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1. INTRODUCTION

We study the Smith problem that two tangential representations are isomorphic or not for a
smooth action on a homotopy sphere with exactly two fixed points ([11]). Two real G-modules
U and V are called Smith equivalent if there exists a smooth action of G on a sphere X such that
SY = {x,y} for two points x and y at which T,(X) = U and T,(X) = V as real G-modules which
is a finite dimensional real vector space with a linear G-action. Let S m(G), called a Smith set, be
the subset of the real representation ring RO(G) of G consisting of the differences U — V of real
G-modules U and ¥ which are Smith equivalent. In many groups, Smith equivalent modules are
not isomorphic. Let P(G) be the set of subgroups of G of prime power order, possibly 1. We also
define a subset CS m(G) of S m(G) consisting of the differences U — V' € Sm(G) of real G-modules
U and V such that for the sphere X appearing in the definition of Smith equivalence of U and V'
satisfies that =¥ is connected for every P € P(G). For any U — V € CSm(G), G-modules U and V'
are P(G)-matched pair, that is,

ResGU = ResyV
for any subgroup P of G of prime power order, possibly 1. Let RO(G) be the real representation
ring and we denote by RO(G)p(G, the subset of RO(G) consisting the differences of real P(G)-
matched pairs. Then CSm(G) is a subset of RO(G)p(G).

Proposition 1.1.
0 € CSm(G) if G is not of prime power order
CSm(G) = @ if G is of prime power order.

In this paper, we discuss the Smith problem for an Oliver nongap group. Throughout this paper
we assume a group is finite.

2. RO(G)p(G) AND INDUCED VIRTUAL MODULES

We denote by m(G) the set of all primes dividing the order |G| of G. For a prime p, we denote
by OP(G), called the Dress subgroup of type p, the smallest normal subgroup of G with index a
power of p:

0°(G) = ﬂ L.
LG [G:L]=p 21
Note that OP(G) = G if p ¢ n(G). Let L(G) be the set of subgroups of G containing some Dress
subgroup.
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Let
LO(G) := (RO(G)p))H @ = ﬂ ker(fix?"©@: RO(G) — RO(G/0”(G)) N RO(G)p(c).
pen(G)
A group G is called Oliver if there is no series of subgroups
P<H-<G

such that P and G/H are of prime power order and H/P is cyclic. An Oliver group can be charac-
terized as a group having a one fixed action on a sphere ([2]). A group G is called gap if there is a
real G-module W such that V9@ = 0 for any prime p and

dim V" > 2 dim V"
for all pairs (P, H) of subgroups of G which satisfy that P is of prime power order and P < H. If
G is a gap Oliver group, then LO(G) is a subset of CSm(G) ([8]). We remark that CS m(G) is not
a subset of LO(G) in general (cf. [3]).

For an element not of prime power order, we call it an NPP element. We denote by ag the
number of real conjugacy classes of NPP elements of G.

Proposition 2.1. RO(G)p(G) is a free abelian subgroup of RO(G) with rank ag.

For a complex G-module £ we denote by & whose character is the complex conjugate of the
character of £.

Proposition 2.2. Let py, ps, . .., px be distinct primes each other and let a\, ay, . . ., a; be positive
integers. PutG = C i1 X C pi2 X e X C Pk where Cp«,,- is a cyclic group of order pj’ . Then RO(G)p(c)
/

is spanned by the set of virtual real G-modules having characters as same as
RC-£)+(RC-E),
J J
where &;’s are irreducible complex Cpr{,--modules or zero and two of them are nonzero at least. In
particular the rank of RO(G)p ) is equal to (], pjf-’ -D-3 j(p;"' - 1))/2.
This proposition can be extend to nilpotent groups instead of cyclic groups.

Theorem 2.3. Let py, p2, ..., px be distinct primes each other and P; a nontrivial p;-group for
each j. Put G = Py X Py X --- X Py. Then the set of virtual real G-modules having characters as

same as _
X(dimc(€)C - £) + (X(dime())C - €),
J J

where &;’s are irreducible complex Pj-modules or zero and two of them are nonzero at least,
become a basis of RO(G)p). In particular the rank of RO(G)pe,) is equal to (I1,q9;, — 1) -
>.(g; ~ 1))/2, where q; is the number of irreducible complex P;-modules.

Theorem 2.4. Let py, pa, ..., px be distinct primes each other, P a nontrivial p,-group and C; a
nontrivial cyclic p;-group for each j > 2. Put G = PX Cy X - - X Cy which is an elementary group.
Then RO(G)p() is spanned by the set of virtual real G-modules Ind$y for subgroups E and for
virtual real E-modules n whose character is same as one of

R)€-£)+ Q)€ -2,
J J

where &;'s are 1-dimensional complex p j-modules or zero and two of them are nonzero at least.



