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Weighted Poincaré Inequality of Fractional Order
Zhen-Qing Chen,’ Panki Kim? and Takashi Kumagai 3

Abstract

One of key tools to obtain heat kernel estimate for jump processes is a weighted
Poincaré inequality of fractional order. The purpose of this note is to give the full
proof of a variant but strengthened version of the weighted Poincaré inequality of
fractional order that is established in [CKK].
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Primary 60J75 , 60J35, Secondary 31C25 , 31CO05.

A weighted Poincaré inequality of fractional order was obtained in [CKK], which played
an important role in obtaining sharp heat kernel estimate for finite range symmetric
stable processes there. For weighted Poincaré inequality for Laplacian operators and its
applications, we refer readers to [SC]. The purpose of this note is to present a variant but
strengthened version of the weighted Poincaré inequality of fractional order established
in [CKK]. The proof is very similar to that in [CKK]. But for reader’s convenience, we
give the full details here.

Throughout this paper, 7 > 1, ¢ € (0,00) and a € (0,2). Recall that ug denotes the
Lebesgue measure in R?. In this section, the exact values of the constants c's are always
independent of r and they might change from one appearance to another. Let M(c) be
the set of all non-increasing function ¥ from [0, 1] to [0, 1] such that ¥(s) > ¥(1) = 0 for
every s € [0,1) and

U(s+2((1—3s)A3)) > oW¥(s), s €(0,1). (1)

We will use M (o) to denote all the functions ® of the form c¢¥(|z|) for some ¥ € M(o)

having [, ®(z)dr = 1. Note that, when 3 € (0,2), c(1 — |z]?)'¥@P g1 (z) is in

N ((1/8)12/2=A)). Condition (1) says that for each ® € N (o), values of ® at points

with comparable distance from the unit sphere 9B(0,1) are comparable. This implies

that values of ® in balls in Whitney-type covering, which will be discussed below, are

universally comparable to each other. This property will be used in many places below.
For ® € N (o), define

Up = / u(z)P(x)dzx.
B(0.1)
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Theorem 1 For everyd > 1 and 0 € (0,00), there exists a positive constant c; = c¢;(d, o)
independent of r > 1, such that for every ® € N (o) and u € L}(B(0,1), ¥(z)dz),

/ (w(z) — ue)*d(z)dz
B(0,1)

2
u(xr) —u

< o [ (@) vy (@) A B(y)) ddy.
B(0,1)xB(0,1) |z — yl

We will prove the above theorem through several lemmas. For the remainder of this
section, we fix o € (0,00) and ® € N (o).
We first prove the following simple lemma. Let

1
UB(zs) = ———— dy.
) = BT Sy

Lemma 2 For every B(z,s) C B(0,1) and every u € L!(B(z, s),dz),

- 2 1 B )
/;B(m)(U(r) UB(z,5)) dT < a(B(2.3) /B(m) /B(z‘s) (u(z) — u(y))*dzdy.

Proof. By Cauchy-Schwartz inequality,

_ 2 _ 1 L 2
/B(z,s)(U(x) uB () (2) /B(z s) (Nd (2,8)) Jse. s)( ul#) (y))dy> d
ur) —u 2 T
Ha(B )/B(zs) /B(z s) (z) = uly))"drdy.

Recall Whitney-type coverings (see [SC, Section 5.3.3] for details): We first let
—_ 1
W = {B : the center of the ball B is in B(0,1) and r(B) = WP(B)}

where 7(B) is the radius of the ball B and p(B) denotes the Euclidean distance between
the ball B and B(0,1)°. In the sequel, for A > 0 and a ball B = B(x,r) centered at x
with radius r, we denote AB the concentric ball B(x, Ar) with radius Ar.

Start W by picking a ball B € W with the largest possible radius. Pick the next ball
B! to be a ball in W which does not intersect B° and has maximal radius. Assuming
that k balls B?, --. | B¥~! have already heen picked, pick the next ball B* to be a ball
in W which does not intersect Uf;(} B’ and has maximal radius. Though this procedure,
we get a sequence of disjoint balls W := {B° ... Bk~1 Bk ...} from W. Moreover, the
Whitney-type decomposition of the unit ball B(0, 1) has the following properties (see, for
example, page 135 of [SC]).
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(1)
B(0,1)= | J 2B.

Bew

(2) There exists a positive constant K such that

sup #{BeW:ye€10’B} < K (2)
y€B(0,1)

where #.S is the number of elements in the set S.

