}$,

$$\left| \int_{\mathbb{R}^n} a(x)g(x) \, dx \right| = \left| \int_B a(x)(g(x) - g_B) \, dx \right|$$

$$\leq \|a\|_{\infty} \int_B |g(x) - g_B| \, dx$$

$$\leq \frac{1}{\phi(B)} \frac{1}{|B|} \int_B |g(x) - g_B| \, dx$$

$$\leq \|g\|_{\mathcal{L}_{1,\phi}}.$$

That is, the mapping $g \mapsto \int_{\mathbb{R}^n} ag \, dx$ is a bounded linear functional on $\mathcal{L}_{1,\phi}$ with norm not exceeding 1. Hence a is also in \mathcal{S}' , since $\mathcal{S} \subset \mathcal{L}_{1,\phi}$.

Definition 3.2 $(H_I^{[\phi,\infty]})$. The space $H_I^{[\phi,\infty]} \subset (\mathcal{L}_{1,\phi})^*$ is defined as follows: $f \in H_I^{[\phi,\infty]}$ if and only if there exist sequences $\{a_j\} \subset A[\phi,\infty]$ and positive numbers $\{\lambda_i\}$ such that

(3.1)
$$f = \sum_{j} \lambda_{j} a_{j} \text{ in } (\mathcal{L}_{1,\phi})^{*} \text{ and } \sum_{j} \lambda_{j} < \infty.$$

In general, the expression (3.1) is not unique. Let

$$\|f\|_{H_I^{[\phi,\infty]}} = \inf\left\{\sum_j \lambda_j\right\},$$

where the infimum is taken over all expressions as in (3.1). Then $H_I^{[\phi,\infty]}$ is a Banach space equipped with the norm $||f||_{H_I^{[\phi,\infty]}}$ and $(H_I^{[\phi,\infty]})^* = \mathcal{L}_{1,\phi}$.

4. Truncated Riesz transforms on $H^{[\phi,\infty]}_I(\mathbb{R}^n)$ and main result

The Riesz transforms of f are defined by

$$R_j f(x) = c_n \text{ p.v.} \int \frac{y_j}{|y|^{n+1}} f(x-y) \, dy, \quad j = 1, \dots, n,$$

where

$$c_n = \Gamma((n+1)/2)\pi^{-(n+1)/2}$$
.

Let

$$k(x) = \begin{cases} C_n \frac{1}{|x|^{n-2}} & n \ge 3, \\ C_2 \log \frac{1}{|x|}, & n = 2, \end{cases}$$

where

$$C_n = \Gamma(n/2)(2(n-2)\pi^{n/2})^{-1}, \quad C_2 = (2\pi)^{-1}.$$

Then $-\Delta k = \delta$.

It is known that

$$R_j R_k f(x) = \text{p.v.} \int (\partial_j \partial_k k)(y) f(x-y) \, dy - \delta_{j,k} \frac{1}{n} f(x),$$

for $j, k = 1, \dots, n$, and

$$\sum_{j} R_{j}^{2} f = -f.$$

Let $\psi \in C^{\infty}(\mathbb{R}^n)$ be a radial function with $0 \le \psi \le 1$, $\psi(x) = 0$ for $|x| \le 1$, and $\psi(x) = 1$ for $|x| \ge 2$. We set $\lambda = 1 - \psi$. For $0 < \epsilon < 1/2$ we define $\psi_{\epsilon}(x) = \psi(x/\epsilon)$, $\lambda_{\epsilon}(x) = \lambda(\epsilon x)$, and $k_{\epsilon} = \psi_{\epsilon} \lambda_{\epsilon} k$ so that supp $k_{\epsilon} \subset \{x : \epsilon \le |x| \le 2/\epsilon\}$.

Definition 4.1 $(R_{i,j}^{\epsilon})$. Let $1 \leq i, j \leq n$. For $0 < \epsilon < 1/4$, the operators $R_{i,j}^{\epsilon}$ are defined by $R_{i,j}^{\epsilon} f = \partial_i \partial_j k_{\epsilon} * f$ for $f \in \mathcal{S}'$.

We consider the following condition.

(4.1)
$$\begin{cases} \int_{1}^{\infty} \frac{\phi(t)}{t^{2}} dt < \infty, & \text{if } n \geq 3, \\ \int_{1}^{\infty} \frac{\phi(t) \log(1+t)}{t^{2}} dt < \infty, & \text{if } n = 2. \end{cases}$$

Theorem 4.1. Assume that ϕ satisfies (4.1). If $\varphi \in \mathcal{S}$ and $\int \varphi = 0$, then

$$\lim_{\epsilon \to 0} R_{i,j}^{\epsilon} \varphi = R_i R_j \varphi \quad in \ H_I^{[\phi,\infty]}.$$

In particular, $\lim_{\epsilon \to 0} (-\Delta) k_{\epsilon} * \varphi = \varphi$ in $H_I^{[\phi,\infty]}$.

