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Abstract

In his famous cyclotomic paper [9] R.M. Wilson gave a $di.\parallel erence,$ $\int amily$ construction ovcr finite
fields which was subsequcnt,ly cxtcndcd to commut,ativc rings wit, $h$ unit,y by S. $b\backslash irino[5]$ .
Here we prove that the constructions of both Wilson and Furino are obtainable as special cases
of a more general difference family construction over groups $G$ admitting an automorphism group
with suitable properties. In particular, we prove that the existence of a Frobenius group with abelian
complement of order $k$ and kernel $G$ of order $v$ implies the existence of a disjoint $(v, k, k-1)$ difference
family over $G$ . Equivalently, it implies the existence of a $(v, k, k-1)$ near resolvable design admitting
$G$ as an automorphism group acting sharply transitively on the points.

1 Preliminaries
This paper gives some difference family constructions in groups $G$ exploiting suitable properties of $Aut(G)$ ,
the automorphism group of $G$ .
Our iriaiii rcsult contairis, as particulai casc,;, a diftcicncc family coiistructioii ovcr fmiitc ficlds by R.M.
Wilson [9] and its generalization over coinniutative rings with unity by S. Furino [5].
We sliall use the following exponential notation. For $g\in G$ and $\phi\in Aul(G)$ , the image of $g$ under $\phi$ is
denoted by $g^{\phi}.$ If

$\cdot$

$\Phi$ is a subset of
$\cdot$

$Aut(G)$ , then $g^{\phi}$ denotes the set $\{g^{\phi}|\phi\in\Phi\}$ . Hence, in the case where
$\Phi$ is a subgroup of $Aut(G),$ $g^{\Phi}$ is the orbit of $g$ under $\Phi$ .
An element $\phi\in Aut(G)$ is said to be semiregular on $G$ if it fixes only the identity element of $G$ . A subset
or multisubset $\Phi$ of

$\cdot$

$Aut(G)$ is semiregular on $G$ if every $\phi\in\Phi-\{id_{G}\}$ is such.
Let $G$ be a group and let $A$ be a subgroup of $Aut(G)$ . By $A.G$ we denote the group with elements in the
cartesian product set $A\cross G$ and coinposition law dcfincd by $t1_{1}c$ rulc

$((y, .l:).(\beta, y)=((y\beta, x^{\beta}y)\forall(y,\beta\in\Lambda_{:}\forall’\gamma,\cdot,$ $y\in G$ .

If $\Lambda$ is semiregular on $G$ , then $\Lambda.G$ is said to be a Frobenius group with kemel $G$ and complement $\Lambda$ .

As a classical example of Frobenius group we may take the group of affinities of a fiilite field $F_{q}$ , namely
the group $\Lambda.G$ where $G$ and $\Lambda$ respectively are the additive and multiplicative group of $F_{q}$ .
For general background on Frobenius groups see e.g. [7].

Throughout the paper, every union will be understood as multiset union and the union of $\mu$ copies of a
multiset $A$ will be denoted by $\mu A$ .
Given a subset $B$ of a group $G$ , by list of differences from $B$ one means the multiset

$\triangle B=\{bc^{-1}|l), r:\in B, l)\neq c:\}$ when $G$ is multiplicative
or the multiset

$\triangle B=\{b-cb, c\in B, b\neq c\}$ wlien $G$ is additive.
Let $R$ be a ring with unity and let $U(R)$ be the group of units of $R$ . Of course $u\in U(R)$ may be
considered as an automorpbism of the additive group of $R$ , the action of $u$ being defined by $r^{\tau\iota}=ru$ for
any $r\in R$ . We note that if $B$ is a subset of $U(R)$ , then to speak of

$\cdot$

$\Delta B$ is ambiguous. In fact in this case
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both of the abovc cxpressions of $\triangle B$ make sense. To avoid this ambiguity, we denote \dagger hcm by $\triangle_{U}B$ and
$\triangle_{R}B$ respectively.
We point out the following elementary observations.