There exists a ball B(0) € W such that 0 € 2B(0). We pick an fix such a ball B(0)
and call it the central ball of W. For any B € W, let g be the straight line segment
between the center of B and the origin. Let

W(B) := {AeW: 2AN~g # 0}.

Now we define the chain W(B) := (By, By, -+ , Byg)y-1) with By = B(0) and Bypy-1 = B

as follows; Starting from the origin, let y, be the first point along g which does not belong

to 2By. Define B; to be (any) one of balls in W(B) such that yy € 2B;. Inductively,

having By, By, - - - , By constructed, let y; be the first point along yg which does not belong

to U;?:OZBJ-. Define By, to be (any) one of balls in W(B) such that yx € 2Bx,1.- When

the last chosen is not B, we simply add B as the last ball in W(B). ‘
Using Lemma 2, the next lemma can be proved easily.

Lemma 3 There ezists a positive constant ¢ = c(d) such that for every B € W, B;, B;y; €
W(B) and for every u € L}(B(0, 1), ddz),

1

i 1/2
c
|usp, — uam,,,| < Z (B / / (w(x) — u(y))?dzdy .
izo ta(Biy5) 4B,,; J4B,y;

Proof. Note that

1/2
= (/ luap, — U4B,»+,|2Nfd(d«’lf')>
4B,jﬁ4B,;+1

< ( / | lu(z) - u4B,,|2ud<dw>)l/2 + ( / ECE u43i+1i2ud(dw>)l/z.

Now the lemma follows from our Lemma 2 and the fact that

(1a(4B; N 4B, ))1/2|u4Bi — Uag, |

pa(4B; V4B 1) > cmax{uqg(B;), tta(Biy1)}

(see Lemma 5.3.7 in [SC}). =]
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Lemma 4 There exists a positive constant ¢ = c(d, o) such that for every B € W,
B;, Bi;1 € W(B) and for every u € L'(B(0, 1), ®dz),

1

1/2
UgB;, —U4B; ——2— u —u 2 .
Vs lun il < 3o ( Lo Ly () = utw) (@(x)A@(y))dzdy)

Proof. Since the values of ® are universally comparable to each other on 4B for every
B € W, we have from Lemma 3

fam, = tam| (3)
. 1/2
c
Z—;(“d(Bw D2(J,,. (y)dy) 72 (/ / ,, le) —uly) <‘1’(w>w<y>)dzdy) .
Note that
3
p(A) = 10°r(A) > —1%7‘(3) p(B) for every A € W(B). (4)

(See Lemma 5.3.6 in [SC].) Using (1), (4) and the fact that ¥ is non-increasing, there
exists a positive constant ¢ independent of B such that

max ®(y. < c min ®(y) for every A € W(B).
yeEB yeEA

Thus we have

1
&, | _
bp = ud(B) < ,Ud(B ) /1;, (y)dy for every B; € W(B) (5)

The lemma follows from (3) and (5). o

The proof of the next lemma is similar to that of Theorem 5.3.4 on page 141-143 of
[SC]. For reader’s convenience, we nevertheless spell out the details of the proof here.

Lemma 5 There ezists a positive constant ¢ = c(d, o) such that for everyu € L'(B(0, 1), ®dx),

) —u 2<I>x <c
/B(O‘l)u) )20 >

AeWwW

pa(A LszlA(U(x) = u(y))*(®(z) A 2(y))dzdy.
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Proof. Note that

/ (u(z) — ue)’®(x)dx
B(0,1)

< 2 /B M(u(x) — ugp(0)) 2 P(z)dz + 2 ( /B o @(x)dm) (ue — usn())’
< 2 /B m,l)(u(x) — usp(0))>®(z)dz + 2 /B (0’1)(11,(3:) — Usp(0)? ®(z)dz

< 43%% /4 B(u(a:) — usp(0))? ®(z)dx

< SB;V /4 B(u(z) — u3p)2®(z)dz + sBzE;v(uw — usp())? L i &(z)dzx
) P (u(z) — w(y))?(B(z) A B(y))dady

Bew ud(B) 4Bx4B
2
+c Z /13(2) (lugp — U4B(0)|(‘I)B)l/2) dz,
Bew

where in the last inequality, we used the fact that the values of ® are universally compa-
rable to each other on 4B for every B € W. To establish the lemma, it suffices to deal
with the second summation above.

