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THE LIE MODULE OF THE SYMMETRIC GROUP

KARIN ERDMANN AND KAI MENG TAN

The Lie module of the symmetric group &,, appears in many contexts; in
particular it is closely related to the free Lie algebra. One possible approach
is to view it as the right ideal of the group algebra F'G,,, generated by the
‘Dynkin-Specht-Wever element’

wn = (1 —c2)(1 —c3)---(1—cn)

where ci is the k-cycle (1,2,...,k). We write Lie(n) = w, F'G,, for this Lie
module.

Our main motivation comes from the work of Selick and Wu [SW1]. Their
problem is to find natural homotopy decompositions of the loop suspension
of a p-torsion suspension where p is a prime. In [SW1] it is proved that this
problem is equivalent to the algebraic problem of finding natural coalgebra
decompositions of the primitively generated tensor algebras over the field
with p elements. They determine the finest coalgebra decomposition of a
tensor algebra (over arbitrary fields), which can be described as a functorial
Poincare-Birkhoff-Witt theorem [SW1, Theorem 6.5]. In order to compute
the factors in this decomposition, one must know a maximal projective sub-
module, called Lie™®*(n), of the Lie module Lie(n).

The projective modules for the symmetric groups over fields of positive
characteristic are not known. Their structure depends on the decomposi-
tion matrices for symmetric groups, and the determination of the latter is a
famous open problem. According to [SW2], it would be interesting to know,
even if the modules cannot be computed precisely, how quickly the dimen-
sions grow, and whether or not the growth rate is exponential. Evidence in
[SW2], for small cases in characteristic 2, is that Lie™®*(n) is relatively large
compared with Lie(n) and this would correspond to factors in the functorial
PBW theorem being relatively small.

Given a finite group G, and a finite-dimensional 'G-module V', we have a
decomposition V' = V. ® V, ¢, where V. is projective and V,; does not have
any projective summand. If P is a subgroup of G, then one may consider
the restriction Res® V. Then Res$(Vpy) is a direct summand of (ResG V) pr
and therefore

dim(Vjy) < dim (ResE V)pr < dim V — dim (Res% V)ps-
Thus, when G = G,, and V = Lie(n), we have
dim(Lie™**(n)) = dim(Lie(n)pr) < (n — 1)! — dim (Resg™ Lie(n))py-
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Here, we take P to be a Sylow p-subgroup of &,, and consider the case
where n = kp with p{ k. In this case, Lie(pk) has been studied in [ES] via a
module known as the p-th symmetrisation of Lie(k), denoted as SP(Lie(k)).

To define SP(Lie(k)), we first define the subgroups AxS, and GLP] of Ggp,
which are isomorphic to &, and &y respectively. For 7 € &, define AxT €
Sy to be the permutation that permutes each of the k successively blocks of

size p in {1,...,pk} according to 7. For o € &, define olPl e Sip to be the
permutation that permutes the k successively blocks of size p in {1,...,pk}

according to 0. Then AyS, = {Ax7 | 7 € Gp} and G,If] = {olP) | 0 € &}
We note that these two subgroups commute with each other.

Let D = AxS, X C“}',[f]. Let Ay = F X Lie(k); this is a D-module where
A6, acts trivially, while the action of 6,[51 on Ay is equivalent to that of
&y, on Lie(k). Then we have SP(Lie(k)) = Indgpk Ag.

The first author and Schocker proved the following result.

Theorem 1. [ES, Theorem 10} Let n = pk with pt k. Then there is a short
exact sequence of right F&,-modules

0 — Lie(n) — eF&, — SP(Lie(k)) — 0
where e is an idempotent in G,,.
As a corollary, we have Q(SP(Lie(k))) = Lie(n),s. Here, and hereafter, Q

denotes the Heller operator. Applying the exact restriction functor to the
short exact sequence also yields

(Resp™ Lie(n))ps = Q(Resg’" SP(Lie(k))) = Q((Resp" SP(Lie(k)))ps)-

By Mackey’s formula, we have
Respr SP(Lie(k)) = Respr Indpr Ak = €  IndDenp(Ax ® 7).
z€D/Gn\P

Proposition 2 ([ET, Proposition 3.2]).

(1) If (AkSp)* N P = 1, then Indfeqp(Ax ® T) is projective.
(2) If (AxSp)* NP # 1, then Ind5.p(Ax ® z) has no projective sum-
mand.

In view of Proposition 2, let .S be the set of all double coset representatives

in D/G, \ P such that (AxS,)* N P # 1. Then we have
Corollary 3 ([ET, Corollary 3.3]). Let k € Z* withptk. Then

(Resp*” SP(Lie(k)))ps = @D Indfenp (A ® 2).
zeS

Lemma 4 ([ET, Lemma 3.4]). For x € S we have
Q(Ind5: 1 p(Ax ® z)) = IndBep((QUF) R Lie(k)) ® z),
and Q(F) has dimension p — 1.



49

THE LIE MODULE OF THE SYMMETRIC GROUP

Theorem 5 ([ET, Theorem 3.5]). Let k € Z* with pt k. We have
dim((Res* Lie(kp))ps) = (p — 1)(k — 1)!S_[P: D* N P).
€S

A simple argument using group action yields the following:

Corollary 6 ([ET, Corollary 3.6]). Let k € Z* with ptk. We have
dim((Resp*? Lie(kp))ps) = (p — 1)(k — 1)!N,

where N s the number of cosets Dz such that (AxGp)* N P # 1.

In order to proceed, we introduce a combinatorial object which we call
p-compositions to help us study the elements x such that (AxG,)* NP # 1,

and obtain a transversal to the right cosets Dz such that (AxGp,)* NP # 1.
We refer the interested reader to [ET] for details.

For m € Z>¢, define a,, recursively as follows:

ao=pp-1), am=an, ;+p* (p-1)
Theorem 7 ([ET, Theorem 6.6 and Corollary 6.7]). Let k € Z* with pt k.
Let k — 1 = 5:1 p"t where k; € Z>o such that each p-power does not

occur p times or more in the sum. Then the number of cosets Dx such that
(AxSp)* NP # 1 equals
l
H a/ni .
i=1

Thus, dim((Resp* Lie(kp))ps) = (p — 1)(k — 1) [T'_; ax,.
Theorem 8 ([ET, Theorem 6.9]). Let k € Z* with ptk.

(1) The dimension of (Resp Lie(kp))ps, and hence of Lie(kp),s, grows

exponentially with k.
(2) dim((Resp Lie(kp))ps)/ dim(Lie(kp)) — 0 as k — co.
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