Proposition 1.1 Let $I\dagger$ be a rnng with unity. If $B$ is a subset of $U(R)$ such that $\Delta_{R}B$ is also contained
in $U(R)$ , then $\triangle_{U}B$ is semiregular on the additive group of $R$ .

Proof. An eleinent of $\triangle_{U}B$ is of the form $bc^{-1}$ with $b$ and $c$ distinct elements of $B$ . If we have
$r.(bc^{-1})=x$ for some $J:\in R$ , then we have $Jb=$ rc and hence $x(b-c)=0$ . But $b-(\in\Delta_{R}B\subset U(R)$ so
that we necessarily have $x=0$ , i.e. $x$ is the identity element of the additive group of $R$ . $\square$

Proposition 1.2 If $\Phi$ is a subset of a group $G$ such that $\triangle\Phi$ is semiregular on $G$ , then any set of the
form $(/^{\Phi}$ with $g$ a nonidentity element of $G$ has the same size as $\Phi$ .

Proof. It suffices to notc that if $g$ is a non-identity element of $G$ , then for distinct elements $\phi$ and $\psi$ of
$\Phi$ we have $c/^{\phi}\neq c^{\psi}$ otherwise $\phi\psi^{-1}$ should bc an elcment of $\Delta\Phi$ fixing $g$ . $\square$

If $\mathcal{F}$ is a family of subsets of a group $G$ then the list $\Delta \mathcal{F}$ ol’ $di[r_{erences}$ from $\mathcal{F}$ is defined by
$\triangle \mathcal{F}=\bigcup_{F^{\backslash }\in \mathcal{F}}\Delta F^{1}$

.

A $(v, k, \lambda)$ difference fainily (briefly DF) over a group $G$ of order $v$ is a multiset $\mathcal{F}$ of k-subsets of $G$ called
base blocks such that $\triangle \mathcal{F}$ covers $G-\{1\}$ exactly $\lambda$ times. In other words, each element $x$ of $G-\{1\}$ is
representable in exactly $\lambda$ ways in the form $x=ab^{-1}$ with both $a$ and $b$ belonging to some base block.
$\llcorner(\grave{\backslash }ucIl$ a diHereiice fai iily geiierates the $2-(v, k. \lambda)$ design $(G, dev\mathcal{F})$ where $dev\mathcal{F}$ is the development of $\mathcal{F}$ ,
i.c. tlic inultisct dcfincd by $d_{f^{}Il}\mathcal{F}=\{F+(’|F\in \mathcal{F},$ $( \int\in G\}$ .
$\Lambda$ diffcrcncc $f_{r}^{l}\iota mi|Y$ is said t,o bc disjoint when its base blocks are pairwise disjoint,

A group of multipliers of a difference family $\mathcal{F}$ over a group $G$ , is a subgroup $\Lambda 1$ of $Aut(G)$ such that
$F^{\mu}\in dev\mathcal{F}$ for any $F\in \mathcal{F}$ and any $\mu\in$ AI.
It is straightforward to check that if $M$ is a group of multipliers of $\mathcal{F}$ , then $M.G$ is an autoinorphisin
group of (G. $(l_{C^{0}11}\mathcal{F})$ .

For general background on difference $f\cdot amilies$ one can see [1] or [2].

