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Introduction

Let G be a finite group and H*(G, k) be the cohomology algebra of G over an al-
gebraically closed field k of characteristic p > 0. It is well known that H*(G,k) is a
commutative noetherian graded k-algeba. In my talk we discussed properties of the as-
sociated primes in H*(G, k) and gave a slight generalizaton of a result of Green [7].

Theorem 0.1. If p is an associated prime in H*(G, k) with dim H*(G,k)/p = s, then
there exists an elementary abelian p-subgroup E of rank s of G such that the depth of
H*(Cg(E),k) is s and p = ResGE(\/ﬁ)

Conversely, let E be an elementary abelian p-subgroup E of rank s of G and assume
that the depth of H*(Cg(F), k) iss. Then ResG’E(\/—) is an assoctiated prime in H*(G, k).

The first assertion was known to be true using the notion of the Steenrod Algebra [4].We
shall give a different proof using arguments by Carlson [3]. And the second assertion is
known to be true if C¢(E) = G by Green [7].

1. The Rank-Restriction Condition

Let r be the p-rank of G. Let A, = A,;(G) be the set of elementary abelian p-subgroups
of G (1 =s=r)andset H; = Hs(G) = {Cg(E); E€ A; }. Andfor1 £ s <7,
let £; = Ks(G) be the family of subgroups K of G such that the Sylow p-subgroups of
Cg(K') are not conjugate to a subgroup of any of the groups in H,. (If such a subgroup K
does not exists, then we set s = { 1 }.) Notice that any elementary abelian p-subgroup
of K € K; have rank at most s — 1. For a nonempty family P of subgroups of G, set
ImTrpe = ) pep ImTrps and KerResgp = Npep Ker Resg p. Then by a theorem of
Benson (Theorem1.1 [1]) /Im Try, ¢ = \/Ker Resg ., .

Let ¢y, - -, ¢, be a homogeneous system of parameters in H*(G, k) satisfying the rank-
restriction condition. Then for 1 £ s < 7, Resg g((;) = 0 for any F € A,_;, we see that
(s € /KerResgx, = /ImTry, ¢. Thus replacing {;’s by a suitable p-power, we may
assume that ¢ € Im Try, ¢ for each 1 < s < r. Thus we always have a homogeneous sys-
tem of parameters (i, -+, (. in H*(G, k) satisfying the following conditions. See Lemma
8.5 [2] for the condition 3 and Lemma 3.4 and Theorem 9.6 [2] for the condition 4.
Condition 1.1.

(1) G, -+, ¢ satisfy the rank-restriction condition.
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(2) ¢ € Im Try,

(3) For each s and E € A, the restrictions of (1,--- ,(, to H*(E k) form a homo-
geneous system of parameters (and (i1, , (. restrict to 0). In particular, their
restrictions to H*(Cg(E), k) form a regular sequence for H*(Cq(E), k).

(4) If H*(G k) has depth s, then (1, - ,(s form a regular sequence.

(68) dim H*(G, k)/(Cotr, -+, ) s 5.

Lemma 1.2 (Carlson [3]). Let 0 # n € H*(G, k) be a homogeneous element.
Assume dim H*(G, k)/ Anng-gr)(n) = s. Then the following statements hold.
(1) Ift > 0, then for any H € H;, Resg u(n) = 0.
(2) For some H € Hs, Resg g(n) # 0.

Proof. Set a = Anng-(g x)(n).
1. Suppose that Resg x(n) # 0 for some H € H, witht > 0 and set b = Anng- g x)(Resg, #(7)).
Then as ResGH(b) C a,

s =dim H*(G,k)/a 2 dim H* G,k) Res;'y, (b) = dim H*(H, k)/b = depth H*(H, k
G,H

H has a central elementary abelian p-subgroup of rank ¢ and depth H*(H, k) =t by a
theorem of Duflot [5]. Thus we have a contradiction.
2. Suppose that Resg x(n) = 0 for all H € H,. Then by the statement 1, Resg z(n) = 0

for all H € H, with t 2 s. Thus Anng-Gk)(n) contains ¢, - -- , ¢, and
s = dim H*(G, k)/AnnH*(G’k)(n) § dim H*(G, ]C)/(CS, ML C,-) § s—1
This is a contradiction. O

2. Results of D.J. Green

In this section we shall prove some results on cohomology algebra of a finite group
having a normal elementary abelian p-subgroup. A discussion here depends heavily on
investigations by D.J.Green [7].

2.1. In this section let C be a finite group with a central elementary abelian p-subgroup
E of order p* (s > 0) and assume that a p-rank of C' is larger than s. Set C = C/E and
for a subgroup £ Cc H C C,set H= H/E C C. Set A= A;(E) be the set of elementary
abelian p-subgroups F of C containing E with [F': E] =pand H={ Cc(F);F € A }.
And let K be the family of subgroups K C C such that the Sylow p-subgroups of C¢(K)
are not conjugate to a subgroup of any of the groups in H (If H has a subgroup H with
p’-index in C, then we set K = { 1 } as before). Notice that if K € K, then any elementary
abelian p—subgroup of K is contained in E.