By Lemma 4, we get

[usp — uap(o)|(®5)"/*15(2)

{(B)-2

S Z |u4Bi —‘u4Bi+1|(q)B)l/le(3)

(B)-1 1 2 12
< ¢ ; oA (/43 /431- (u(z) — u(y)) (@(x)/\q>(y))dxdy) 15(z)

I(B)-1 ) 2 12
= ¢ iz:; 7a B (/45',; /18,; (u(z) — u(y))*(®(x) A@(y))dzdy) 11045, (2)15(2)

1/2

< o3y (L, [, 00— w0 @@ n sisay)  tisa(2)152).

In the first equality above, we have used the fact that B C 10*B; (Lemma 5.3.8 in [SC]).
Since the balls in W are disjoint, summing both sides over B € W and taking the square,
we get

2
> 15(2) (luas — wape)|(P5)"7?)
Bew
2

1/2
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Integrating over z € B(0, 1), and using Lemma 5.3.12 in [SC] and the fact the balls in W
are disjoint, we have

Z /13 z) |“4B—U4B(0)|‘I’B ) dz

Bew

<cf (AEW 0 ( / / 7) — u(y))X(®(z) A@(y))dxdy) 1/21104A<z>)2dz
<cf (;vm( [ [ <u(z>—u(y))2(<1><x)A@(y))dzdy)m 1A(z)) dz
<cf > G ([ ] e - wwyee ) A B(w)dzdy ) 1a(2)dz
< C;;vud( ([ [ @ - uwyoee o y))dwdy)

This completes the proof for the lemma. o

Lemma 6 There ezists a positive constant c = c(d, o) such that for everyu € L'(B(0,1), ®dz),

/ (u(z) — ug)?P(x)dx
B(0,1)

(u(z) — u(y))?
= C/B(n HxB1) 1T =yl l“z_yls‘_‘l”}(cp(x) A @ (y))dzdy.

Proof. Since |z — y| < 8r(A) < i%;’f if r,y € 4A, we have for every A e W

ud<A) / i AxaA u(z) — u(y))*(P(z) A 2(y))dzdy

— _ d
< ___(r(z))d AA ) (u(z) |;1—)y)|d|”c yl 1 yi< 1) (B(2) A @(y))dzdy
(u(z) — u(y))*
= C/AX4A |:L‘ — yld l{lT—ylSl——(])}-}(q)(x) N (I)(y))dil?d’y

It then follows from Lemma 5 and (2) that

/ (u(z) — ue)?®(x)dx
B(0,1) )
e [ () A B()drdy

AEW 4Ax4A |T - yl

(u(w) — u(y))?
< c/ 1, i<a(P(x) A B(y))dzdy.
Bonxson |z —ylt T ) )

(A
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O

Due to Lemma 6, we have Theorem 1 for 1 <r < 102. So, from now we may assume
r > 102,

Lemma 7 There exists a positive constant ¢ = c(d, o) such that for every r > 102 for
every u € L*(B(0,1), ®dx),

/ (u(z) — ue)*®(z)dx
B(0,1)

_ 2
< C/ e U(f)) L(je—yi<1/rH(2(2) A &(y))dzdy
BO)xBOY 1T =Yl

2 .
1{]x—y|<ﬁ7}((b($) A ®(y))dzdy.

+c/ y
B(0,1-12)xB(0,1-12) |z — yl¢

Proof. By Lemma 5, we have

2 (u(z) — u(y))? [z — yl d . .
L, w0 —weyawi < e 3 (222) @) A vdsay

Acwy J4Ax4A |z — yl¢

(u(z) — w(y))®
< c( oo+ > )/WM P (®(z) A ®(y))dzdy

AEW:r(A)<1h-  AeW:r(A)>
= I + 1l
If A€ W and r(A) < 1=, then |z —y| < 8r(4) < 1 for every z,y € 4A. So using (2), we
have
2
(u(z) — u
I < [ S (@) A o) dsdy
4AX4A h

Aew: r(A)<“§r

— O

-
< C/B(o ) B(m)(u(x) - u(y))zm1{1x—yl<1/r}(<1>(x) A ®(y))dzdy.

On the other hands, if A € W and r(A) > 1—(1);, then for every pair of points z,y in 44,
we have |z — y| < 8r(A) < 15z and

10

r

dist(z,8B(0,1)) > p(A) — 4r(A) > 10°r(A) >

Therefore, using (2) we have

1 — U
nm<c > /44x44 ! ()" L{jamyic 2y (2() A B(y))dzdy

— e
AEWr(A)>mT IT d

, — ul))2
<of (u(a) - uly)
B(0,1-12)x B(0,1-12) |z — yl|?