2 The theorem of Wilson
In his fundamental cyclotomic paper [9], R.M. Wilson proved the following result.

Theorem 2.1 Let $k>1$ and $\lambda>0$ be integers such that $2\lambda$ is a multiple of either $k$ or $k-1$ . Then, for
prime powers $q\geq k+1$ , the necessary condition

$\lambda(q-1)\equiv 0(mod k(k-1))$

for the existence of a $(q, k, \lambda)- DF$ is als $0$ sufficicnt.
Observe that by replicating $m$ times each btise block of a $(v, k, \lambda)- DF$ one obviously obtains a $(v, k, \lambda m)-$

DF. With this in mind, it is easy to recognize that the above theorem may be equivalently formulated as
follows,

Theorem 2.2 For any prime power $(]\geq k+1$ there exist $(q, k. c(k-1))-$ and $(q, k+1, e(k+1))\prime DF$ ’s where
$e= \frac{k}{qcd(q-1,k)}$ . Also, in the case of both $q$ and $k$ odd, there exist $(q, k. \frac{e(k-1)}{2})-$ and $(q. k+1, \frac{e(k+1)}{2})- DF’ s$ .

Sketch of proof. Let $F$ be a union of $e$ distinct cosets of the group, say $H$ , of $\frac{k}{e}$ -roots of unity and let
$S$ be a set of representatives for the cosets of $H$ . Then, $\mathcal{F}=\{sF|s\in S\}$ and $\mathcal{F}’=\{sF\cup\{0\}|s\in S\}$

are $(q, k, e(k-1))$ -and $(q, k+1, e(k+1))- DF$ ’s respectively.
When both $q$ and $k$ are odd we may take $S$ of the form $S_{1}\cup S_{2}$ with $|S_{1}|=|S_{2}|= \frac{|S|}{2}$ . For $i=1,2$ the
families $\mathcal{F}_{i}=\{sF|s\in S_{i}\}$ and $\mathcal{F}_{i}’=\{sF^{\urcorner}\cup\{0\}|s\in S_{t}\}$ are $(q, k, \frac{e(k-1)}{2})-$ and $(q, k+1, \frac{e(k+1)}{2})- DF’ s\square$

respectively.

Note, in particular, that applying the above theorem with $(J\equiv 3(mod 4)$ and $k= \frac{q-1}{2}$ one recovers the
$(q, \frac{q-1}{2}, \frac{q-3}{4})$ Paley $diJJ^{\cdot}e\tau e\tau\iota ce$ sets.
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3 The theorem of Furino
The $diHc\iota$ cnce fainily construction ovcr finite ficlds by R.M. Wilsoii was extendcd to coimnutativc rings
with unity by S. Furino [5]. His main result may be reformulated as follows.

Theorem 3.1 Let $R$ be a commutative ring with unity, $|R|=v$ , and let $F$ be a k-subset of $U(R)$ which
is union of $e$ distinct cosets of a subgroup $B$ of $U(R)$ $($hence $|B|=ke)$ . Let us denote by $S$ a complete
system of representatives for the B-orbits on $R-\{0\}$ (that is, $S$ is a subset of $R$ with the property that
for any $r\in R-\{0\}$ there is exactly one pair $(s, b)\in S\cross B$ such that $r=sb$). Then, in the hypothesis
that $\triangle_{R}F\subset U(R)$ , we have that the families $\mathcal{F}=\{sF|s\in S\}$ and $\mathcal{F}’=\{sF\cup\{0\}|s\in S\}$ respectively
are $(v, k, e(k-1))-$ and $(v, k+1, e(k+1))- DF$ ’s over the additive group of $R$ .

Furino also observes that when $k$ is odd and $R$ has no involutions, then $\mathcal{F}$ and $\mathcal{F}’$ are splittable into two
$(v, k, \frac{e(k-1)}{2})-$ and $(v, k+1, \cdot\frac{e(k+1)}{2})$ difference families respectively.

4 A more general construction
We will recover both the constructions of Wilson and Furino as particular cases of the following new
general construction.

Theorem 4.1 Let B. $G$ be a Frobenius group with abelian complement $B$ and kemel $G$ of order $v$ .
Let $C$ be the centralizer of $B$ in $Aut(G)$ and let $\Phi$ be a k-subset of $C$ which is union of $e$ distinct cosets
of $B$ in $C$ and such that $\triangle\Phi$ is semiregular on $G$ .
Then there exist $(v_{j}k, e(k-1))-$ and $(v, k+1, e(k+1))- DF$ ’s over $G$ .
With the additional hypothesis that both $v$ and $k$ are odd and that $G$ is abelian, the above $diJJe?\cdot ence$

families split into two $(v, k, \frac{c(k-1)}{2})-$ and $(v, k+1, \frac{c(k+1)}{2})$ difference families, respectively.

