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Submartingale property of subharmonic

functions.

Atsushi Atsuji *

In this note we consider conditions for the validity of submartingale property and L!-
Liouville theorems for subharmonic function on Riemannian manifolds. Let M be a
complete and stochastically complete Riemannian manifold. X, denotes Brownian motion
on M with non-random initial point X, € M. We say that submartingale property holds
for u if u(X,) is a submartingale for all initial point X, € M. It is known that there exist
manifolds which allow subharmonic functions without satisfying submartingale property(
see section 4).

We ask when manifolds admit subharmonic functions in a suitable class having sub-
martingale property and what a geometrical meaning of submartingale property is.

We also note a relationship between the submartingale property for integrable sub-
harmonic functions and L!-Liouville property.

1 A simple and general observation on submartingale
property

Define U be a collection of the non-negative and locally Lipschitz continuous functions
such that if u € U, then Au is a nonnegative smooth measure and E'_,[fot Au(X,)ds] < oo
foral0 <t<ooand z € M.

Define a default function N,(T,u) for a function u and a stopping time T" by

Ny (T, u) = /\1_1_1}30 /\PT(OiugT u(Xs) > A).

By Ito’s formula or Fukushima decomposition it is easy to see

Proposition 1 (Elworthy-X.M.Li-Yor [4], [5]). Suppose u € U. If Ny(t,u) = 0 (Vt > 0),
then u(X;) is a submartingale under P, and

Eufu(X,)] - u(z) = LEi| / Au(X.,)ds].
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Remark. Assume u € Y. If N, (t,u) = 0 for some z, € M, then N, (t,u) = 0 for any
x € M since X, has a continuous heat kernel on M. If N,(t,,u) = 0 for some t, > 0 and
all z € M, then N,(t,u) =0 for any t > 0 by Markovian property.

The default function was considered first by Carne([3]) in his probabilistic interpre-
tation of classical Nevanlinna theory and the author([1]) discussed a generalization for a
higher dimensional setting.

Takaoka([15]) considered a condition for a continuous local martingale to be a pure
martingale using this default function.

Elworthy-X.M.Li-Yor([4],[5]) emphasized “the importance of strictly local martin-
gales” using this default function and gave some applications to radial Ornstein-Uhlenbeck
processes.

Let B,(r) denote the geodesic ball of radius r with center z and 7, = inf{t > 0: X, ¢
B.(r)}. It is easy to see

Lemma 2.
lim E [u(X.) : 7, < t] = N(t,u)
foruel.

Hence we can use the following estimate due to M. Takeda.

Lemma 3 (Takeda’s inequality([16], see also [6])).
B Cr2
/ Py(7, < t)du(y) < const, L2AET 1) e
B, (1)

r
where dv denotes the Riemannian volume measure on M.

b

Remark. This estimates holds for general symmetric diffusions.

Let M. (r) = supyegp, (r) w(¥)-
Directly from Takeda’s inequality

Proposition 4. Ifu € U and
|
]lﬂgf ;E(log M, (7) + log vol(B,(r))) < oo

for some x € M, then u(X;) is a submartingale under P, for allz € M.

2 A condition for subharmonic functions and man-
ifolds to have submartingale property with Ricci

curvature

Let
R(z) = inf Ric(&,€).

EeT, M, ||€]]=1



To estimate M_.(r), we can use an estimate by P.Li and R.Schoen:

Lemma 5. [P.Li-Schoen[9]] Assume M satisfies that R(z) > —k(r(x)) for a nondecreas-
ing function k(r) > 0. Let u be a nonnegative smooth subharmonic function. Then there
exists constants C; > 0, Cy > 0 such that

max u(z) < C1e?V "'(5')\/0](3(7”))‘1/ udv.
xeaB(r/2) : B(T)

Remark. A similar estimate to the above for subharmonic functions of uniformly
elliptic diffusion operator on R" is given in Saloff-Coste’s monograph([13]).
Directly this with Proposition 4 implies

Proposition 6. Assume R(z) > —k(r(z)) for nonnegative continuous increasing function
k on [0,00) and r(z) = d(o, z) for some o € M. If u € U is smooth and

lim inf ;li(log k(r) + log/ u(z)dv(z)) < oo
T—00 BO(T)

for some 0o € M, then uw(X,) is a submartingale.

Remark. The condition 1
li:ﬂ,i,gf = log k(7r) < oo
ensures stochastic completeness of M.

For some applications we wish to replace

/ u(z)dv(x) by Apu(z)dv(z).
Bo(r) Ba(r)

Theorem 7. i) Assume R(z) > —cr(x)?> — ¢ for ¢ > 0.
If w € U is smooth and

1 .
liminf — log+/ Apru(z)du(z) < 0o
r—co T Bo(r)
for some 0 € M, then u(X;) is a submartingale.
ii) Assume R(z) > —k(r(x)) for a nonnegative nondecreasing function k such that
im, . k(r)/r?> =0. If

/ e“"Q/ Apu(z)du(z)dr < oo (Ve > 0)

0 o(r)

for some 0 € M, then u(X;) ts a submartingale.

