
A rectangular branch-and-bound algorithm
for solving a monotonic optimization problem

Paul K. Buckland, Takahito Kuno* and Iori Tsushima

Graduate School of Systems end Information Engineering

University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

1 Introduction

We consider a class of optimization problem, where the function being optimized is mono-
tonic in an arbitrary number of dimensions, and the feasible region is a polytope, i.e., a closed
polyhedral set. When every constraint function is monotonic, i.e., the coefficients are all non-
negative, the problem is called a monotonic optimization problem, for which Tuy et.al. have
developed a series of algorithms based on rectangular branch-and-bound with $\omega$-subdivision
[2, 3, 4]. Without assuming monotonicity of constraint functions, we propose here another
type of algorithm, based on rectangular branch-and-bound with bisection, and provide some
numerical results.

2 Problem setup

Let $f$ : $S\subset \mathbb{R}^{n}arrow \mathbb{R}^{1}$ be a continuous, nondecreasing function, i.e., for any $x^{1},$ $x^{2}\in S$,

$x^{1}\leq x^{\underline{\gamma}}\Rightarrow f(x^{1})\leq f(x^{2})$ .

The problem we wish to consider is to maximize $f$ on a polytope,

maximize
subject to

$f(x)$
(1)

$Ax\leq b$ ,

where $A\in \mathbb{R}^{;n\cross n}$ and $b\in \mathbb{R}^{;n}$ . Let us denote the feasible set by

$D=\{x\in \mathbb{R}^{n}|Ax\leq b\}$ ,
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which we assumed to bc bounded and have a noncmpty interi $or$. Wc also assume that the
domain $S$ of $f$ is large enough to contain $D$ in its inteiior.

3 Algorithm overview

As $D$ is assumed to be bounded, we can compute upper and lower bounds of $x_{j}$ on $D$ , using
any algorithm for linear programming:

$s_{j}^{0}< \min\{x_{j}|x\in D\}$ , $t_{j}^{0}= \max\{x_{j}|x\in D\}$ , $j=1,$ $\ldots,n$ .

Let us denote the rectangle with comer points $s^{0}$ and $t^{0}$ by

$M^{0}=(s^{0},t^{0}]=(s_{1}^{0},t_{1}^{0}]\cross\cdots\cross(s_{l}^{0},t_{n}^{0}]$ .

Clearly, $D$ is a subset of $M^{0}$ , so (1) is equivalent to

$P_{M^{0}}$

maximize $f(x)$

subject to $x\in D\cap M^{0}$ .

The rectangular branch-and-bound algorithm we propose subdivides $M^{0}$ into a set of rectan-
gles $c’\swarrow\swarrow=\{M^{k}|k\in If’\}$ satisfying

$\bigcup_{k\in X}M^{k}=M^{0}$
, $M^{A}\cap M^{t}=\emptyset$ if $k\neq\ell$ and $k,\ell\in\ovalbox{\tt\small REJECT}^{r}$ , (2)

where $M^{k}=(s^{k},t^{A}]$ , and calculates lower and upper bounds of an optimal solution of each
$P_{M^{A}}$ , where $P_{M^{A}}$ is defined as

$P_{M^{k}}$

maximize $f(x)$

subject to $x\in D\cap M^{k}$ .

Each $M^{k}$ is either fathomed, or else branched with the branches being added to $c^{}\ovalbox{\tt\small REJECT}$ . The
process continues until either an optimal solution to (1) is found, or a solution is found that is
within a predetermined tolerance of an optimal solution.

4 Auxiliary problem

To perform both branching and bounding operations, we first calculate a solution to an auxil-
iary problem.
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I.et $M$ be any rectangle in 11 and consider a subproblem of (rcl’target),

maximize
subject to

maximiie $f(x)$
$P_{M}$

subiect to $x\in D\cap M$ ,

where
$M=(s,t]=(s_{1},t_{1}]\cross\cdots\cross(s_{n},t_{n}]$ , $s_{f}<t;$ , $j=1,$ $\ldots,n$ .