1je—yi< 21 (2(2) A B(y))dzdy.
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O

For our purpose, we need to construct another covering; For each r > 102, we let
V=V, :={B',---,B*"} be a maximum sequence of disjoint balls with radius g5 that
we can put inside B(0,1 — 12). Note that

10 ) 9
B(0,1-—) C |J2B c |J10°B C B(0,1~ >).

Bev Bev

For every y € B(0, 1), since Ugcy. 25 B C B(y, 4‘6%?)’

#{BeV: ye 2B} uy(B(0, 7)) < ma(B(y, 152))-

Therefore we have
sup #{BeV:ye2B} <3 (6)
veB(0,1)

Recall that p(B) denotes the Euclidean distance between the ball B and B(0,1)¢. For
balls A and B in V with dist(A4, B) > 4—}); and p(B) > p(A), we construct the path v4 g
starting from A in the following way. Let x4 be the center of A and zp be the center of
B. If |zg| > 1/(4007), then let yp = %IB so that zp is in the straight line segment
from yg to 0. Let ’yff,'B be the straight line segment from yg to xg. We also let 7,14’3 be
the shortest path from z,4 to yg with 7,14,3 C 9B(0,|z4]). In this case, v4 p is the union
of vj p and 74 p starting from x4 and ending at zp via yp. If |zp| < 1/(4007), let va 5
be simply a straight line segment between 0 and z 4.

For A, B € V with p(B) > p(A), let
V(A,B) = {CeV:2CNysp # 0}

and define the chain V(A, B) = (C(), C], s 7Cl(A,B)—l) with C() = A and CI(A,B)—I =B
similar to the chain in the Whitney-type coverings; Starting from the center of A, let yp
be the first point along v4 g which does not belong to 2C,. Define C; to be one of balls
in V(A, B) such that yo € 2C;. Inductively, having Cy,C}, - - - , Ck constructed, let y, be
the first point along 74 p which does not bhelong to U;“:OQCJ; Define Ci,; to be one of
balls in V(A, B) such that y, € 2Cy,1. When the last chosen is not B, we add B as the
last ball in V(A, B).
In the sequel, for every path 4 in R? we denote by |y| the length of ~.

Lemma 8 There exists a positive constant ¢ = c(d) such that for every r > 10? and every
A, B €V with p(B) > p(A), |7a.8| > & and dist(A, B) < -51—0,

4r
lz —y| > ;#V(A, B) > %#V(A B) > |vasl, for every (z,y) € 2A x 2B. (7)

In particular,

#V(A, B) < #V(A,B) <cr. (8)
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Proof. It is easy to see that the length of v p is less than or equal to 4|z — y| for every
(z,y) € A x B. Thus by using the fact that balls C’s in V(A, B) are disjoint and that

- Ucepa,p)C is within the y5--neighborhood of yap, we have

#V(A, B) - (4010r)d =c Z pa(C) < clz —y|rt

CcV(A,B)

1

and so #V(A,B) < cr|z —y|.
On the other hand, since 2C’s in V(A, B) covers 7Ya g, it is easy to see that

1
F = ' . dist
{z € B(0,1) : dist(x ')AB)<400 C U 3C

CeV(A,B)
and that )
pa(E) 2 CIW'A,BI(;)d—l-
Thus
clyaslr' ™ < uwa(BE) < ) 1a(3C) = #V(A, B)- (;155—)"
CEV(A,B)
and so |ya,B| < £#V(A, B). The lemma is proved. o

The proof of the next lernma. is similar to the one of Lemma 3. So we skip its proof.

Lemma 9 Let A,B € V with p(B) > p(A). There ezists a positive constant ¢ = c(d)
such that for every C;, Ciy1 = V(A, B) and for every u € L'(B(0, 1), ®dz),
1

Uge, — Uz, |? < ——C————/ / z) — u(y))*dzdy.
. l 2C; 2C1+l = Z (lf'd(2ci+j))2 2C,y; J2cis, ('LL( ) (y)) Y

J=0
Lemma 10 There ezists positive constant ¢ = c(d,a) such that for every r > 10% and

every A, B € V with p(B) > p(A) and |74 8| = &,

/ (u(z) — u(y))®

lx—yld
< oy Y [ [ LOZH0) nag) deay

CeV(A.B) |z —

1 (B(z) A B(y))dzdy

T—y|< T%h'}

Proof. Let | := #V(A, B) > 2. For every y € A and z € B,
(u(z) — u(y))*(2(z) A 2(y))

-1
< (L4 2)(@(z) A E(y)) (l“(l") — upal?® + |u(z) — u2pl* + Z luac, — uzcmlz)
=0
< 2] ( ®(z) A O(Y)|uly) — ugal> + (P(x) A B(y))|u(z) — uzp|?