27

We denote by B(G) the set of all virtual real G-modules as in Theorem 2.4 for an elementary
group G.
CSm(G) is a subset of

RO(G)!C!. = ker(fix? : RO(G) — RO(G/G)) N RO(G)pc).-

P(G)
For a nilpotent group G, by fixing X, € B(G), the set consisting of X — X, for X € B(G), X # Xo
spans RO(G){PG(’G).

Artin’s induction theorem gives the following.

Theorem 2.5. The set
| indgn | 7 € B(O))
c

where C runs over all representative of conjugacy classes of cyclic subgroups of G not of prime
power order spans the vector space Q ®z RO(G)p) over the rational number field Q. The set of

differences of virtual modules of the above set spans Q ®z RO(G);%).

The following theorem is related to Brauer’s induction theorem.

Theorem 2.6. An virtual G-module RO(G)p(q) is described as a linear combination (with integer
coefficients) of virtual modules of

(Jindgn | 1 € BE))

E
where E runs over all representatives of conjugacy classes of elementary subgroups E of G. Fur-
thermore, RO(G);,G(}G) is described as a linear combination (with integer coefficients) of differences
of the above virtual modules.

Let NPP(G) be the set of all representatives of real conjugacy classes of NPP elements of G.
For a normal subgroup _]l/_gf G and gN € G/N we denote by ag y(gN) the number of elements
of fy'(gN), where fy: NPP(G) — G/N is a mapping induced by a canonical epimorphism G —
G/N. It holds that

ac = Z ag.n(gN).
gNeG/N

For a normal subgroup N of G let

RO(G)M. = ker(fix" : RO(G) = RO(G/N)) N RO(G)p(c).-

P(G)
We denote by G™! the smallest normal subgroup of G by which a quotient group of G is nilpotent:
Gni] = m Op(G)
pen(G)

Proposition 2.7. Let p be a prime and N a normal subgroup of G. The rank of RO(G);’,‘(’}G) is less
than or equal to

max(ag y(gN) — 1,0).

gNeG/N
The rank of LO(G) is greater than or equal to

> max(agcn(gG™) - 1,0)
ggnileg/Gnil)

and in particular if G/G™ is a p-group then the equality holds.
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Theorem 2.8 ([4, Morimoto]). Let G be a finite group. Sm(G) C RO(G);?(‘;’ where G2 =
NiG:.11<2L is a normal subgroup of G.

Therefore, if G/G™ is an elementary abelian 2-group then CSm(G) ¢ LO(G).

Theorem 2.9. Let N be a normal subgroup of G. Then Q ®z RO(G);Q(”G) is spanned by the set of
virtual modules X — Y such that

X.Y | JindZn |y e B(C))
C

with ix¥(X — Y) = 0 in RO(G/N), where C runs over all representative of conjugacy classes of
cyclic subgroups of G not of prime power order.

Theorem 2.10. Let N be a normal subgroup of G. An virtual G-module RO(G),‘,’:{’G) is described

as a linear combination (with integer coefficients) of virtual modules X — Y such that

XY e U{Indg,; | 7 € BE))
E

with fix" (X — Y) = 0 in RO(G/N), where E runs over all representatives of conjugacy classes of
elementary subgroups E of G.

3. WEAK GAP CONDITION

We say that a smooth G-manifold X satisfies the weak gap condition (WGC) if the conditions
(WGCI1)-(WGC4) all hold (cf. [5]).
(WGC1) dim X* > 2dim X" for every P < H < G, P € P(G).
(WGC2) If dim X* = 2 dim X* for some P < H < G, P € P(G), then [H : P] = 2, dim X" >
dim XX + 1 for every H < K < G, and X" is connected.
(WGC3) If dim X* = 2dim X" for some P < H < G, P € P(G), and [H : P] = 2, then X"
can be oriented in such a way that the map g: X — X* is orientation preserving

for any g € Ng(H).
(WGC4) If dim X¥ = 2dim X* and dim X* = 2dim X"’ for some P < H, P < H', P € P(G),

then the smallest subgroup (H, H’) of G containing / and A’ is not a large subgroup
of G.

A real G-module V is called L£(G)-free if dim V¥ = 0 for each H € £(G), which amounts to
saying that dim V'9"(©) = 0 for each prime p € n(G). For a finite group G, we define subgroups
WLO(G) of the free abelian group LO(G) as follows.

WLO(G) = {U -V € LO(G) | U and ¥V both satisfy the weak gap condition}

A real G-module W is called nonnegative if (WGC1) holds for X = W.
We denote by V(G) as

R[G] ) = R[G]-R) - P R[G] - R)”©.
pen(G)

Theorem 3.2 in [2] implies the following proposition.

Proposition 3.1. Let W be a real nonnegative G-module. For X = W & V(G), (WGC2) holds if G
is a finite group with P(G) N L(G) = @ and and (WGC4) holds if G is an Oliver group.