Using the duality $\left(H_I^{[\phi,\infty]}\right)^* = \mathcal{L}_{1,\phi}$ and the equality

$$\lim_{\epsilon \to 0} \left\langle \sum_{j=1}^{n} R_{i,j}^{\epsilon} \partial_{j} f, \varphi \right\rangle = \lim_{\epsilon \to 0} \langle f, (-\Delta) k_{\epsilon} * \partial_{i} \varphi \rangle = \langle f, \partial_{i} \varphi \rangle$$

for all $\varphi \in \mathcal{S}$, we have the following.

Corollary 4.2. Assume that ϕ satisfies (4.1). For $f \in \mathcal{L}_{1,\phi}$,

$$\lim_{\epsilon \to 0} \sum_{j=1}^{n} R_{i,j}^{\epsilon} \partial_{j} f = -\partial_{i} f \quad in \quad \mathcal{S}'.$$

5. Proof of the main result

To prove Theorem 4.1 we state two lemmas.

Lemma 5.1. Let ℓ be a continuous decreasing function from $[0, \infty)$ to $(0, \infty)$ such that $\ell(r)r^{\theta}$ is almost increasing for some $\theta < 1$ and that

$$\int_{1}^{\infty} \frac{\phi(t)}{t^{2}\ell(t)} dt < \infty.$$

Define

$$w(x) = (1 + |x|)^{n+1} \ell(|x|)$$
 for $x \in \mathbb{R}^n$.

If a function f satisfies

$$(5.1) wf \in L^{\infty} and \int f = 0,$$

then $f \in H_I^{[\phi,\infty]}$. Moreover, there exist a constant C > 0 such that

(5.2)
$$||f||_{H_I^{[\phi,\infty]}} \le C||wf||_{\infty},$$

where C is independent of f.

Lemma 5.2. Let ℓ be a continuous decreasing function from $[0, \infty)$ to $(0, \infty)$ such that $\ell(r) \geq (1+r)^{-n-1}$ and that

$$\lim_{r \to \infty} \ell(r) = 0 \text{ if } n \ge 3, \quad \lim_{r \to \infty} \ell(r) \log r = 0 \text{ if } n = 2.$$

Define

$$w(x) = (1+|x|)^{n+1}\ell(|x|)$$
 for $x \in \mathbb{R}^n$

If $\varphi \in \mathcal{S}$ and $\int \varphi = 0$, then

$$\lim_{\epsilon \to 0} \| (R_{i,j}^{\epsilon} \varphi - R_i R_j \varphi) w \|_{\infty} = 0.$$

Proof of Theorem 4.1. If (4.1) holds, then there exists a continuous decreasing function m such that $\lim_{r\to\infty} m(r) = 0$ and that

$$\begin{cases} \int_{1}^{\infty} \frac{\phi(t)}{t^{2}m(t)} dt < \infty, & \text{if } n \geq 3, \\ \int_{1}^{\infty} \frac{\phi(t) \log(1+t)}{t^{2}m(t)} dt < \infty, & \text{if } n = 2. \end{cases}$$

Actually, if $\int_1^\infty F(t) dt < \infty$, $F(t) = \phi(t)/t^2$ or $\phi(t) \log(1+r)/t^2$, then we can take a positive increasing sequence $\{r_j\}$ and a continuous decreasing function m such that

$$\int_{r_i}^{\infty} F(t) dt \le \frac{1}{j^3}, \quad \text{for} \quad j = 1, 2, \cdots,$$

and

$$m(t) \ge \frac{1}{j}$$
 for $r_j \le t \le r_{j+1}$.