Let Fi,--- , Fy be a complete set of representatlves of the C-conjugacy classes in A.
Then F; C C (1 £4i =) are not C- conJugate let o] € H?(F;, GF(p)) ¢ H*(F,, k) be a

nonzero fixed element and set o; = (0;)?~'. Then using the Evens’ norm map, there can
be constructed a homogeneous element A € H*(C, k) such that Resz £() is a p-power
of o; for each i (see a discussion in Section 7.1 [7]). Now set xk = Infc,c(/\) € H*(C,k).
K is a primitive element. We know that Resc x(x) = 0 for any K € K and therefore,
replacing k by some power, we may assume that x € Im Try, ¢ (see a proof of Lemma 2.6

[7]). Among the result of D.J.Green [7], the following fact will be used in this note.
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Proposition 2.1. The homogeneous element k € H*(C, k) gwen above satisfies the fol-
lowing properties.

(1) ke ImTryc.

(2) Rescu(k) € H*(H, k) is a reqular element for every H € H.

(3) AnnH*(C,k)(n‘) = Ker ResC,H

(4) Suppose that &, --- ,& is a sequence of homogeneous elements of H*(C, k) whose
restrictions form a reqular sequence in H*(E, k). Then
(a) &, , & is a regular sequence for H*(C,k)/H*(C, k) - k. In particular, as a

k&1, -+, &l-module, H*(C,k)/H*(C,k) - k is free.

(b) KerRescy is a free k[, - - - , &]-module

(5) If the depth of H*(C, k) is s, then k is a zero divisor in H*(C, k). In particular,
Ker Resc # 0.

Proof. All the statements in the proposition except the assertion () in the statement 4 are
included in [7]. We shall prove the stetement 4, (b). Set R = k[£y,- -+ ,&]. Then H*(C, k)
is a free R-module by a result of Duflot [5]. We have the following exact sequence of
R-modules

0 — Anng.op (k) — H*(C, k) 2 H*(C, k) — H*(C,k)/H*(C, k)x — 0

and Anng-c) (k) = Ker Rescy, . Thus by the assertion (a), 4, it follows that Ker Resc x
is a projective R-module. So the result follows because a projective R-module is a free
R-module (see, for example, Theorem 2.5 [8]). O

2.2. In this section let IV be a finite group with normal elementary abelian subgroup E
of rank s and set C' = Cy(E). We use notations in the previous section for C. We shall
prove the following proposition.

Proposition 2.2. Assume that the depth of H*(C,k) is s. Then

(1) As a kN/C-module Ker Resc 3 contains a regular module kN/C.
(2) Ker Resc contains a nonzero N -invariant element.

Set £ = (a1, -+ ,as) , a; € H'(E, k) = Hom(E, k) be the element dual to a; and 3; =
B(a;), where § is the Bockstein map. We have a polynomial subalgebra k[3;, - - , 8] in
H*(E, k). Using Evens’ norm map, we obtain homogeneous elements &1, --- & € H*(C, k)
such that Resc,p(&) = 67" for some p-power p*. The subalgebra k[3:, - - - , 8] C H*(E, k)
is N-stable , but the subalgebra k[¢, - - - , €] € H*(C, k) may not be N-stable. For g € N,
let 07 = 3771 AijBj, Aij € GF(p) and consider the element & = &7 — (327_; Ai;€;). Then
Resc,g(§) = 0 and therefore Resc i (€) is nilpotent for any K € K because elementary
abelian p-subgroups of such K are contained in E. Hence by a theorem of Benson (The-
orem 1.1 [1]) some p-power of £ is contained in Im Try . Replacing the ¢/s by suitable
p-powers, we have proved the following.

Lemma 2.3. There exist homogeneous elements &; (1 £ ¢ < s) and a p-power p° satisfying
the following.

(1) Resce(8) = ﬂfh foreachi (1 =i =< s).
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(2) k[&1, -+, &]+Im Try ¢ ts N-stable and k&, &)+ Im Try o/ Im Try o = k[ﬁfh, e ,Li’fb]
as N-modules.

Proof of Proposition 2.2
Now we shall prove the proposition. First we prove the statement 1. Set Ro =

k| fb, . ,,be] and R = k[&1,- - ,&]. Then it is well known that the sequence &, -+, &s
is a regular sequence for H*(C, k) and H*(C, k) is a free R-module (see [5]).

By Proposition 2.1, Ker Resc3 # 0. Let n be the least integer such that V =
Ker Resc N H™(C, k) # 0. Then V is N-stable and any k-basis of V' can be extended to a
set of R-free generators of Ker Resg . Then by Lemma 1.2 , Proposition 2.1 and the fact
that Im Try ¢ annihilates Ker Resc 3, it follows that V- Ris N -stableand V- R =2 V & Ry
as N-modules. It is known that Ry contains kN/C as a kN/C-module (see [9]). Therefore
the statement (1) follows.

