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1 Introduction
The aim of our work is to construct and research the fundamental solution of
the formal KZ (Knizhnik-Zamolodchikov) equation via iterated integrals. First
we establish the decomposition theorem for the normalized fundamental solu-
tion of the formal KZ equation on the moduli space $\mathcal{M}_{0,5}$ (or, the formal KZ
equation of two variables). Next we show that, by using iterated integrals, it
can be viewed as a generating function of hyperlogarithms of the type $\mathcal{M}_{0,5}$ .
The decomposition theorem says that the normalized fundamental solution de-
composes to a product of two factors which are the normalized fundamental
solutions of the formal (generalized) KZ equations of one variable. Comparing
the different ways of decomposition gives the generalized harmonic product re-
lations of the hyperlogarithms. These relations properly contain the harmonic
product of multiple polylogarithms.

The most simple case of the harmonic product is the following: Let us define

$Li_{k_{1},\ldots,k_{r}}(z)=\sum_{n_{1}>\cdots>n_{r}>0}\frac{z^{n_{1}}}{n_{1}^{k_{1}}\cdots n_{r}^{k_{f}}}$ ,

$Li_{k_{1},\ldots,k_{i+j}}(i,j;z_{1}, z_{2})=\sum_{n_{1}>\cdots>n_{i+j}>0}\frac{z_{1}^{n_{1}}.z_{2}^{n_{l+1}}}{n_{1}^{k_{1}}\cdot\cdot n_{i+j}^{k_{i+j}}}$ .

Then we obtain

Li$k(z_{1})$ Li$\iota(z_{2})=\sum_{m>0}\frac{z_{1}^{m}}{m^{k}}\sum_{n>0}\frac{z_{2}^{n}}{n^{l}}=(\sum_{m>n>0}+\sum_{m=n>0}+\sum_{n>m>0})\frac{z_{1}^{m}z_{2}^{n}}{m^{k}n^{l}}$

$=Li_{k,l}(1,1;z_{1}, z_{2})+$ Li $k+l(z_{1}z_{2})+$ Li $\downarrow,k(1,1;z_{2}, z_{1})$ . (HPMPL)
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Taking the limit, we have the harmonic product of multiple zeta values

$\zeta(k)\zeta(l)=\zeta(k, l)+\zeta(k+l)+\zeta(l, k)$ . (HPMZV)

(The harmonic product of multiple zeta values is considered from the viewpoint
of arithmetic geometry in [BF], [DT], [F]. $)$

Moreover we consider the transformation theory of the fundamental solution
of the formal KZ equation of two variables and derive the five term relation for
the dilogarithm due to Hill [Le],

$Li_{2}(z_{1}z_{2})=Li_{2}(\frac{-z_{1}(1-z_{2})}{1-z_{1}})+Li_{2}(\frac{-z_{2}(1-z_{1})}{1-z_{2}})$

$+$ Li2 $(z_{1})+$ Li2 $(z_{2})+ \frac{1}{2}\log^{2}(\frac{1-z_{1}}{1-z_{2}})$ . $(5TERM)$

For detailed accounts of the results in this note, see [OUl] and [OU2]. The
transformation theory of the formal KZ equation of one variable (or the formal
KZ equation on $\mathcal{M}_{0,4}$ ) is studied in $[OkU]$ .

Acknowledgment The authors express their gratitude to Professor Hideaki
Morita for giving them a chance of a lecture. The second author is partially
supported by JPSP Grant-in-Aid No. 19540056.

2 The formal KZ equation on $\mathcal{M}_{0,n}$

2.1 Definition of the formal KZ equation
First we introduce the formal KZ equation: It is defined on the configuration
space of $n$ points of $P^{1}(=$ the complement of the hyperplane arrangement
associated with Dynkin diagram of $A_{n-1}$ -type), which is by definition

(P)
$= \{(x_{1}, \ldots, x_{n})\in\frac{P^{1}\cross\cdots\cross P^{1}}{n}|x_{i}\neq x_{j}(i\neq j)\}$

.

The infinitesimal pure braid Lie algebra

$\mathfrak{X}=\mathfrak{X}(\{X_{ij}\}_{1\leq i,j\leq n})$ $:=C\{X_{ij}|1\leq i,j\leq n\}/(IPBR)$

is a graded Lie algebra for the lower central series of the fundamental group of
(P) [I]. It is generated by the formal elements $\{X_{ij}\}_{1\leq i,j\leq n}$ with the defining
relations (IPBR) (the infinitesimal pure braid relations)

$\{\begin{array}{ll}X_{ij}=X_{ji}, X_{ii}=0,\sum_{j}X_{ij}=0 (\forall i), [X_{ij}, X_{kl}]=0 (\{i,j\}\cap\{k, l\}=\emptyset).\end{array}$ (IPBR)

