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Spatially localized moving patterns such as traveling pulses and
spots are fundamental objects arising in many reaction-diffusion sys-
tems, which display a large variety of dynamical behaviors [6, 4]. In
two dimensions, traveling motion causes symmetry-breaking from the
circular shape of a standing spot, and traveling velocity causes defor-
mation to the elliptical shape. Recent developments in digital image
analysis show that a head-tail asymmetry in cell shape determines the
direction of motion [3]. Also, some sorts of interference wave pat-
tern occurs during spontaneous cell migration. These biological ex-
periments allow us to deduce the underlying mechanism of interplay
between the spot locomotion and shape-change dynamics.

In this paper, we consider the spot dynamics near a codimension
2 singularity for reaction-diffusion systems in which the associated
parameter values are located close to the drift and peanut bifurca-
tion points. Drift instability originates in the translation-free mode
and the associated deformation eigenvector represents a $D^{1}$ symmetry
breaking from a disk shape. Peanut one is by $D^{2}$ symmetry breaking
bifurcation, where $D$“ stands for the dihedral symmetry group. We
show that such a codimension 2 singularity can induce rotational mo-
tion of traveling spots –that is, rotational spot (RS) motion – in a
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class of reaction-diffusion systems. The occurrence of such a motion
is generic because the original partial differential equations (PDEs)
can be reduced to finite-dimensional ordinary differential equations
(ODEs) based on the method developed by [2], and the resulting ODEs
take a normal form of 1:2 mode interaction of cubic type. The infor-
mation about the original PDEs is renormalized in the coefficients of
the reduced system.

We analyze the reduced ODEs, and show that there exists a solution
in which both drift velocity vector and peanut deformation become
time-periodic functions that correspond to the rotational solution to
the original reaction-diffusion systems. We also discuss about the re-
lationship between the global bifurcational structures of the original
PDEs and the reduced ODEs, which sheds light on the origin of rota-
tional motion.

A general setup for the PDE system in a neighborhood of codimen-
sion 2 bifurcation point $\lambda^{c}=(\lambda_{1}^{c}, \lambda_{2}^{c})$ reads, with a small parameter
$\eta=(\eta_{1)}\eta_{2})$ as $\lambda=\lambda^{c}+\eta)$

$u_{t}=D \triangle u+F(u, \lambda)\equiv \mathcal{L}(u, \lambda^{c})+\sum_{i=1}^{2}\eta_{i}g_{i}(u)$ , (1)

where $g_{i}(i=1,2)$ is N-dimensional vector-valued functions. Let
$X:=\{L^{2}(\mathbb{R})\}^{N},$ $u(t, r)=(u_{1)}u_{N})^{T}\in X$ be an N-dimensional
vector and $F$ : $\mathbb{R}^{N}arrow \mathbb{R}^{N},$ $D$ be a positive diagonal matrix. We assume
that the nontrivial standing spot solution $S(r;A)$ exists at A $=\lambda_{7}^{c}$

$i.e.)\mathcal{L}(S,$ $\lambda^{c})=0$ .

Let $L$ be the linearized operator $L=\mathcal{L}’(S(r, \lambda^{c}))$ . $L$ has a codi-
mension 2 singularity at A $=\lambda^{c}$ consisting of drift and peanut bifur-
cations in addition to the translation-free $0$ eigenvalue; that is, there
exist three types of eigenfunctions $\phi_{i}(r),$ $\psi_{i}(r)$ and $\xi_{i}(r)(i=1,2)$

such that $L\phi_{i}=0$ , $L\psi_{i}=-\phi_{i)}$ and $L\xi_{i}=0$ , where $\phi_{i}=\partial S/\partial x_{i}$

and $\psi_{i}$ represents the deformation vector with Jordan form for the
drift bifurcation.
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Similar properties also hold for $L^{*}$ . That is, there exist $\phi_{i)}^{*}\psi_{i)}^{*}$

and $\xi_{i}^{*}$ such that $L^{*}\phi_{i}^{*}=0,$ $L^{*}\psi_{i}^{*}=-\phi_{i)}^{*}$ and $L^{*}\xi_{i}^{*}=0$ . Let $E=$

span $\{\phi_{i}, \psi_{i}, \xi_{i}\}$ and the eigenfunctions be normalized by $\langle\psi_{i},$ $\phi_{j}\rangle_{L^{2}}=$

$\langle\psi_{i},$ $\psi_{j}^{*}\rangle_{L^{2}}=0$ , and

$\langle\phi_{i)}\psi_{i}^{*}\rangle_{L^{2}}=\langle\psi_{i)}\phi_{i}^{*}\rangle_{L^{2}}=\langle\xi_{i)}\xi_{i}^{*}\rangle_{L^{2}}=\{\begin{array}{l}\pi i=j)0i\neq j.\end{array}$ (2 )

The motion of a spot solution $u$ is essentially described by the
two-dimensional vector functions of time $t,$ $p=(p_{1}, p_{2})$ denotes the
location of the spot; $q=(q_{1}, q_{2})$ denotes its velocity; and $s=(s_{1}, s_{2})$

denotes its deformation. For small $\eta$ , we can approximate a solution
$u$ by

$U= \tau(p)\{S(r)+\sum_{i=1}^{2}q_{i}\psi_{i}(r)+\sum_{i=1}^{2}s_{i}\xi_{i}(r)+\zeta^{T}\}$ , (3)

where $\tau(p)$ is the translation operator with $(\tau(p)u)(r)=u(r-p)$ .