Theorem 3.2. For an Oliver group G, it holds that WLO(G) is a subset of CS m(G).
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More generally we obtain

Theorem 3.3. Let G be an Oliver group and let V1, ..., V; be real G-modules satisfying that
Vi—V; € WLO(G). Then there exist a real G-module W and a smooth action on a sphere ¥ such
that 2% = {xy, ..., x;) and V; ® W is isomorphic to the tangential G-module T v (Z) for any i.

4. LO(G) vs WLO(G)

In this section we consider the difference between LO(G) and WLO(G). Note that if G/G! is
an elementary abelian 2-group then WLO(G) ¢ CSm(G) c LO(G).

We say that G is a gap group if G admits an £(G)-free positive G-module V, that is, dim V'@ =
0 for any prime p € n(G) and dim ¥* > 2dim V¥ for any pair (P, H) of subgroups of G with
PePG), P <H.

Theorem 4.1. Let G be a group with P(G) N L(G) = @. Suppose that for each X € LO(G) there
are L(G)-free nonnegative G-modules U and V such that X = U — V. For each subgroup K of G
with K > O*(G), [K : OX(G)] = 2, if all elements x of K ~ O*(G) of order 2 such that Cx(x) is not
a 2-group are not conjugate in K, then K is a gap group.

Theorem 4.2. Let G be an Oliver group. Let U and V be L(G)-free nonnegative G-modules with
U -V € RO(G)p). There are L(G)-free G-modules X and Y such that they satisfy the weak gap
conditionand U —V = X - Y.

Thus we have immediately the following theorem.

Theorem 4.3. Let G be an Oliver group. Suppose that for each subgroup K of G with K > O*(G),
[K : O*(G)] = 2, if K is not a gap group then all elements x of K ~ O*(G) of order 2 such that
Ck(x) is not a 2-group are conjugate in G. Then LO(G) c CSm(G). Furthermore, if G/G" is an
elementary abelian 2-group then LO(G) = CS m(G).

If K is an Oliver group with [K| < 2000 and [K : O?(K)] = 2, then K is a gap group or all
elements x of K \ O*(K) of order 2 such that Cx(x) is not a 2-group are conjugate in XK. We have
still no example of a group G so that WLO(G) # LO(G).

Let H = D5, X D5,, X --- X Dy, be a direct product group of dihedral groups D,,,, where
Pi,-..,pr 2 1 are odd integers. Then G x H is a nongap group if G is a nongap group.

Theorem 4.4. Let G be an Oliver group as in Theorem 4.3 and let H be as above. It holds that
LO(G x H) is a subset of CSm(G x H). Furthermore if G/G" is an elementary abelian 2-group,
then CSm(G x H) = LO(G x H).

5. Pro’ecTive GENERAL LINEAR GROUPS

We note that PGL(2, g) is isomorphic to the dihedral group Ds for ¢ = 2, the symmetric group
S4 for g = 3, the alternating group A5 for g = 4, the symmetric group S's for ¢ = 5, and nonsolvable
for ¢ > 4. The group PGL(2,q) is isomorphic to PSL(2,q) if g is a power of 2. If g > 5
i1s odd, PGL(2, q) has a perfect subgroup PSL(2,q) with index 2, which implies [PGL(2,q) :
O*(PGL(2,9)] = 2.

It is easy to see the rank of LO(PGL(2, g)). Note that rank LO(G) = max(ag — 1,0) if G is a
perfect group.
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Proposition 5.1. Suppose that q is odd.

0 qg=3,57
rank LO(PGL(2,q)) = apcrop—1 q=9,17
arGL(2.g) — 2  otherwise

Remark 5.2. Suppose that q is an odd prime power integer.
(1) PGL(2,q) is not a gap group if and only if ¢ = 3,5,7,9, 17.
(2) PGL(2,q) is a Oliver group if and only if q > 5.
(3) rank LO(PGL(2,9)) =ac,,, —1ifg=9,17.
(4) rank LO(PGL(2,9)) = ac,,, +ac,., —2ifq +3,5,7,9,17.

Theorem 4.3 gives CSm(PGL(2, q)) = LO(PGL(2, q)). Furthermore, we obtain the following.

g+1

q+1

Theorem 5.3. Sm(PGL(2,q)) = LO(PGL(2, q)).

6. SmaLr Grouprs

In this section we discuss by viewing from the order of a Sylow 2-subgroup of an Oliver group.
If G is an Oliver group of odd order then G is a gap group and LO(G) is a subset of CS m(G).

Theorem 6.1. If G is an Oliver group whose order is divisible by 2 not by 4 then LO(G) is a subset
of CSm(G).