Proof. Let .5 be a complete system of representatives for tlie $Fi$ -orbits on $G-\{1\}$ . We prove that
$\mathcal{F}=\{s^{\Phi}|s\in S\}$ is a $(v, k, e(k-1))- DF$ over $G$ .
First of all. siiicc $\triangle\Phi$ is scinircgular on $G$ , by Proposition 1.2, any meinber of $\mathcal{F}$ actually is a k-subset of
$G$ .
By definit ion. we have $\Phi=\Theta B$ where $\ominus$ is a set, ot‘ $e$ distinct representatives for tlie cosets of $B$ in $C’$ .
It is easy to see that for any $s\in S$ we have

$\triangle.\backslash ^{\Phi}=(’\tau,\theta)\in\Phi\cross\epsilon\bigcup_{\phi\neq\theta},$

$[.s^{\phi}(,b^{-1})^{\theta}]^{B}$

Hence we have:

$\Delta \mathcal{F}=\bigcup_{s\in S}\Delta s^{\Phi}=(^{_{J}},\theta)\in 4\bigcup_{\phi\neq 0}$

x6

$\bigcup_{s\in S}[s^{\phi}(s^{-1})^{0}]^{B}$

Now note that for any fixcd pair $(\phi, \theta)\in\Phi\cross\Theta$ with $\phi\neq$ $()$ the list $\{\backslash \backslash ^{\phi}(s^{-1})^{\theta}|s\in S\}$ is a complete
system of representatives for the B-orbits on $G-\{1\}$ . To show this, it suffices to prove that if $s$ and
$l$ are distinct elements of $S$ , then $s^{\phi}(s^{-1})^{\theta}$ and $t^{\phi}(l^{-1})^{0}$ belong to distinct B-orbits. $\ln$ fact, assuming
the contrary, we would have $[s^{\phi}(s^{-1})^{0}]^{\beta}=t^{\phi}(t^{-1})^{0}$ for some $\beta\in B$ so that, taking into account that
$\beta\phi=\phi\beta$ and $\theta\beta=\beta\theta$ since $\Phi$ is contained in the centralizer of $B$ , we have $(t^{-1}s^{\beta})^{\phi}=(t^{-1}s^{\beta})^{\theta}$ . Then,
since $B$ is semiregular on $G$ and $\phi\neq\theta$ , we have $t^{-1}s^{\beta}=1$ , i.e., $s^{\beta}=t$ which, by definition of $S$ , would
imply $s=t$ , a contradiction.
By the above paragraph, for any pair $(\phi, \theta)\in\Phi\cross\ominus$ with $\phi\neq\theta$ we have $\cup[s^{\phi}(s^{-1})^{0}]^{B}=G-\{1\}$ . Hence,

$s\in S$

since $|\{(\phi, \theta)\in\Phi\cross\Theta|\phi\neq\theta\}|=e(k-1)\dot{\prime}$ we have $\Delta \mathcal{F}=e(k-1)(G-\{1\})$ , i.e. $\mathcal{F}$ is a $(v, k, e(k-1))-$
differeiice farnily over $G$ .
Now, let $\mathcal{F}’$ be the family obtained by appending the identity element of $G$ to each base block of $\mathcal{F}$ ,
namely $\mathcal{F}’=\{.s^{\Phi}\cup\{1\}|s\in S\}$ . We have:
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$\triangle \mathcal{F}’=\Delta \mathcal{F}\cup\bigcup_{s\in S}\{s, s^{-1}\}^{\Phi}$