Then

$$\int_{r_1}^{\infty} \frac{F(t)}{m(t)} dt = \sum_{i=1}^{\infty} \int_{r_j}^{r_{j+1}} \frac{F(t)}{m(t)} dt \le \sum_{i=1}^{\infty} \frac{1}{j^2} < \infty.$$

We may assume that $m(r)r^{\nu}$ is almost increasing for some small $\nu > 0$. Let ℓ be a continuous decreasing function from $[0, \infty)$ to $(0, \infty)$ such that, for $r \geq 1$,

$$\ell(r) = \begin{cases} m(r), & \text{if } n \ge 3, \\ m(r)/\log(1+r), & \text{if } n = 2. \end{cases}$$

Then ℓ satisfies the assumption of both Lemmas 5.1 and 5.2

Using the following relations,

$$wf \in L^{\infty}$$
 and $\int f = 0$, $\stackrel{\mathbf{Lemma4.1}}{\Longrightarrow} \|f\|_{H_{I}^{[\phi,\infty]}} \leq C \|wf\|_{\infty};$ $\varphi \in \mathcal{S}$ and $\int \varphi = 0$ $\stackrel{\mathbf{Lemma4.2}}{\Longrightarrow} \lim_{\epsilon \to 0} \|(R_{i,j}^{\epsilon}\varphi - R_{i}R_{j}\varphi)w\|_{\infty} = 0;$

we have that, if $\varphi \in \mathcal{S}$ and $\int \varphi = 0$, then

$$||R_{i,j}^{\epsilon}\varphi - R_i R_j \varphi||_{H_I^{[\phi,\infty]}} \le C||(R_{i,j}^{\epsilon}\varphi - R_i R_j \varphi)w||_{\infty} \to 0,$$

as $\epsilon \to 0$.

6. APPLICATION

Let $n \geq 2$. We are concerned with the uniqueness of solutions for the Navier-Stokes equation,

(6.1)
$$u_t - \Delta u + (u, \nabla)u + \nabla p = 0 \quad \text{in } (0, T) \times \mathbb{R}^n,$$

(6.2)
$$\operatorname{div} u = 0 \quad \text{in } (0, T) \times \mathbb{R}^n,$$

with initial data $u|_{t=0} = u_0$, where $u = u(t,x) = (u_1(t,x), \dots, u_n(t,x))$ and p = p(t,x) stand for the unknown velocity vector field of the fluid and its pressure field respectively, while $u_0 = u_0(x) = (u_0^1(x), \dots, u_0^n(x))$ is the given initial velocity vector field.

It is well known (see [2]) that for initial data $u_0 \in L^{\infty}(\mathbb{R}^n)$ the equations (6.1), (6.2) admit a unique time-local (regular) solution u with

$$p = \sum_{i,j=1}^{n} R_i R_j u_i u_j.$$

In this report, following J. Kato [3], by "a solution in the distribution sense" we mean a weak solution in the following sense.

Definition 6.1. We call (u, p) the solution of the Navier-Stokes equations (6.1), (6.2) on $(0, T) \times \mathbb{R}^n$ with initial data u_0 in the distribution sense if (u, p) satisfy $\operatorname{div} u = 0$ in \mathcal{S}' for a.e. t and

(6.3)
$$\int_{0}^{T} \left\{ \langle u(s), \partial_{s} \Phi(s) \rangle + \langle u(s), \Delta \Phi(s) \rangle + \langle (u \times u)(s), \nabla \Phi(s) \rangle + \langle p(s), \operatorname{div} \Phi(s) \rangle \right\} ds = -\langle u_{0}, \Phi(0) \rangle$$

for $\Phi \in C^1([0,T] \times \mathbb{R}^n)$ satisfying $\Phi(s,\cdot) \in \mathcal{S}(\mathbb{R}^n)$ for $0 \leq s \leq T$, and $\Phi(T,\cdot) \equiv 0$, where $\langle (u \times u), \nabla \Phi \rangle = \sum_{i,j=1}^n \langle u_i u_j, \partial_i \Phi_j \rangle$. Here \mathcal{S} denotes the space of rapidly decreasing functions in \mathbb{R}^n and \mathcal{S}' denotes the space of tempered distributions in the sense of Schwartz. The space \mathcal{S}' is the topological dual of \mathcal{S} and its canonical pairing is denoted by \langle , \rangle .

J. Kato [3] proved the following uniqueness theorem.

Theorem 6.1 (J. Kato [3]). Let $u_0 \in L^{\infty}$ with $\operatorname{div} u_0 = 0$. Suppose that (u, p) is the solution in the distribution sense satisfying

(6.4)
$$u \in L^{\infty}((0,T) \times \mathbb{R}^n), \quad p \in L^1_{loc}((0,T); BMO).$$

Then $(u, \nabla p)$ is uniquely determined by the initial data u_0 . Moreover, $\nabla p = \sum_{i,j=1}^n \nabla R_i R_j u^i u^j$ in S' for a.e. t.