Example 6.2. Let K be a finite abelian group of odd order whose rank is greater than 2. Let h be
an automorphism on K which sends k € K to it’s inverse k™', Put G = (h,K). Then G is an Oliver
nongap group satisfying CSm(G) = LO(G).

Theorem 6.3. Let N be a normal subgroup of G. Suppose that ag < agy(N) + 1. The induction
mapping Ind§: LO(N) ® Q — LO(G) ® Q is surjective.

From now on, we suppose that G is a finite Oliver group, [G : G"'"] = 2 and ag > 2. Note that
agc(G \ G") = ag — ag g(G™!). The above theorem yields the following.

Theorem 6.4. If ag < aggn(G™) + 1 then LO(G) = WLO(G) = CSm(G).

So, we are interesting in the case when ag (G \ G™) = ag — ag g (G™) > 2.

Let F be the set of isomorphism classes of finite Oliver nongap groups K such that 4 | |K],
[K : K" = 2, and ag g(K \ K™ > 2. Note that |G| is divisible by 8 if |G| is divisible by 4 and
less than or equal to 2000. The set of all representatives of elements in F consists of 5 groups

Geas, PGL(2,9), G206, G 1944, Gr944p-

Here they are given as follows.

< 3 < <
Gis «— Cj Gesg «——— G4 «—— Ggg

! ! !

C% C2 C3
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Gioasa e—— Gory —— Gog Girosap —— Gomp ——— G
C2 Cg Cz Cg

< < <
3
Gra96 «—— Geag «———— Gai6 «—— Cj

! ! !

) Cs Os

Geas gives the isomorphism class of the smallest group in #. G0 has center C, and the
quotient group by it’s center is isomorphic to G7y4. For these groups G, it holds that CSm(G) =
Sm(G). ag = 4,2,10,6,6 and ag (G \ G = 3,2,4,3,3 respectively. There are only five
groups up to order 2000. However we have the following.

Proposition 6.5. There are infinitely many finite groups G such that [G : G™'] = 2 and ag (G
G"h > 2.

Problem 6.6. Is there a finite nongap group G and involutions x and y of G \ O*(G) such that
[G : G""] = 2, x and y are not conjugate in G, and Cs(x) and Cs(v) are both not 2-groups.

There is no such a group if the order is less than or equal to 2000.

Proposition 6.7. Suppose that there is a finite nongap group satisfying the property in the above
problem. Then there are infinitely many finite nongap groups satisfying the same property.

7. DIRECT PRODUCT GAP GROUPS

In this section, we consider about when a direct product group is a gap group. First we remark
that

Proposition 7.1 ([6, 12]). Let K be a finite group with P(K) N L(K) = @ and H be a 2-group.
K x H is a gap group if and only if so is K.

We call a finite group G is a generalized dihedral group if [G : O*(G)] = 2 and there is an
involution # € G \ O*(G) such that Agh = g~! for any g € O*(G). A generalized dihedral group is
a subgroup of certain direct product group of dihedral groups.

Proposition 7.2 ([13, Lemma 7.2]). Suppose [K : K"!] = 2 and P(K) N L(K) = @. For an odd
prime p and a nontrivial p-group H, K X H is a gap group if and only if K is not a generalized
dihedral group.

Moreover we have the following.

Proposition 7.3. Suppose that [K : K™'] = 2 and P(K) N LK) = @. If |[n(H/[H, H])| > 2, or
[7(H/[H, H])| = | and K is not a generalized dihedral group then K x H is a gap group, where
LH, H] is a commutator subgroup of H.
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If K or H is a gap group then so is K X H. We put
«K)= ] aton.

xeK\O*(K)
k(K) is a subset of 7(K) and if K # O*(K) then it contains 2.

Theorem 7.4. Suppose that K and H are nongap groups with [K : K" = [H : H"'] = 2. Let
L be a unique subgroup of K x H with index 2 which is neither K nor H. Further suppose that
P(LYN L(L) = @. The following claims are equivalent.

(1) Lisagap group.

@) () akoxx) (K~ OX(K)) = 1 and there is a 2-element x of H \ O*(H) with |x| > 4, or
(i) aporan(H \ O*(H)) = | and there is a 2-element y of K \ O*(K) with [y| > 4, or
(ill) akorxy (K N OX(K)) = 1, agoran(K N OX(H)) = 1 and |k(K) U k(H)| > 3.

Corollary 7.5. Let K, H, and L be groups as in Theorem 7.4. If

(1) aK‘OZ(K)(K N OZ(K)) = aH_OZ(H)(K N OZ(H)) = 0, or
(2) akoxy(K \ OX(K)) = 1 and H is not a generalized dihedral group, or
(3) aworun(H \ O*(H)) = 1 and K is not a generalized dihedral group,

then K x H is a nongap group. Furthermore, the converse is also true if P(O*(K))N L(O*(K)) = @
and P(O*(H)) N L(O*(H)) = @.
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