Recalling that $\Phi=B\Theta$ , we have $\bigcup_{s\in S}s^{\Phi}=\bigcup_{s\in S}\bigcup_{\theta\in\Theta}(s^{\theta})^{B}$

On t,he other hand it is casy to see that for any fixed $\theta\in\Theta$ the list $\{.s^{\theta}|s\in S\}$ is a complete system of
representatives for the B-orbits on $G-\{1\}$ so that $\bigcup_{s\in 6}(s^{\theta})^{B}=G-\{1\}$

. Hence, since $|\Theta|=e$ , we have

$\bigcup_{s\in S}\bigcup_{\theta\in\Theta}(s^{\theta Be})=(G-\{1\})$
.

It follows that $\bigcup_{s\in S}\{s, s^{-1}\}^{\Phi}=2e(G-\{1\})$ and hence that $\Delta \mathcal{F}’$ covers $G-\{1\}$ exactly $e(k+1)$ times.

Now assume that $kv$ is odd and that $G$ is abelian. By the first hypothesis we can choose as system
$S$ of representatives for the B-orbits on $G-\{1\}$ a set of type $S_{1}\cup S_{2}$ with $|S_{1}|=|S_{2}|= \bigcup_{2}$ and
$S_{2}=\{s^{-1}|s\in S_{1}\}$ .
This is because if $s\in G-\{1\}$ , then $s$ and $s^{-1}$ are in distinct B-orbits otherwise we should have $s^{\beta}=s^{-1}$

for a suitable $\beta\in B$ . This would imply $s=(s^{\beta^{-1}})^{-1}$ , i.e. $s^{\beta^{-1}}=s^{-1}$ so that, since $B$ is semiregular on
$G$ , we would have $\beta=\beta^{-1}$ . Hence $\beta=id_{C}$ or $\beta$ is an involution. But $\beta=id_{G}$ would iinply $9=\backslash ^{-1}$

which is absurd since $n$ is odd and $\beta$ cannot be an involution since $k$ is odd.
We have $\mathcal{F}=\mathcal{F}_{1}\cup \mathcal{F}_{2}$ where, for $i=1,2,$ $\mathcal{F}_{i}=\{s^{\Phi}|s\in S_{i}\}$ . Also, since $G$ is abelian, we have $\Delta \mathcal{F}_{1}=\Delta \mathcal{F}_{2}$ .
Then, since $\Delta \mathcal{F}=r(k-1)(G-\{1\})$ , we have $\Delta \mathcal{F}_{i}=e(k-1)/2(G-\{1\})$ for $i=1,2$ . This means that each
$\mathcal{F}_{i}$ is a $(v, k, \frac{r(k-1)}{2})- DF$ .

$AnalogouslyDF$’ it is easy to see that each of the families $\mathcal{F}_{1}’=\{s^{\Phi}\cup\{1\}|s\in\iota S_{i}\},$ $i=1,2$ is a $(v, k+1, \frac{e(k+1)}{2})-\square$

Taking into account of Proposition 1.1, it is easy to see that the theorem of Furino is a particular
case of the above theorem.

Applying Theorem 4.1 with $B=\{1\}$ we get the followiiig corollary.

Corollary 4.2 If $G$ is a group of order $v$ admitting a k-set $\Phi$ of automorphisms such that $\triangle\Phi$ is semireg-
ular on $G$ , then there exists a $(v, k, k(k-1))- DF$ over $G$ .

Furino states the above corollary only in the case where $G$ is the additive group of a commutative ring
$R$ with unity and $\Phi$ is a subset of $U(R)$ .

Corollary 4.3 Let $A.G$ be a Frobenius group with kemel $G$ of order $|l$ and abelian complement $A$ of
order $\geq k$ . Then there exist $(v, k, e(k-1))-$ and $(|),$ $k+1,$ $(’(k+1))- diff(,r(,nc($: families over $G$ where
$e= \frac{k}{gc(l(k,|\Lambda|)}$ .