'When there is no danger of confusion, we omit ‘under P,’ from now on.



Corollary 8. Assume R(z) > —cr(z)? — ¢ for ¢ > 0.

If u is a positive harmonic function, then u(X;) is a martingale.

The proof of Theorem 7 is derived by the Green’s formula and coarea formula. In fact
we have the following.

Lemma 9. (/2]) Suppose that M satisfies R(z) > —cr(z)?—c for ¢ > 0 and a nonnegative
smooth subharmonic functior. u satisfies

Au(r)dv(z) = O(e""“’z) for a constant cy > 0.
Bo(r)

Then we have

/ w(z)dv(z) = O(e"™) a.e. T € (0,00)
B, (r)

m z) = O(e”’) ae.rc 0,00
LBax u(z) = O(e®") (0,00)

for some positive constants c;,co.

3 Ll-Liouville theorems

We say M has LP-Liouville property if any non-negative smooth subharmonic function
LP-integrable with respect to the Riemannian volume measure is constant.
It is easy to see that

Proposition 10. The following two properties of M are equivalent.

i) Every nonnegative and integrable subharmonic function on M has submartingale prop-
erty.

ii) M has L'-Liouville property.

Proof. ii) = 1) : trivial.
i) = ii) : Let u be a nonnegative, smooth subharmonic function on M. Submartingale

property of u means
u(z) < E:r.[u(Xt)]

forall0 <tand z € M. Than

tu(x) < /Of E. [u(X;)]ds.



If X is recurrent, ratio ergodic theorem for recurrent Markov processes(cf.[12]) implies

t L@z (i 401(M) < 00
1B / w(X,)ds] — { v (i vol(M) < o),
t 0 0 ( if vol(M) = o0)
as t — oo. In both cases u should be bounded. Then u is a constant.
If X is transient, 1E,[[7 u(X,)ds] — 0 as t — oo since E,[f;° u(X,)ds] < oo for an
integrable function wu. O
Then we recover P.Li’s L!-Liouville theorem.

Theorem 11. [P.Li([8])] Assume M is a geodesically complete Riemannian manifold and
R(z) > —cr(z)? — ¢ for ¢ > 0. Then M has L'-Liouville property.

Remark 1. This theorem is improved by X.D.Li in [10] to the case when L = A —V¢-V
with modified Ricci curvature.

Remark 2. It is well-known that LP-Liouville property for p > 1 holds for any complete
Riemannian manifolds. This is due to S.T.Yau([17]). This is improved by K.T.Sturm([14])
under the setting of symmetric diffusions.

Remark 3. For p = 1 there are few results except for ones due to P.Li and Nadirashvili.
Nadirashvili obtained the following result:

Theorem 12 (Nadirashvili([11])). Let M be a geodesically complete Riemannian manifold
and u a smooth non-negative subharmonic function. '

1) If [, %T(E‘—m))qdv(z) < 0o with a non-negative increasing function f on [0,00) satisfy-
ng f°° ﬁdt < 00, then u is a constant.

ii) If [, u(z)dv(z) < 0o and u(z) = O(e"™” ™) for some € > 0, then u is a constant.

Remark. Examples of f ini): f(z) =P (p > 1), f(z) = z(logz)? (p > 1) etc.

4 Examples

1. Remark that if Ricyy > 0 or M is simply connected and of non-positive constant
curvature, then u(X;) is a submartingale for u € Y.
2. The following example is originally due to Li-Schoen. Let M be a compact 2-dim

Riemannian manifold with a metric ds? and X Brownian motion on M. Fix o € M. Set

o0 1
0,z) =27 t.o,x) — —)dt + C,
ofo,z) =2 [ ot 01) — )
where p(t,z,y) is the transition density of X and C is a positive constant such that
glo,z) > 0 for all 2 € M. Remark that g(z,y) ~ logﬁy—y (d(z,y) — 0). Note

Azzg(0,T) = —2m0,(T) + g (M)



Let M be M \ {0}. Take o be a smooth function on M s.t.
1 1
o(z) ~ t (log ?)“l(loglog ?)”’ with1/2 < a<1

when t = dzp(0, ) — 0.
Define a metric ds*> = 02ds3 on M. Note that Laplacian Ay, defined from ds? has a
form
Ay =0 _ZA')\?,

where Az7 is defined from ds?.
(M, ds?) satisfies

e complete.

e M is of finite volume w.r.t ds?.

e u is a nonnegative smooth subharmonic function on M and integrable w.r.t. ds2.
e the curvature ~ —const.ri=s = —cr?*¢ as r — 0o (e =(4a—2)/(1 —a) > 0).

Remark. u(X.) is not a submartingale and (M,ds?) is incomplete but stochastically
complete.