Associated with $P_{M}$ , we define an auxiliary problem

minimize $\max\{t_{f}-x_{j}|j=1, \ldots,n\}$

subject to $x\in D$ (3)

$x_{j}\leq r_{i}$ , $j=1,$ $\ldots$ , $n$ ,

which is equivalent to a linear programming problem

minimlze $\backslash \nabla$

QM subject to Ax $\leq b$ ,

$0\leq t_{i}-x_{i}\leq\backslash \neg$ , $j=1,$ $\ldots,n$ .

Since $D$ is nonempty and bounded, QM has an optimal solution $(\overline{x}_{c}^{-}\neg)$ , and $\overline{x}$ naturally solves
(3).

5 Branching operation

Given an optimal solution $(\overline{x},:)$ to $Q_{M}$ , there are three possibilities:

$\bullet\backslash --\leq 0$,

$\bullet$ $–\backslash \geq t_{j}-s_{i}$ for $j=1,$ $\ldots,n$ , or

$\bullet$ $0<\overline{\sim_{\backslash }\sim}<t_{j}-s_{j}$ for some $j$ .

Proposition 5.1.

$(a)If_{\backslash }^{-}\vee\leq 0$ , then $M$ contains no feasible solution of (1) better than $\overline{x}$.

$(b)If_{\backslash }^{-}\sim\geq t_{j}-s_{j}$ for $j=1,$ $\ldots$ , $n$ , then $D\cap M=\emptyset$.

Proof (a) For any $x\in M$ , we have $x\leq t$ and so $f(x)\leq f(t)$ . We also have $t_{j}-\overline{x}_{j}\leq\overline{\prime\prime_{\backslash }\gamma}$ for all
$j$ , so $-\backslash \sim\leq 0$ implies that $t_{i}-\overline{x}_{i}\leq 0$ for all $j$ . Hence, $x\leq t\leq\overline{x}$ , and we have $f(x)\leq f(\overline{x})$ .

(b) Suppose there exists a point $x\in D\cap M$ . Then $s\leq x$ , so $t_{j}-x_{j}<t_{j}-s_{j}$ for all $j$ . Let
$\vec{\backslash }=\max\{t_{j}-x_{i}|j=1, \ldots,n\}$ , then $(x, \approx)$ is a solution to QM and we have $\backslash \neg<t_{j}-x_{j}$ for some
$j$ . $\square$
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Proposition 5.1 tells us we do not need to search $M$ for an optimal solution of (1) if $\overline{\backslash r}\geq$

$t_{f}-s_{j}$ for $j=1\ldots.,n$ , or if both $=\backslash ’\leq 0$ and $\overline{x}\not\in M$ . Ift $\leq 0$ and $\overline{x}\in M$ , thcn X is an optimal
solution to $P_{M}$ and we need not further search $M$ .

Suppose then that the following holds for some index $j$ :

$0<\overline{\sim_{\backslash }\sim}<t_{j}-s_{f}$ , (4)

and let
$\omega=t_{\backslash }^{-}-- e$ ,

where $e\in \mathbb{R}^{n}$ is the all-ones vector. For an arbitrary index $j$ satisfying (4), we have $s_{j}<\omega_{/}\cdot<$

$t_{i}$ . Therefore, we can divide $M$ along $x_{f}=\omega_{i}$ int two rectangles

$M_{j}^{-}=(s_{1},t_{1}]\cross\cdots\cross(s_{j-1},t_{j-1}]\cross(s_{j}, \omega_{j}]\cross(s$”$t_{j+1}]\cross\cdots\cross(s_{n},t_{n}]$

$M_{j}^{+}=(s_{1},t_{1}]\cross\cdots\cross(s_{j-1},t_{j-1}]\cross(\omega_{j},t_{j}]\cross(s_{\dot{\tau}+1},t_{j+1}]\cross\cdots\cross(s_{n},t_{n}]$ .

where we refer to $M_{j}^{-}$ and $M_{j}^{+}$ as children of $M$ generated via $(\omega,j)$ .
This procedure provides us with a branching operation. Removing $M$ and inserting $M_{j}^{-}$

and $M_{i}^{+}$ into $’\ovalbox{\tt\small REJECT}$ satisfies (2).