Proof. It suffices to apply Theorein 4.1 takiiig as $B$ a subgroup of $A$ of order $\frac{k}{e}$ (which exists since $A$

is abelian and 5 divides its ordcr) and t,aking as $\Phi$ a union of $c$ distinct cosets of $B$ in $A$ . $\square$

Note that taking $G$ and $A$ as the additive and the multiplicative groups of a finite field, the above
corollary gives exactly our equivalent reformulation of Theorem 2.2 of Wilson’s Theorem 2.1.
A particular but remarkable case of Corollary 4.3 is the following.

Corollary 4.4 If A. $G$ is a $F\succ obenius$ group with $ke$rnel $G$ of order $v$ and abelian complement $A$ of order
$k$ , then there exist $(v. k, k-1)-$ and $(v, k+1, k+1)$ -difference families over $G$ .

The following proposition, where we use the same notation as in Theorem 4.1, gives us more inforinations
about the automorphism group of the designs associated with the obtained $(v, k, e(k-1))$-and $(v,$ $k+$

$1,$ $e(k+1))- DF’ s$ .

Proposition 4.5 Let $M$ be the normalizer $of<\Phi>in$ $Aut(G)$ . Then both $(G, dev\mathcal{F})$ and $(G, dev\mathcal{F}’)$

admit $M.G$ as an automorphism group.
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Proof. Let us consider, for instance, the design $(G, dev\mathcal{F})$ . Let $s^{\Phi}$ be a block of $\mathcal{F}$ , let $\mu\in M$ , and let $f$

be the element of $S$ representing the B-orbit containing $s^{\mu}$ . Since $M$ normalizes $<\Phi>$ , we have $\Phi\mu=\mu\Phi$

so that $(s^{\Phi})^{l^{4}}=(s^{1})^{\Phi}=t^{\Phi}$ which also is a block of $\mathcal{F}$ . It follows that $M$ is a group of multipliers of $\mathcal{F}$

and hence that $M.G$ is a group of automorphisms of $(G_{i}dev\mathcal{F})$ . $\square$

5 An application to near resolvable designs
We recall that a $(v, k, k-1)$-near resolvable design $(t)I^{\cdot}]cfly$ NRB) is a triplc $(V, \mathcal{B}, \mathcal{R})$ where $(V, \mathcal{B})$ is a
$2-(v, k, k-1)$ design and $\mathcal{R}$ is a partition of $\mathcal{B}$ (near resolution) into $v$ classes (near parallel classes)
each of which consists of $\frac{v-1}{k}$ pairwise disjoint blocks.

An automorphism group of such an NRB is a group of permutations on $V$ leaving invariant $\mathcal{R}$ . We
say that $(V, \mathcal{B}, \mathcal{R})$ is regular over a group $G$ if it admits $G$ as an automorphism group acting regularly on
the points.

It is an easy matter to prove the following proposition.

Proposition 5.1 There eststs a regular $(v, k, k-1)- NRB$ over a group $G$ if and only if there exists a
disjoint $(v, k, k-1)- DF$ over $G$ .
More precisely, the regular $(v. k, k-1)- NRB$ ’s over $G$ are, up to isomorphisms, all the triples of type
$(G, dev\mathcal{F}, \mathcal{R})$ where $\mathcal{F}$ is a disjoint $(v, k, k-1)- DF$ and $\mathcal{R}=\{\{F^{\urcorner}g|F\in \mathcal{F}\}|g\in G\}$ .

In view of the above proposition it is natural to say that a disjoint $(v, k, k-1)- DF$ is the starter parallel
class of its associated NRB.
Since the $(v, k, k-1)- DF$ ’s of Corollary 4.4 are disjoint (their $b_{c}re$ blocks are the A-orbits on $G-\{1\}$ )
we may state the following theorem.

