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1 Introduction
This is a survey of [9, 10, 11]. We consider a class of continuous-time stochastic growth
models on d-dimensional lattice $Z^{d}$ with non-negative real numbers as possible values
per site, so that the configuration at time $t$ caii be written as $\eta_{t}=(\eta_{t,x})_{x\in Z^{d}},$ $\eta_{t.x}\geq 0$ .
We interpret the coordinate $\eta_{t,x}$ as the “population” at time-space $(t, x)$ , though $1t$ need
not be an integer. The class of growth models considered here is a reasonably ample
subclass of the one considered in [8, Chapter IX] as ‘linear systems”. For example, it
contains examples such as binary contact path process and potlatch process. The basic
feature of the class is that the configurations are updated by applying the random linear
transformation of the following form, when the Poisson clock rings at timespace $(t, z)$ :

$\eta_{t_{:}x}=\{\begin{array}{ll}I\{\prime\eta_{t-.z}r_{0} if x=z,\eta_{t-,x}+K_{x-z^{l}}r\prime_{t-,z} if x\neq z,\end{array}$

where $K=(K_{x})_{x\in Z^{d}}$ is a random vector with non-negative entries, and independent copies
of $K$ are used for each update (See next section for more detail). These models are known
to exhibit, roughly speaking, the following phase transition [8, Chapter IX, sections 3-5]:

i $)$ If the dimension is high $d\geq 3$ , and if the vector $K$ is not too random, then, with
positive probability, the growth of the population is as fast as its expected value as
time $t$ tends to infinity, as $su(h$ t.he regular growth phase.

ii) If the dimension is low $d=1,2$ , or if the vector $K$ is random enough, then, almost
surely, the growth of the population strictly slower than its expected value as the
time $t$ tends to infinity, as $sn(ht)$he slow growth phase.

In this paper, we review following: In the case i) above we see the equivalent conditions
for the spatial distribution of the population,

$\rho_{t,x}=\frac{7|t_{\tau}x}{|\eta_{t}|}1_{\{1|>0\}}\dagger/t’ t>0,$
$x\in Z^{d}$ ,

obeys the central limit theorem, where $|t|t|= \sum_{x\in Z^{d}}\uparrow\uparrow t_{:}x$ . In the case ii) above we see
the equivalence between slow growth and localization property. Furthermore, under the
reasonable condition, strong localization property holds, i.e., the spatial distribution $/J_{t_{1}x}$

does not decay uniformly in space as time $t$ tends to infinity.
It should be mentioned that the central limit theorem in the same manner is discussed

in $[$ 12, 14 $]$ and the localization/delocalization in the same spirit is discussed in $[$ 1, 2, 3, 4,
7, 13, 15, 16].
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2 Model and results
We introduce a random vector $K=(K_{r})_{x\in Z^{d}}$ such that

$0\leq K_{x}\leq b_{K}1_{t|x|\leq r\kappa I}a.s$ . for some constants $b_{K},$ $r_{K}\in[0, \infty)$ ,

the set $\{x\in Z^{d};E[K_{\tau}]\neq 0\}$ contains a linear basis of $\mathbb{R}^{d}$ .

The first condition amounts t,o $the$ standard boundedness and the finite range assumptions
for the transition rate of interacting particle systems. The second condition makes the
model ”truly d-dimensional”.

Let $\tau^{z,i},$ $(z\in Z^{d}, i\in N)$ be i.i. $d$ . mean-one exponential random variables and $T^{z,i}=$

$\tau^{z,1}+\cdots+\tau^{z,i}$ . Let also $K^{z},$ . $=(K_{x}^{z,i})_{x\in Z^{d}},$ $(z\in Z^{d}, i\in N)$ be i.i. $d$ . random vectors with
the same distributions as $K$ , independent of $\{\tau^{z,i}\}_{z\in Z,i\in N}$ . We suppose that the process
$(\eta_{1})$ starts from a deterministic configuration $\eta_{0}=(\eta_{0,x})_{x\in Z^{d}}\in[0, \infty)^{z^{d}}$ with $|\eta_{0}|<\infty$ .
At time $t=T^{z,i},$ $\gamma/t-$ is replaced by $\gamma/t$ , where