This example shows that it is difficult to improve the condition on Ricci curvature in
Theorem 11. Also L!-Liouville property can not be controled only by the volume growth
of manifolds.

5 Another criterion and weighted L!-Liouville theo-

rem

In this section we consider another setting and discussed the validity of weighted L!-
Liouville theorems.

We will assume later that
(*) M has a nonnegative subharmonic exhaustion function ¢ such that |V¢| is bounded
on M.

Example: Let ¢ : M — R™ minimally and properly immersed manifold and ¢(z) :=
d(o, «(z)) with Euclidean distance d(o,y). Then ¢ satisfies above condition and ¢ € U
(A¢ is bounded) w.r.t the induced metric.

Remark: 1. Any Stein manifold can be properly emmbedded in C™ and any complex
submanifold in complex Euclidean space satisfies the above.

2. We do not assume here that ¢ € U. If A¢ is bounded, then M is stochastically

complete.



3. Every complete Riemannian manifold has a nonnegative, smooth, subharmonic
exhaustion function (Greene-Wu [7]).

Let us consider estimates on the Poisson kernel P, (z,y) on B,(r) and Green’s function
g-(z,y) on B,(r) of Ay with Dirichlet boundary condition on 9B, (r), where B,(r) = {y €
Mg(y) — d(z) < ).

Lemma 13. Assume that ¢ is a nonnegative, smooth subharmonic exhaustion function
on M.

If ¢(z) < @ < 7, for y € OB,(r)

SqueaB,,(a) gr(:r7 w)
T —

P (z,y) < IVl (y).
Note that if p(z) <a < B <,

SUPy,eom(3) 9 (T, W) < SUPyeaB(a) g-(z, w)

< o0
r— 03 - r—q
a.nd hmo,_,¢(1) sup.,,ea):(j;gr(z,w) = 0OQO.
We define a new quantity c(r) by
sup,, 2 gr (T, W
c(r)= sup (lim Pucas) Ir )) < 00.
z€8B(r/2) BT r— 0
Then
Lemma 14.
. dA.(y)
sup u(z) <c(r) sup |VOR(2) | ulv)ionid,
2€8B,(r/2) 2€B,(r) 8B, (r) [Vl(y)

where dA, is the induced volume form on 9B,(r).

The above ¢(r) plays the same role as the bounds of Ricei curvature in P.Li-Schoen
estimate. We have the following results with using c(r).

Theorem 15. Assume (*). If u € U and

lim inf;lg (log c(r) + logvol({¢(z) < r}) + log/

r—oo {#(z)<r}

u(a:)dv(:c)) < o0,
then u(X;) is a submartingale.

We also have a weighted L'-Liouville theorem as follows.



Theorem 16. Assume (*).
i) Assume liminf, ., rml_,, (logc(r) + logvol({p(z) < r})) < oo for0<p< 1. If

u(z)
Amuwwwﬂ“”<“’

then u = 0.
ii) Assume liminf, -(Tag—lr—)f ilog c(r) + log vol({¢(z) < r})) < oco.
If
u(x)
—— —dv(z) < 00,
J, T a
then u = 0.

Proof. Use Takeda’s inequality and time change argument with an estimate in Lemma
14.

We apply our discussion to some simple cases.

Theorem 17. Assume M is a complete Riemannian manifold of finite volume such that
¢ is an ezhaustion function with bounded |V¢|. If a nonnegative and smooth subharmonic
function u satisfies

u(z) = O(d(x)?) (- o),

then u is constant.

Remark. In the proof of the above result the growth of u enables us to skip the
estimate in Lemma 14.

We can easily to check that these results hold in the case when X is a symmetric
diffusion on a smooth manifold M. We employ usual setting of symmetric diffusions as
follows(see [6] for details). X has a generator L on L?(M;dm) where dm is a Radon
measure on M. The square field operator I'(¢, ¢) can be defined by

(¢, p) = Lé* — 29Lg  for ¢ € CL(M).

This is a bilinear operator. The corresponding Dirichlet form to X takes a form as

1 .
E(P, @) = 5 /M dr' (¢, ¢).

Remark that dI'(¢, ¢) is a Radon measure on M for general ¢ belongs locally to the
domain of £. When X is Brownian motion on a Riemannian manifold M, L = %AM,
dm = dv and I'(¢,¢) = |V¢|? for ¢ € CP(M). Then we say that u is L-subharmonic
if Lu = 0 in distribution sense. Replacing Riemannian quantities like dv and norm of
gradient by the quantities in this diflusion setting like dm and squre field operator, we
have a simple generalization of the above results. We say that ['(¢, ¢) is bounded if
dl'(¢p, ¢) < const.dm. We have the following.



Theorem 18. Assume that M has a nonnegative exhaustion function ¢ whose I'(¢, @)

is bounded and M satisfies Ta(M) < oo. If a nonnegative and smooth L-subharmonic

function u satisfies

u(z) = O(¢(z)’)  (z— o0),

then u is constant.
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