6 Bounding operation

Because $f$ is a nondecreasing function and $M=(s,t]$ , the values $f(s)$ and $f(t)$ provide lower
and upper bounds respectively of an optimal solution of $P_{M}$ . We can, however, calculate a
better upper bound.

Proposition 6.1. If $P_{M}$ has an optimal solution $x^{*}$ , then

$f( s)\leq f(x^{*})\leq\max\{f(v_{j})|j=1, \ldots.n\}$ ,

where
$v_{j}=(t_{1}\ldots.,t.;-\iota\omega_{j},t_{j_{T}1}, \ldots,t_{n})^{T}$ .

Proof The lower bound $f(s)$ follows from the definition of $M$ and the fact that $f$ is a nonde-
creasing function.

If: $\leq 0$ , then $t\leq v_{j}$ for all $j$ , and so $f(x)\leq f(t)\leq f(v_{j})$ for all $v_{j}$ and $x\in M$ . If $:>0$ ,

then for each $j$ we have either
$0<\overline{\backslash \vee}<t_{j}-s_{j}$ , $(\sim 5)$

or
$\overline{\tilde{6}}\geq t_{j}-s_{j}$ . (6)
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For each $j$ that satisfies (5), we define $M_{j}^{-}$ as in Section 5,

$M_{j}^{-}=(s_{1},t_{1}]\cross\cdots\cross(s_{j-1},t_{j-1}]\cross(s_{j}, \omega_{j}]\cross(s_{j+1},t_{j+1}]\cross\cdots\cross(s_{n},t_{n}]$ ,

where $\omega=t-\tilde{\overline{e}}$ , and for each $j$ that satisfies (6), we let

$M_{j}^{-}=\emptyset$ .

For either case, we define $M_{j}^{+}$ as in Section 5,

$M_{i}^{+}=(st]\cross\cdots\cross(s_{j-1},t_{j-1}]\cross(\omega_{j},t_{j}]\cross(s_{l+1},t_{j+1}]\cross\cdots\cross(s_{n},t_{n}]$ .

Note that
$M_{j}^{-}\cup M_{j}^{+}\supset M$ and $M_{j}^{-}\cap M_{j}^{+}=\emptyset$ . (7)

For any $j$ that satisfies (5), it is clear that $M_{j}^{-}=(s,v_{j}]$ and therefore

$f(x)\leq f(v_{j})$ , Vx $\in M_{j}^{-}$ ,

and since $M_{j}^{-}=\emptyset$ for all other $j$ , we have

$f( x)\leq\max\{f(v_{j})|j=1, \ldots,n\}$ , Vx $\in\bigcup_{j=1}^{n}M_{j}^{-}$ .

To complete the proof, we show that the set $M \backslash \bigcup_{j}=1^{n}M_{j}^{-}$ does not contain any feasible
points of $P_{M}$ . Let

$M’=M \backslash \bigcup_{j=1}^{n}M_{j}^{-}$ .

Then

$M’= \bigcap_{j=1}^{n}(M\backslash M_{j}^{-})$

$\subset\bigcup_{j=1}^{n}M_{j}^{+}$ (8)

$=(\omega,t]$ ,

where (8) follows from (7). Let $s’=\omega$ and $t’=t$ so that $M’=(s’, t’]$ .
Solving $P_{M’}$ we obtain an optimal solution $(\overline{x}’,F)$ . But $P_{M’}$ is the same problem as $P_{M}$

because $t’=t$, so:’ $=_{c}=$ , which means that

$t’-\overline{z}’e=t-\overline{\tilde{4}}e=\omega=s’$ .
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$r\Gamma hereforc^{Y\neg}\backslash -\gamma e=t’-s’$ , so $\backslash =’=t_{j}’-s_{j}’$ for all $j=1,$ $\ldots.n$ , and by Proposition $\backslash 5.1$ wc have
$D\cap M’=\emptyset$ . $\square$

7 Prototype algorithm

We are now ready to state a prototype algorithm. In the pseudocodc that follows, we use the
notation:

$\bullet$
$\swarrow\swarrow$ : set of $M^{k}$ yet to be fathomed.