$rlt_{1}x=\{$ $\eta_{t-x}+K_{x-z}^{z,i}\eta_{t-z}K_{0}^{z,.i}\eta_{t-,z}$

,

$ifx\neq zifx=z$

.
(1)

We also consider the dual process $\zeta_{t}\in[0$ , oo $)^{z^{d}},$ $t\geq 0$ which evolves in the same way as
$(\eta_{t})_{t\geq 0}$ except that (1) is replaced by its transpose:

$\zeta_{t,x}=\{\begin{array}{ll}\sum_{y\in Z^{d}}K_{y-x^{T\int_{t-,y}}}^{z,1} if x=z,\zeta_{t-,x} if x\neq z.\end{array}$

We shall give typical examples which fall into the above set-up after the main results.
We recall the following facts. Let $\mathcal{F}_{t}$ be the $\sigma- field$ generated by $r\prime_{S},$ $s\leq t$ . Let $(’/l_{l}^{x})_{t\geq 0}$

be the process $(\eta_{t})_{t\geq 0}$ starting froni one particle at the site $x:\eta_{0}^{x}=\delta_{x}$ . Similarly, let
$(\zeta_{t}^{x})_{t\geq 0}$ be the dual process starting from one particle at the site $x:\zeta_{0}^{x}=\delta_{x}$ . We set

$k$ $=$ $(k_{x})_{\tau\in Z^{d}}=(E[K_{x}])_{x\in Z^{d}}$

$\overline{7|}t$ $=$ $(e^{-(|k|-1)t}\eta_{t,x})_{x\in Z^{d}}$ .

Proposition 2.1 ($/8J$ , Chap$terIX$, Theorem 2.2 and 2.4)
a$)$ $(|\overline{\eta}_{t}|, \mathcal{F}_{t})_{t\geq 0}$ is a non-nega tive martingale, and therefore, the following limit exists $a.s$ .

$|\overline{\eta}_{\infty}|=1i_{111}|_{\overline{7|}t}|tarrow\infty$ .

b$)$ Either
$E[\overline{/1}_{\infty}^{0}]=1$ or $0$ .

Moreover, $E[|\overline{\eta}_{\infty}^{0}|]=1$ if and only if the $7r\iota artingale|\overline{\eta}_{t}|$ is uniformly integrable.
c$)$ The above $(a)-(b)$ , with $\eta$ replaced $\zeta$ are true for the dual process.

We introduce some notations. For $/l\cdot(\in \mathbb{R}^{Z^{rl}}$ the inner product and the discrete
convolution are defined $rethD^{P_{d}(\uparrow.ivrightarrow 1\backslash }|)\backslash$

$\langle\eta,$

$( \rangle=\sum_{\tau\in Z^{d}}r/.c\xi_{r}$
and

$(;/* \zeta)_{x}=\sum_{y\in Z^{d}}\prime r\prime_{x-y}\zeta_{y}$
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provided the summations converge. We define $\beta\in \mathbb{R}^{Z^{d}}$ by

$\beta_{x}=\sum_{y\in Z^{d}}E[(K-\delta_{0})_{x+y}(K-\delta_{0})_{y}]$
.

We define $G_{S}$ by
$G_{S}(x)= \int_{0}^{\infty}P_{S}^{0}(S_{t}=x)dt$

where $((S_{t})_{t\geq 0}, P_{S}^{x})$ is the continuous-time random walk on $Z^{d}$ starting from $x\in Z^{d}$ , with
the generator

$L_{S}f(x)= \sum_{y\in Z^{d}}\frac{k_{x-y}+k_{y-x}}{2}(f(y)-f(x))$

Theorem 2.2 Suppose $d\geq 3$ . Then, the following conditions are equivalent:
a$)$ $\langle\beta,$ $G_{s}\rangle<2$

b$)$ There exists a bounded function $h:Z^{d}arrow[1, \infty)$ such that

$(L_{S}h)(x)+ \frac{1}{2}\delta_{0,x}\langle\beta,$ $h\}\leq 0$ , $x\in Z^{d}$

c$)$ $\sup_{t\geq 0}E[|_{\overline{7}}h|^{2}]<\infty$

d$)$
$\lim_{tarrow\infty}\sum_{x\in Z^{d}}f((x-mt)/\sqrt{t})\overline{7\int}_{f,x}=|’\overline{\gamma/}\infty|\int_{R^{d}}fd\nu$ in $L^{2}(P)$ for all $f\in C_{b}(\mathbb{R}^{d})$

where $m= \sum_{x\in Z^{d}}xk_{x}\in \mathbb{R}^{d},$ $\iota/$ is the Gaussian measure with