The statement 2 is an easy consequence of the statement 1.

3. Proof of Theorem 0.1

First we shall show that the first statement of the theorem hold. Let p be an associated
prime in H*(G, k) with dim H*(G,k)/p = s and take a homogeneous element 0 # 1 €
H*(G, k) such that Anng-gx)(n7) = a. Then by Lemma 1.2, there exists £ € A, such
that Resg cq(m)(n) # 0. Set C = Cg(E) , no = Resg,c(n) and we shall use the notations
in Section 2. Again by Lemma 1.2, 1y € Ker Resc .

Let a € H*(C, k) such that Resc g(a) = 0. Then a € /Ker Resc x by an argument in
Section 1 and therefore o € /Im Try . Thus a € \/7AnnH’(C,k)(7)o).

By a result of Benson in [1] there exists a homogeneous element 7 € H*(C, k) such that
Resy ¢ Tre n(7) is a regular element in H*(C, k) and restricts to zero on every subgroup
A of C with A 2 E, where N = Ng(E). Set 0 = Tr¢,(7) and consider the element
a = no. We shall show the following equality hold.

Resg,c(a) = no Resy ¢ Tre v (7)

As a = nTreg(r) = Tree(Resg,c(n)1) = Treg(no7), the Mackey double coset formula,
shows that

ReSG’C(Oz) = Z T‘I‘anc,c ReSCg’Cng((TIOT)g) = Z rPrcng,c ReSngcgmc('f]OTg)
geC\G/C geC\G/C

Suppose that C9”" % E. Then as Res¢ o1 (T) = 0, it follows that Res; oo (not) =0

1

and therefore Resce conc(nr?) = 0. If E C C9"' and E # E9 ', then F = EEY  is
elementary abelian, F 2 F and CNCY " = Cg(F). So Resg cnece-1 (10) = 0 and therefore
Rescs conc(nm?) = 0. Thus we have the desired equality. o # 0 and therefore p =
Anng-cx)(n) = Anng- k(). In these notations, we shall show that for p € H*(G, k),
pa = 0 if and only if Resg c(p)no = 0.

Assume that Resg c(p)no = 0, then Resg,c(p)nor = 0 and pa = Tre,g(Resg,c(p)noT) =
0. Thus we have p = Resg;}c(AnnH*(C,k)(nO)).
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As ResE}E(\/ﬁ) C \/ADHH*(c,k)(no), we have
ResalE(\/a) C RGS(_;}C(AHHH*(C’]C) (’f}o)) =p

As Resa}E(\/ﬁ) is a prime ideal and dim H*(G, k)/ Res;'5(v/0) = s, we can conclude that

Res;'z(v/0) = p and the first statement in the theorem follows.

We next shall prove the second statement in the theorem. Let E € A, and assume
that the depth of H*(Cg(FE), k) is s. Set C = Cg(F), N = Ng(F) and we shall use the
notations Section 2. As before let 7 be a homogeneous element in H*(C, k) such that
Resy,c Tron(7) is a regular element in H*(C, k) and restricts to zero on every subgroup
Aof C with A F,

By Proposition 2.2, there exists a non zero homogeneous element 7, € Ker Rescx
which is N-invariant. Notice that ResalE(\/_@) C v/Anng-(cx)(m). Consider the element
v = no7. Then an entirely same argument as above, we have

Resg,c Tre,c(v) = Resy,c Tren(7) = no Resny,c Tre n(T)
Set a = Treg(y) € H*(G, k). We shall show that for p € H*(G, k), pa = 0 if and only if

ReSG,C(p)’I)O = 0.
Assume that pa = 0. Then Tr¢ g (Resg,c(p)y) = 0. Hence Resg ¢ Tro g(Resg c(p)y) =
0. By the similar argument in the above we have that

Resc;,c T‘rc’G(ReSGyc(p)’y) = RGSN’C TI‘C,N(RGSG,C(p)")/) = (ReSG,C(p)nO) ResN,C TI”C’N(T)

As Resy,c Tre,n(7) is a regular element in H*(C, k), it follows that Resg c(p)no = 0.
Conversely, if Resg,c(p)no = 0, then Resg,c(p)y = 0 and pa = Trc,g(Resg,c(p)y) = 0.
A standard argument in commutative noetherian rings says that there exists § €

H*(G,k) such that n = ad # 0 and p = Anng.(gx(n) is a prime ideal. Then 7 =

Resg c(d)no # 0 and by an entirely same argument as before, we have

Anng. g x) (1) = Resg o(Anng-(cx(m))

As Resg 5(V0) C \/Anng-c)(no) C /Anng-cx (M), Resgp(v0) C \/Anng-gr(n) =
p and dim H*(G, k)/p = dim H*(H, k)/ Anng«ck)(m) = s. Thus Resg'z(v0) = p and
the second statement in the theorem follows.
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