The remaining term $\zeta^{T}$ belongs to $E^{\perp}$ . More precisely, $\zeta^{T}=q_{1^{2}}\zeta_{1}+$

$q_{2^{2}}\zeta_{2}+q_{1}q_{2}\zeta_{3}+s_{1^{2}}\zeta_{4}+s_{2^{2}}\zeta_{5}+s_{1}s_{2}\zeta_{6}+q_{1}s_{1}\zeta_{7}+q_{2}s_{2}\zeta_{8}+q_{1}s_{2}\zeta_{9}+$

$q_{2}s_{1}\zeta_{10}+\eta_{1}\zeta_{11}+\eta_{2}\zeta_{12}$ with $\zeta_{k}(k=1, \cdots 12)\in E^{\perp}$ are defined by
solutions of

$\{\begin{array}{l}L\zeta_{1}+\frac{1}{2}F’’(S)\psi_{1}^{2}+\psi_{1x_{1}}=\alpha\xi_{1)}L\zeta_{2}+\frac{1}{2}F’’(S)\psi_{2}^{2}+\psi_{2x_{2}}=-\alpha\xi_{1)}L\zeta_{3}+F’’(S)\psi_{1}\psi_{2}+\psi_{1x_{2}}+\psi_{2x_{1}}=2\alpha\xi_{2},\end{array}$ (4)

$\{\begin{array}{l}L\zeta_{4}+\frac{1}{2}F’’(S)\xi_{1}^{2}=0,L\zeta_{5}+\frac{1}{2}F’’(S)\xi_{2}^{2}=0,L\zeta_{6}+F’’(S)\xi_{1}\xi_{2}=0,\end{array}$ (5)

$\{\begin{array}{l}L\zeta_{7}+F’’(S)\psi_{1}\xi_{1}+\xi_{1x_{1}}=\beta\psi_{1}+\beta’\phi_{1)}L\zeta_{8}+F’’(S)\psi_{2}\xi_{2}+\xi_{2x_{2}}=\beta\psi_{1}+\beta’\phi_{1)}L\zeta_{9}+F’’(S)\psi_{1}\xi_{2}+\xi_{2x_{1}}=\beta\psi_{2}+\beta’\phi_{2)}\end{array}$ (6)
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$\{\begin{array}{l}L\zeta_{10}+F’’(S)\psi_{2}\xi_{1}+\xi_{1x_{2}}=-\beta\psi_{2}-\beta’\phi_{2)}L\zeta_{11}+g_{1}(S)=0,L\zeta_{12}+g_{2}(S)=0,\end{array}$ (7)

where $\alpha,$
$\beta$ , and $\beta’$ are constants satisfying the following conditions:

$\{\begin{array}{l}\langle F^{//}(S)\psi_{1}\psi_{2}+\psi_{1x_{2}}+\psi_{2x_{1}}-2\alpha\xi_{2)}\xi_{2}^{*}\rangle_{L^{2}}=0,\langle F^{//}(S)\psi_{1}\xi_{2}+\xi_{2x_{1}}-\beta\psi_{2}-\beta^{/}\phi_{2)}\phi_{2}^{*}\rangle_{L^{2}}=0,\langle F^{//}(S)\psi_{1}\xi_{2}+\xi_{2x_{1}}-\beta\psi_{2}-\beta^{/}\phi_{2)}\psi_{2}^{*}\rangle_{L^{2}}=0.\end{array}$ (8 )

Substituting (3) into (1) and taking the inner product with the
adjoint eigenfunctions, we obtain the principal part by the following
system:

$\{\begin{array}{l}\dot{z}_{0}=z_{1}-\beta’\overline{z}_{1}z_{2},\dot{z}_{1}=M_{1}|z_{1}|^{2}z_{1}+M_{2}|z_{2}|^{2}z_{1}+M_{3}z_{1}+\beta\overline{z}_{1}z_{2},\dot{z}_{2}=N_{1}|z_{2}|^{2}z_{2}+N_{2}|z_{1}|^{2}z_{2}+N_{3}z_{2}+\alpha z_{1^{2}}.\end{array}$ (9)

Here we introduce the complex variables $z_{0}=p_{1}+ip_{2)}z_{1}=q_{1}+iq_{2)}$

and $z_{2}=s_{1}+is_{2}$ . Note that $\zeta^{\uparrow}$ is necessary for computations of cubic
terms in (9). The constants $M_{i}$ and $N_{i}(i=1\cdots 3)$ are obtained from
the model system (1). The details are shown in [5].