$\int_{\mathbb{R}^{d}}x_{i}d\nu(x)=0$ , $\int_{R^{d}}x_{i}x_{j}d\nu(x)=\sum_{x\in Z^{d}}x_{i}x_{j}k_{x}$ , $i,j=1,$ $\ldots,$
$d$ ,

and $C_{b}(\mathbb{R}^{d})$ denotes the set of bounded continuous function on $\mathbb{R}^{d}$ .
b $)$ There exists a bounded function $h:Z^{d}arrow[1.\infty)$ such that

$(L_{S}h)(x)+ \frac{1}{2}h(0)\beta_{x}\leq 0$ , $x\in Z^{d}$

c $)$ $\sup_{t\geq 0}E[|\overline{\zeta}_{t}|^{2}]<\infty$

d $)$
$\lim_{tarrow\infty}\sum_{x\in Z^{d}}f((x-mt)/\sqrt{t})\overline{\zeta}_{t,x}=|\overline{\zeta}_{\infty}|\int_{\mathbb{R}^{d}}f(l_{\mathfrak{l}}/$ in $L^{2}(P)$ for all $f\in C_{b}(\mathbb{R}^{d})$

In order to see the slow growth phase. we present a sufficient condition.

Proposition 2.3 a) For $d=1.2,$ $|/\overline{l}\infty|=0a.s$ . In particular for $d=1$ , there emsts a
constant $c>0$ such that

$|\overline{\eta}_{t}|=O(e^{-c1})$ . as $tarrow\infty,$ $a.s$ . (2)

b$)$ For any $d\geq 1_{f}$ suppose that

$\sum_{x\in Z^{d}}E[K_{x}\ln K_{x}]>|k|-1$

then, again there exists a constant $c>0$ such that (2) holds.
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Recall that we have defined the spatia] distribution of the population by

$\rho_{t,x}=\frac{\eta_{t,x}}{|_{T/t}|}1_{\{|?\prime\prime|>0\}_{\mathfrak{i}}}t>0,$
$x\in Z^{d}$ .

Interesting object related to the density would be

$\rho:=\max_{x\in Z^{d}}\rho_{t_{1}x}$ , and
$\mathcal{R}_{t}=\sum_{x\in Z^{d}}\rho_{t,x}^{2}$

.

It is easy to see that $(\rho_{t}^{*})^{2}\leq \mathcal{R}_{\ell}\leq\rho_{t}^{*}$ . These quantities convey information on localiza-
tion/delocalization of particles.

Theorem 2.4 a) Suppose that $P(|\overline{\eta}_{\infty}|>0)>0$ . Then,

$\int_{0}^{\infty}\mathcal{R}_{s}ds<\infty a.s$ .

b$)$ Suppos $e$ that $P(|\overline{r\prime}\infty|=0)=1$ . Then,

{survival} $= \{\int_{0}^{\infty}\mathcal{R}_{s}ds= oo\}$ , $a.s$ .

where {survival} $=\{|7/\ell|\neq 0$ for all $t\geq 0\}$ . Moreover, there $e$ rists a constant $c>0$ such
that

$| \overline{\gamma/}t|\leq\exp(-c\int_{0}^{\ell}\mathcal{R}_{s}ds)$ for all large enough $ts,$ $a.s$ .

Theorem 2.5 Suppose $eith\epsilon\cdot r$

a$)$ $d=1,2$ ,
b$)$ $d\geq 3,$ $P(|\overline{7\prime}_{\infty}|=0)=1$ and $\{\beta,$ $G_{s}\rangle>2$

Then there exists a constant $c\in(0,1]$ such that

{survival} $= \{\int_{0}^{\infty}1_{\{R_{S}\geq c\}}ds=\infty\}$ , $a.s$ .