-1
- 320t A, - ).

=0
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Note that from the construction of the chain V(A, B), it is easy to see that there exists a
constant ¢ independent of r such that for every A, B € V and C € V(A, B),

/ / (®(z) A B(y))dedy < c / / (®(z) A B(y)) dzdy.
24 J2B 2C; J2Ci 41
Obviously

/ / lu(z) — uas(B(x) A B(y))dady < pa(2B) / u(z) — uap[2®(z)dz
2A J2B 2B
and
/ / luly) — usal*(B(z) A B(y))dedy < pa(24) / lu(y) — uzalP®(y)dy.
2A J2B 2A

Thus we have, for every y € A and z € B,

[ ] @@ - uw)y@@ A o)y
2A J2B

=2 (/2,4 /23(4)(:5) A ®(y)|u(y) — upal’dedy + /2,4 /23(4)(:1:) A ®(y))|u(z) — uzs|*dzdy
-1
3 f2 ) /2 ((a) A B, e P dy)
< d (‘ud(ZA)l/ lu(y) — ug4l2®(y)dy + /J'd(2B)/ () — uppP®(z)dz

+ Zquc —u20+1|2 /c /C (D(x) A D( y))dxdy)

We apply Lemma 2 to the first two integrals in the above and apply Lemma 9 to the
integrals in the summation above. Then using the fact that the values of ® are universally
comparable on each A, B, C;, we get that

| [ e -se@@netdzy <t 3 [ () ) (@@)ne0)) dedy

CeV(A,B)
(9)
Note that, using (7), we hav= that for x € B and y € A with |z —y| < 100
1 l
100 > lz—yl > ¢~ > cll|z —w|, Vz,w € C € V(A, B). (10)

Therefore, from (9)-(10), we conclude that

/ / lx_yld n) (P(x) A D(Y)) 1,y <1 ydTdy

= CT '/M / (u(x) — U(y))Q(q’(-T) N PY) L jayi< k) 42
ia / / - u(u)))2 (8(z2) A B(w)) dzdw.

z—w|?
CEV(4 B)

IA
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o
Recall that [a] denote the largest integer which is no larger than a and define for C € V
C(V):={(A,B): A,B €V with p(B) > p(A) and C € V(A, B)}.
The following is a key lemma to count the number of chains containing each C € V.

Lemma 11 There ezists a positive constant ¢ = c(d) such that for every r > 10%, 30 <
I <[167] and C €V,

(11)

100 + 1 | 101 + d
: < < .
2000 < a8l < 56, } s el

# {(A,B) e CW):

Proof. Without loss of generality, we assume d > 2. (The case of d = 1 is easier.) Fix
r > 102,30 < |l < [167] and C € V. We will order (A4, B) € C(V) so that p(B) > p(A). Let
zc be the center of the ball C. If |zc| < 4/(4007), then |zg| < 6/(4007), so the number of
possible choice for B is less than ¢2¢. Since (100 + {)/(4007) < |v4 8] < (101 + 1)/(400r),
the number of possible choice for A is cl4~!, so (11) holds in this case. We thus assume
|zc| > 4/(4007). Define H,. := B(0,|zc| + 2/(4007)) \ B(0, |zc| — 2/(4007)). Since
20Ny #0, Hip, Nyas # 0. Let y be the first point along v4 5 (starting from zp)
which belongs to H,. N a,5. Also, let z4 5 be the first point along 4 5 (starting from
zg) which belongs to 2C, and let vg be the sub-path of 4 p starting from z4 g ending
at rB. .

Let m/(4007) < |yg| < (m + 1)/(4007) where 0 < m < [ 4 100 and consider the
following two cases:

)

C i - < .
ase (i) |yp — 245l oo

~ 4007’