The dynamics of (9) are essentially governed by the last two equa-
tions, exactly the same as the normal form obtained in the study of
resonance patterns in a bilayer fluid under $O(2)$ -symmetry operations
[1]. It is natural that the relationship between drift and peanut de-
formations viewed from a circular shape is analogous to the 1:2 mode
interactions. Letting $z_{1}=Qe^{i\phi}$ and $z_{2}=Se^{i\psi}$ , we rewrite (9) as

$\{\begin{array}{l}\dot{Q}=(M_{1}Q^{2}+ \text{鰯} S^{2}+ \text{払} )Q+\beta QS\cos\theta,\dot{S}=(N_{1}S^{2}+N_{2}Q^{2}+N_{3})S+\alpha Q^{2}\cos\theta,\dot{\theta}=-(2\beta S+\frac{\alpha Q^{2}}{S})s.n\theta,\end{array}$ (10)

where we set $\theta=\psi-2\phi$ . In addition to the trivial standing disk (SD)
spot of $Q=S=0$ , we have the fixed points of (10) with $|\cos\theta|=1$ as
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Figure 1: (a) 1:2 mode interaction in a rotational spot (RS) motion for ODE of (9).
(b) Bifurcation diagram of spot solutions for the ODEs of (10), where $N_{3}$ is fixed to
0.1. Stable RS motion appears via pitchfork bifurcations and connects between the
$TS_{0}$ and $TS_{\pi}$ branches. (c) Rotational spot (RS) motion in the PDE system: A spot
moves in a counterclockwise direction as observed in four superimposed snapshots.
The trajectory of the the centroid of v-component distribution is depicted by the
solid line.

the standing peanut (SP) spot of $Q=0$ and $S^{2}=-N_{3}/N_{1}$ . Hereafter
we use $(M_{3)}N_{3})$ as the new bifurcation parameter set.

The traveling spot solution of (11) bifurcates from the SD spot at
$M_{3}=0$ and from the SP spot at $M_{3}-M_{2}N_{3}/N_{1}\pm\beta(-N_{3}/N_{1})^{1/2}=0$ .

$\{\begin{array}{l}M_{1}Q^{2}+M_{2}S^{2}+M_{3}\pm\beta S=0,(N_{1}S^{2}+N_{2}Q^{2}+N_{3})S\pm\alpha Q^{2}=0,\end{array}$ (11)

where the traveling spot $TS_{0}$ with $\cos\theta=1$ (resp. $TS_{\pi}$ with $\cos\theta=$

$-1)$ corresponds to a propagation direction parallel (resp. perpendic-
ular) to the long axis of the deformed shape.

The solution of (11) becomes unstable when the coefficient of the
angle equation of (10) is positive. That is, the following solutions of
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(12) with $|\cos\theta|\neq 1$ emanate via pitchfork bifurcation,

$\{\begin{array}{l}Q^{2}=(-\frac{2\beta}{\alpha})S^{2}=(-\frac{2\beta}{\alpha})\frac{N_{3}+2M_{3}}{K},\cos^{2}\theta=\frac{(N_{3}(M_{2}-2\beta M_{1}/\alpha)-M_{3}(N_{1}-2\beta N_{2}/\alpha))^{2}}{\beta^{2}(N_{3}+2M_{3})K})\end{array}$ (12)

where $K=4\beta M_{1}/\alpha-2M_{2}-N_{1}+2\beta N_{2}/\alpha$ . Accordingly, we solve the
slave part in (9) as $z_{0}=(2/\alpha\beta)^{1/2}(\beta’Se^{i\theta_{0}}-1)e^{i\beta S\sin\theta t}/\sin\theta$ , where
$\theta_{0}$ is constant. This allows the occurrence of RS motion with radius
$|z_{0}|^{2}=2((\beta’S)^{2}-1)/(\alpha\beta\sin^{2}\theta)$ for $\cos\theta_{0}=(\beta’S)^{-1}$ . Since the phase
speed $\dot{\psi}=2\dot{\phi}=2\beta S\sin\theta$ becomes zero at the pitchfork bifurcation
point of $|\cos\theta|=1$ , where $Q$ and $\theta$ are continuous, clockwise and
counterclockwise rotational motions with an infinite radius are equally
possible to emanate from a straight motion.

As a representative model system fitting our framework, we employ
the following activator-substrate-inhibitor reaction diffusion system:

$\{\begin{array}{l}u_{t}= D_{u}\triangle u-\frac{uv^{2}}{1+f_{2}w}+f_{0}(1-u),v_{t}= D_{v}\triangle v+\frac{uv^{2}}{1+f_{2}w}-(f_{0}+f_{1})v,\tau w_{t}= D_{w}\triangle w+f_{3}(v-w).\end{array}$ (13)

As shown in Fig.l(c), by numerical simulations of (13), we find the
RS motion, i.e., its trajectory of centroid of v-component distribution
draws a circle. A spot maintains the shape and rotates with constant
velocity. The details are shown in [5].

In summary, we have studied the spot dynamics near the drift-
peanut codimension 2 singularity. Such instabilities are detected in
a class of three-component reaction diffusion systems. Their PDE
dynamics can be reduced to finite dimensional ODEs. Bifurcation
leading to the onset of RS motion of traveling spots in two dimensions
is analytically investigated in close analogy to the normal form of 1:2
resonance patterns.
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