By $\mathcal{U}(\mathfrak{X})$ , we denote the universal enveloping algebra of $\mathfrak{X}$ . It has the unit I and
has the grading with respect to the homogeneous degree of an element:

$\mathcal{U}(\mathfrak{X})=\bigoplus_{s=0}^{\infty}\mathcal{U}_{s}(\mathfrak{X})$.
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The formal KZ equation is by definition

$dG=\Omega G$ ,
$\Omega=\sum_{i<j}\xi_{ij}X_{ij}$

, $\xi_{ij}=d\log(x_{i}-x_{j})$ , ( $KZ$ )

which is a $\mathfrak{X}$-valued total differential equation (or, a connection) on $(P^{1})_{*}^{n}$ . (Such
a formal equation was considered in [Ha], [De], [Dr], [W]. $)$

The l-forms $\xi_{ij}$ ’s satisfy only the Arnold relations [A] as non-trivial rela-
tions of degree 2:

$\xi_{ij}\wedge\xi_{ik}+\xi_{ik}\wedge\xi_{jk}+\xi_{jk}\wedge\xi_{ij}=0$ . $(AR)$

From (IPBR) and (AR), one can see that (KZ) is integrable and has PGL $($ 2, $C)-$

invariance. Hence (KZ) can be viewed as an equation on the moduli space

$\mathcal{M}_{0,n}=$ PGL $($2, $C)\backslash (P^{1})_{*}^{n}$ .

$Hereafter\mathcal{M}_{0,n}$.
we will call (KZ) the formal KZ equation on the moduli space

2.2 The formal KZ equation on $\mathcal{M}_{0,4}$ and $\mathcal{M}_{0,5}$

For analysis of (KZ), it is convenient to use the cubic coordinates on $\mathcal{M}_{0,n}$

[B]. Introducing the simplicial coordinates $\{y_{i}\}$ by

$y_{i}= \frac{x_{i}-x_{n-2}}{x_{i}-x_{n}}\frac{x_{n-1}-x_{n}}{x_{n-1}-x_{n-2}}$ $(i=1, \ldots, n-3)$ ,

(fixing three points $y_{n}=\infty,$ $y_{n-1}=1,$ $y_{n-2}=0$ ) the cubic coordinates $\{z_{i}\}$

are defined by blowing up at the origin,

$y_{i}=z_{1}\cdots z_{i}$ $(i=1, \ldots, n-3)$ .

We give representations of (KZ) for $n=4,5$ . In the cubic coordinates of
$\mathcal{M}_{0,4}$ , we put $z=z_{1}$ and $Z_{1}=X_{12},$ $Z_{11}=-X_{13}$ . Then (KZ) is represented as

$dG=\Omega G$ , $\Omega=\zeta_{1}Z_{1}+\zeta_{11}Z_{11}$ , $\zeta_{1}=\frac{dz}{z},$ $\zeta_{11}=\frac{dz}{1-z}$ . (lKZ)

which is referred to as the formal KZ equation of one variable. The singular
divisors of this equation are $D(\mathcal{M}_{0,4}^{cubic})$ $:=\{z=0,1, \infty\}$ . The Lie algebra $\mathfrak{X}$

is a free Lie algebra generated by $Z_{1},$ $Z_{11}$ , and (AR) reduces to the trivial one
$\zeta_{1}\wedge\zeta_{11}=0$ .

In the case of $\mathcal{M}_{0,5}$ , we put

$Z_{1}=X_{12}+X_{13}+X_{23},$ $Z_{11}=-X_{14},$ $Z_{2}=X_{23},$ $Z_{22}=-X_{12},$ $Z_{12}=-X_{24}$ .

In the cubic coordinates of $\mathcal{M}_{0,5}$ , (KZ) reads as

$dG=\Omega G$ , $\Omega=\zeta_{1}Z_{1}+\zeta_{11}Z_{11}+\zeta_{2}Z_{2}+\zeta_{22}Z_{22}+\zeta_{12}Z_{12}$ , $(2KZ)$

$\zeta_{1}=\frac{dz_{1}}{z_{1}},$ $\zeta_{11}=\frac{dz_{1}}{1-z_{1}},$ $\zeta_{2}=\frac{dz_{2}}{z_{2}},$ $\zeta_{22}=\frac{dz_{2}}{1-z_{2}},$ $\zeta_{12}=\frac{d(z_{1}z_{2})}{1-z_{1}z_{2}}$ ,
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which is referred to as the formal KZ equation of two variables. The
singular divisors of this equation are $D(\mathcal{M}_{0,5}^{cubic})$ $:=\{z_{1}=0,1, \infty\}\cup\{z_{2}=$