On the other hand, Galdi and Maremonti [1] showed that if u and ∇u are bounded in $(0,T)\times\mathbb{R}^3$, then the uniqueness of classical solutions holds provided that for some C>0 and some $\epsilon>0$ the inequality

(6.5)
$$|p(t,x)| \le C(1+|x|)^{1-\epsilon}$$

holds. See also [9] and [4]. The assumption (6.4) does not imply (6.5).

To prove Theorem 6.1, Kato [3] used the duality $(H^1)^* = BMO$ and the following fact: If $\varphi \in \mathcal{S}$ and $\int \varphi = 0$, then

$$\lim_{\epsilon \to 0} R_{i,j}^{\epsilon} \varphi = R_i R_j \varphi \quad in \ H^1.$$

The duality $\left(H_I^{[\phi,\infty]}\right)^* = \mathcal{L}_{1,\phi}$ is known and we have proved in Theorem 4.1 that if $\varphi \in \mathcal{S}$ and $\int \varphi = 0$, then

$$\lim_{\epsilon \to 0} R_{i,j}^{\epsilon} \varphi = R_i R_j \varphi \quad in \ H_I^{[\phi,\infty]}.$$

Then we have the following.

Theorem 6.2. Assume that $\phi \in \mathcal{G}$ satisfies (4.1). Let $u_0 \in L^{\infty}$ with div $u_0 = 0$. Suppose that (u, p) is the solution of (6.1), (6.2) in the distribution sense satisfying

(6.6)
$$u \in L^{\infty}((0,T) \times \mathbb{R}^n), \quad p \in L^1_{loc}((0,T); \mathcal{L}_{1,\phi}).$$

Then $(u, \nabla p)$ is uniquely determined by the initial data u_0 . Moreover, $\nabla p = \sum_{i,j=1}^n \nabla R_i R_j u^i u^j$ in S' for a.e. t.

For example, let

(6.7)
$$\phi(r) = \begin{cases} r^{-n} & \text{for } 0 < r < 1, \\ r(\log(1+r))^{-\beta} & \text{for } r \ge 1, \end{cases}$$

where $\beta > 1$ if $n \geq 3$ and $\beta > 2$ if n = 2. In this case

$$\mathcal{L}_{1,\phi}\supset L^1\cup \mathrm{BMO}$$

and $\mathcal{L}_{1,\phi}$ contains functions f such that

$$|f(x)| \le C\phi(1+|x|) = C(1+|x|)(\log(2+|x|))^{-\beta}$$
 for $x \in \mathbb{R}^n$.

Therefore, our result is an extension of both Kato's theorem and the result of Galdi and Maremonti. Note that, if $\beta = 0$, then the uniqueness fails (see [2]).

REFERENCES

- [1] G. P. Galdi and P. Maremonti, A uniqueness theorem for viscous fluid motions in exterior domains, Arch. Rational Mech. Anal. 91 (1986), no. 4, 375-384.
- [2] Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Advances in fluid dynamics, 27-68, Quad. Mat., 4, Dept. Math., Seconda Univ. Napoli, Caserta, (1999).
- [3] J. Kato, The uniqueness of nondecaying solutions for the Navier-Stokes equations, Arch. Ration. Mech. Anal. 169 (2003), no. 2, 159-175.
- [4] N. Kim and D. Chae, On the uniqueness of the unbounded classical solutions of the Navier-Stokes and associated equations, J. Math. Anal. Appl. 186 (1994), no. 1, 91-96.

- [5] E. Nakai, The Campanato, Morrey and Hölder spaces on spaces of homogeneous type, Studia Math., 176 (2006), 1-19.
- [6] E. Nakai, A generalization of Hardy spaces H^p by using atoms, Acta Math. Sinica, **24** (2008), 1243–1268.
- [7] E. Nakai and K. Yabuta, Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type, Math. Japon. 46 (1997), no. 1, 15–28.
- [8] E. Nakai and T. Yoneda, Generalized Campanato spaces and the uniqueness of nondecaying solutions for the Navier-Stokes Equations, preprint.
- [9] H. Okamoto, A uniqueness theorem for the unbounded classical solution of the nonstationary Navier-Stokes equations in \mathbb{R}^3 , J. Math. Anal. Appl. 181 (1994), no. 2, 473–482.

EIICHI NAKAI, DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, KASHIWARA, OSAKA 582-8582, JAPAN

E-mail address: enakai@cc.osaka-kyoiku.ac.jp

TSUYOSHI YONEDA, DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, AZ 85287-1804, USA

 $\textit{E-mail address} : \verb"bkaoj300@rinku.zaq.ne.jp" \\$