Here are some typical examples:
The extended binary contact path process: The extended binary contact path
process is a special case of our set-up, in which

$\{$

$(\delta_{x,(I}+\alpha\delta_{x,e})_{x\in Z^{d}}$ with probability $\frac{\lambda}{2d\lambda+1}$

$K_{Q}=$ for each $2d$ neighbor $e$ of $0$ ,
$0$ with probability $\frac{1}{2d\lambda+1}$ ,

for $\alpha>0$ . The process is interpreted as the spread of an infection, with $\eta_{t,x}$ infected
individuals at time $t$ at site $x$ . All the infected individuals at site $x-e$ are duplicated,
multiplied $\alpha$ and added to those on the site $x$ with probability $\frac{\lambda}{2d\lambda+1}$ . On the other hand,
all the infected individuals at a site become healthy with probability $\frac{1}{2d\lambda+1}$ . If $\alpha=1$ , then
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this gives the binary contact path pro( $.es*\cdot(B(\urcorner PP)$ , originally introduced by D. Griffeath
[5]. A motivation to study the BCPP comes from the fact that projected process

$(1_{\{>0\}}?\}1..J)_{\tau\in Z^{d}}$ , $t\geq 0$

is the basic contact process. Note that this relation is valid for our extended binary
contact path process. Let $\pi_{d}$ be the return probability for the simple random walk on $Z^{d}$ .
Then we have

$\langle\beta,$ $G_{S} \rangle=\frac{2(\oint,(y^{2}\lambda+11}{2d(f\lambda 1-\pi_{d}}$ .

Hence

$\{\beta, G_{S}\}>2$ $\Leftrightarrow$ $\lambda<\frac{1}{2d(2\prime f(1-\pi_{d})-\alpha^{2})}$ , if $0<\alpha<2(1-\pi_{d})$ ,

$\langle\beta,$ $G_{S}\rangle>2$ for $a]_{\wedge}^{1}\lambda>0$ , if $\alpha\geq 2(1-\pi_{d})$ .

We can improve [5, Corollary], by taking $c\nu=1-\pi_{d}$ :

Proposition 2.6 Let $d\geq 3$ . Then we have

$\lambda_{c}\leq\frac{1}{2d}\frac{1}{(1-\pi_{d})^{2}}$

where $\lambda_{c}$ is the critical value of the basic contact process.

We also have

$\sum E[K_{x}\ln K_{x}]>|k|-1$ $\Leftrightarrow$ $\lambda<\frac{1}{2d\alpha(1-\ln\alpha)}$ . if $0<\alpha<e$

$\sum_{x\in Z^{d}}^{x\in Z^{d}}E[K_{x}\ln K_{x}]>|k|-1$ for all $\lambda>0$ , if $\alpha\geq e$

Suppose $\alpha=1$ . Then it is known that if $\lambda<\frac{1}{2d}$ , then $\eta_{t}\equiv 0$ for large enough $t$ ’s a.s. In
fact, we do not know if there is a value A for which BCPP with $d\geq 3$ is in slow growth
phase, without getting extinct a.s.
The potlatch/smoothing processes: The potlatch process discussed in e.g. [6] and
[8] is also a special case of our set-up, in which

$K_{x}=Wk_{r}$ , $x\in Z^{d}$

Here $k=(k_{x})_{x\in Z^{d}}\in[0, \infty)^{Z^{d}}$ is a non-random vector and $W$ is a non-negative, bounded
mean-one random variables such that $P(W=1)<1$ (so that the notation $k$ is consistent
with the definition above). The smoothing ]$)r\langle)(ess$ is the dual process of the potlatch
process. Then we have

$\{\beta, G_{S}\}>2$ $\Leftrightarrow$ $E[W^{2}]> \frac{(2|k|-1)G_{S}(0)}{\{G_{S}*k.k\rangle}$ , for $d\geq 3$ ,

$\sum_{x\in Z^{d}}E[K_{x}\ln K_{x}]>|k|-1$
$\Leftrightarrow$ $E[W \ln W]>\frac{|k|-1-\sum_{x}k_{x}\ln k_{x}}{|k^{\wedge}|}$ .
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