Theorem 5.2 If there exists a Rrobenius group with abelian complement $A$ of order $k$ and kernel $G$ of
order $|)$ , then there exists a regular $(\uparrow),$ $k,$ $k-1)- NRB$ over $G$ admitting the set of A-orbits on $G-\{1\}$ as
a starter near parallel class.

As a consequence, if $v$ is an integer of the form $q_{1}q_{2}\ldots q_{n}$ where the $q_{i}$ ’s are prime powers $\equiv 1(mod k)$

then there exists a regular $(v, k, k-1)$-NRB over the additive group $G(v)$ of the Galois ring of order $v$ ,
that is the direct product of the fields of orders $q_{1)}\ldots,$ $q_{n}$ . In fact it is easy to see that $G(v)$ possesses a
semiregular group of automorphisms of order $k$ .
This has been already observed by Furino [6] and it may be obtained also combining the theorem of
Wilson 2.1 with a recursive technique making use of the concept of difjerence matrix [3]. But Theorem
5.2 allows to get many new NRB’s, even over nonabelian groups. In fact, it is known that there exist
Frobenius groups with abelian complement and nonabelian kernel (see, e.g. [8]).

Example 1.
Let $G=Z_{4}\cross Z_{4}$ and let $\alpha$ be the automorphism of $G$ defiiied by $\alpha(x, y)=(y, 3x+3y)$ . One can see
that the group $A=\{id, \alpha, \alpha^{2}\}$ generated by $\alpha$ acts semiregularly on $G-\{0\}$ so that $A.G$ is a Frobenius
group.
Applying Theorem 5.2 we have that the set of A-orbits on $G-\{0\}$

$\mathcal{F}=\{01_{i}13,\cdot 30\},$ $\{10,03,31\},$ $\{11,12,21\},$ $\{20_{i}$ 02.22 $\}$ , $\{$ 23, 33, $32\}\}$

is the starter near parallel class of a regular (16,3,2)-NRB over $G$ .

Example 2.
Let $G$ be the additive group of the ring $R=M_{2\cross 2}(Z_{2})$ of square matrices of order 2 with entries in

$7_{2}J$ . Let $A=\{(\begin{array}{ll}1 00 l\end{array}),$ $(\begin{array}{ll}0 ll l\end{array}),$ $(\begin{array}{ll}1 1l 0\end{array})\}$ be the subgroup of $U(R)$ generated by $(\begin{array}{ll}0 11 1\end{array})$ . One can
check that $A$ is semiregular on $G$ so that $A$ $G$ is a Frobenius group.
Then, applying Theorem 5.2 we have that
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$\mathcal{F}=\{\{$ $(\begin{array}{ll}l 00 1\end{array}),$ $(\begin{array}{ll}0 l1 1\end{array}),$ $(\begin{array}{ll}l 1l 0\end{array})\},$ $\{$ $(\begin{array}{ll}0 l1 0\end{array}),$ $(\begin{array}{ll}l l0 l\end{array})$ $(\begin{array}{ll}l 0l l\end{array})\}$ ,

$\{(\begin{array}{ll}0 l0 l\end{array})$ $(\begin{array}{ll}l l1 l\end{array})\cdot(\begin{array}{ll}l 01 0\end{array})\}\{$ $(\begin{array}{ll}0 l0 0\end{array}),$ $(\begin{array}{ll}l l0 0\end{array}),$ $(\begin{array}{ll}l 00 0\end{array})\}$ ,

$\{(\begin{array}{ll}0 00 l\end{array}),(\begin{array}{ll}0 01 1\end{array}),(\begin{array}{ll}0 01 0\end{array})\}\}$

is the starter near parallel class of a regular (16,3,2)-NRB over $G$ .

We finally poiiit out that inaiiy regular $(q^{2}, k, k-1)- NRB$ ’s over $F_{q^{2}}$ with $k$ a multiple of $q-1$ are
obtainablc using a dift’erencc tainily construction givcn ill $|4]$ .
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