$\bullet$ $\beta^{k}$ : upper bound of an optimal solution to $P_{M^{k}}$ .

$\bullet$ $\alpha$ : maximum of the the lower bounds of optimal solutions to $P_{M^{k}}$ where each $M^{k}$ has
been bounded.

$\bullet$ $x^{*}$ : current best solution to (1).

$\bullet$ $\epsilon$ : given positive tolerance.

algorithm prototype-oectangle-bb
begin

calculate $s^{0},t^{0};M^{0}:=(s^{0},t^{0}9]$ ;
$\sqrt{}\ovalbox{\tt\small REJECT}:=\{M^{0}\};\alpha:=f(s^{0});\beta^{0}:=f(t^{0})$;

while: $>\epsilon$

select a rectangle $M=(s,t]\in./\ovalbox{\tt\small REJECT};.,\swarrow t:=c^{J}\ovalbox{\tt\small REJECT}\backslash \{M\}$ ;
$/*$ Bounding operation $*/$

let $(\overline{x},:)$ be an optimal solution to $Q_{M}$ ;

if $\alpha<f(\overline{x}$ then begin $\alpha:=f(\overline{x};x^{*}:=\overline{x}$ end;

if: $< \max\{t_{j}-s_{j}|j=1, \ldots,n\}$ then begin
calculate $\beta^{M}$ $:= \max\{f(v_{f})|j=1, \ldots,n\}$ , an upper bound of $M$ ;
if $\beta^{M}>\alpha$ then begin

if $\alpha<f(s)$ then $\alpha:=f(s^{k})$ ;

$/*$ Branching operation $*/$

let $i$ be an index satisfying both: $=t;-\overline{x}_{i}$ and $s;<\overline{x}_{i}<t;$ ;

calculate $M_{i}^{-}$ and $M_{i}$ , the children of $M$ generated via $(\omega,i)$ ;
$c”\swarrow\swarrow:=./\ovalbox{\tt\small REJECT}\cup\{M_{i}^{-},M_{i}^{-}\}$ ;

$/*$ Pmning operation $*/$

$’\ovalbox{\tt\small REJECT}"$

end
end

end
end;
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Table 1: $CPl$ I seconds taken to find an optimal solution.

8 Numerical results

We ran the prototype algorithm on some instances of optimizing three nonlinear functions
over a set of randomly generated polytopes of dimension 2, 3, 4, and 5. The three functions
are

$\sum_{j=1}^{n}e^{\iota_{j}}$ , $\sum_{j=1}^{n}x_{j}^{3}$ , and $\sum_{i=1}^{\prime 1}\log x_{j}$ .

The algorithm performed in GNU Octave v3.2 [1] for Microsoft Windows, on a computer
with a 2.8 GHz Intel Core 2 Duo with 2 GB of memory. The results are presented in Table
1 Since this experiment is preliminary, we cannot draw any conclusion. But the time take to
find optimal solutions increases significantly as the number of dimensions increases, and so
we have to make numerous improvements in the algorithm.

9 Closing comments

We have presented a prototype branch-and-bound algorithm for solving a certain class of
monotonic optimization problem. Further consideration is now required to address the signif-
icant increase in time take to solve as the number of dimensions increases. One possibility for
addressing this problem is to implement sensitivity analysis, as successive problems QM differ
by only one linear constraint.

Convergence of the algorithm will be shown in a future publication on the topic.
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