Case (i) |yg — zaB| >

For Case (i), the number of possible choices for yj and B is less than ¢2¢ when C is given
and m is fixed. Once yj is fixed, the number of possible choice for A is c({ — m + 106)%71,
since the arclength between z4 g and x4 along the curve 4 g is at most m%&)’—r‘ﬂ and
s — za.B] < 5/(400r). Summing over m, the number of possible choices for A and B is

less than
14100

¢ (l—m+106)*" < I
m=0
For Case (ii), let « < m be such that 1/(4007) < |z4 —ys| < (¢+1)/(4007) where yp :=
:;—21'1'3. In this case, |y — y| < 4/(400r) and ¢ > 1. Since yg € 0B(0, |za|) C Hy., given
C, the number of possible choices for yg and B is less than ¢i?~2 when m and i are fixed.
Observe that given C and B, y5 and xp are determined. Since x4 € 0B(0, |z4]) C Hye,
given C and B, the number of possible choice for x4 is less than ¢((l — m +1+ 101)/3)%~?2
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when m and i are fixed. Summing over m and ¢, the number of possible choices for A and
B is less than

1+100 m m—i+ 101 d-2 14100 m
D I N e D D) DL PR U 0

m=1 i=1 m=1 i=1

We thus obtain (11). w

Lemma 12 There ezists positive constant ¢ = c(d, o) such that for every r > 102

Z /A s (u(z) — u(y))? 1. y<1 1 (2(2) A ®(y))dzdy

== ol )
duut(A B)>3L

r2

< ¢ /B e 8 T O T ey ($(2) A B(0)) dady.

Proof. For (z,y) € 2A x 2B with |z —y| < 155, it is elementary to check that |4 5| < =
Thus, by Lemma 10, we have

> [ (ulz lI_yI,,)) Lo yieot) (D(2) A B(y))dody

dist (A, B)> 4

_ 2
<e Y @wanyr Y [ [ D284 n ) dedy
A.BEV:p(B)2p(A) CeV(A.B) Y 2¢ J2C |$—yl
= <lva.Bl<ds
[167)
e |2 2 @B
CeV =30 (A.B)eC(V)

lOOitl <l'7A gl< lOO;ﬁlil

/ / U(T:z:::g) Lijeyis2y (P(2) A D(y)) dzdy.

Applying (7), we see that

~U(J))
[ R 1 e ) (@) A @) drdy
ABEV y
dist(A.B)> 4
(16 100 + 1 101 +
< 14 A.B) e C(V) : < |y <
< (X #{< mecm: < sl < 55t

2
/ / |,, - y|dy)) - gz 1y (2(@) A $(y)) dzdy.



129

By Lemma 11,
[167] [167)
100 + 1 101 + 1
4. A,B)eC(V): < < < I <er?
> -t {4 o) gt <hanl < gt} <3 P

Thus we conclude that

z ,/2,4 ~/2B (U(Tm) : Zl(‘;y)) | T <5 }(‘I)( z) A O(y))dzdy

dist(A,B)> &

8 cr2c2:/zc 2c (U(T:Z:Z;(f)) ia-yi<2)($(2) A 2{y)) dedy
(2%

2
: r
< ¢ '/3(0 B 1)(_u(:c) - u(y))2m1{|x~ylsé}(¢(x) A ®(y)) dzdy.

In the last inequality above, we have used (6). o

Proof of Theorem 1: By Lemma 7, it is enough to show the following claim; there
exists constant ¢ = ¢(d, ) > 0 such that for every r > 102 and u € L}(B(0,1), ®dz)

(u(z) — u(y))?
/B(O 119y B(0.1 19 [z — g 1{Ix~ylsﬁﬁ}(¢(5€) A ®(y))dzdy

IA

r2
‘ /J;(O 1)x B(0, 1)(u(m) B u(y)) |z |d1{lz—ylsé}(q)(x) A O(y))dzdy. (12)

Note that

/Bm 1-10)4 (0,1 10) (U/(:lr?): - Zl(dy)) Lije—yi< 1553 (2(2) A @(y))dzdy

IN

_ 2 b
/ /B . TT)J - Zld V) l{lm*ylS'—xﬁm}(q)(x) A 2y))dzdy
A,Bev

// (u(z) — u(y))® 1o yi<2y (B(z) A B(y))dzdy

|z — y|?

IA

dis t(A B)< 4

— u(y
-+ Z />A /28 |z — y|(d )) 1{lr yl<:3s5) (P(z) A (I)(y))d:vdy
A,Bev

dist(A4,B)> 4=

— wli))?
er” /B(o 1)x B((,1) (U(Tz — ZI(‘;/)) l“'t—y'gl-}(q)(:”) A ®(y))dzdy

IN

(u(z u(y))?
i 1 ®(x) A D(y))dzdy.
AEBE:V j)q /B [T -yl {la— y|<mﬂ}( (z) (y))dzdy

dist(4.8)> = e

In the last inequality above, we have used (6) and the fact r? > 1. Thus (12) follows from
Lemma 12. a
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