$0,1,$ $\infty\}\cup\{z_{1}z_{2}=1\}$ . The Lie algebra $\mathfrak{X}$ generated by the five elements
$Z_{1},$ $Z_{11},$ $Z_{2},$ $Z_{22},$ $Z_{12}$ with the defining relations

$\{\begin{array}{l}[Z_{1}, Z_{2}]=[Z_{11}, Z_{2}]=[Z_{1}, Z_{22}]=0,[Z_{11}, Z_{22}]=[-Z_{11}, Z_{12}]=[Z_{22}, Z_{12}]=[-Z_{1}+Z_{2}, Z_{12}].\end{array}$ (IPBR’)

Non trivial relations among (AR) are

$\{\begin{array}{l}(\zeta_{1}+\zeta_{2})\wedge\zeta_{12}=0,\zeta_{11}\wedge\zeta_{12}+\zeta_{22}\wedge(\zeta_{11}-\zeta_{12})-\zeta_{2}\wedge\zeta_{12}=0.\end{array}$ (AR’)

The following is a figure of the divisors $D(\mathcal{M}_{0,5}^{cubic})$ . Note that they are
normal crossing at $(z_{1}, z_{2})=(0,0),$ $(1,0),$ $(0,1)$ .

3 The fundamental solution of the formal KZ
equation on $\mathcal{M}_{0,4}$

3.1 A free shuffle algebra and iterated integral on $\mathcal{M}_{0,4}$

For a free shuffle algebra $S=S(a_{1}, \ldots , a_{r})$ generated by the alphabet $a_{1},$ $\ldots,$
$a_{r}$ ,

we denote by 1 the unit, by $0$ the product of concatenation and by $\mathfrak{u}\downarrow$ the shuffle
product:

$S=(C\langle a_{1}, \ldots, a_{r}\rangle, u!)$ ,
$wu\rfloor 1=1\iota uw=1$ ,

$(a_{i}ow)u(a_{j}ow’)=a_{i}\circ(w\iota u(a_{j}\circ w’))+a_{j}\circ((a_{i}\circ w)u!w’)$ .

It is a graded algebra with respect to the homogeneous degree of an element.
Let $\zeta_{1},$ $\zeta_{11}$ be the l-forms in (lKZ), and $S(\zeta_{1}, \zeta_{11})$ a free shufHe algebra

generated by them. For any word $\varphi=\omega_{1}\circ\cdots\circ\omega_{r}$ $(\omega_{i}=\zeta_{1}, or, \zeta_{11})$ in $S(\zeta_{1}, \zeta_{11})$ ,
we set the iterated integral by

$\int_{z_{O}}^{z}\varphi=\int_{z_{O}}^{z}\omega_{1}(z’)\int_{z_{0}}^{z’}\omega_{2}\circ\cdots 0\omega_{r}$ ,
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which gives a many-valued analytic function on $P^{1}-D(\mathcal{M}_{0,4}^{cubic})$ .
For $\varphi,$ $\psi\in S(\zeta_{1}, \zeta_{11})$ , we have

$\int(\varphi u\rfloor\psi)=(\int\varphi)(\int\psi)$ .

A free shuflle algebra has the structure of a Hopf algebra, and $S(\zeta_{1}, \zeta_{11})$ is
a dual Hopf algebra of the universal enveloping algebra $\mathcal{U}(\mathfrak{X})$ .

3.2 The fundamental solution of (lKZ)

Next we consider the fundamental solution of (lKZ) normalized at the origin
$z=0$ . We denote it by $\mathcal{L}(z)$ . It is a solution satisfying the following condition:

$\mathcal{L}(z)=\hat{\mathcal{L}}(z)z^{Z_{1}}$

where $\hat{\mathcal{L}}(z)$ is represented as

$\hat{\mathcal{L}}(z)=\sum_{s=0}^{\infty}\hat{\mathcal{L}}_{s}(z)$ , $\hat{\mathcal{L}}_{s}(z)\in \mathcal{U}_{s}(\mathfrak{X})$ , $\hat{\mathcal{L}}_{s}(0)=0(s>0)$ , $\hat{\mathcal{L}}_{0}(z)=I$ .

It is easy to see that $\hat{\mathcal{L}}_{s}(z)$ satisfies the following recursive equation:

$\frac{d\hat{\mathcal{L}}_{s+1}}{dz}=\frac{1}{z}[Z_{1},\hat{\mathcal{L}}_{s}]+\frac{1}{1-z}Z_{11}\hat{\mathcal{L}}_{s}$ $(s=0,1,2, \ldots)$ .

Since the term $\frac{1}{z}[Z_{1},\hat{\mathcal{L}}_{s}]$ is holomorphic at $z=0,\hat{\mathcal{L}}_{s+1}(z)$ is uniquely determined
by

$\hat{\mathcal{L}}_{s+1}(z)=\int_{0}^{z}(\frac{1}{z}[Z_{1},\hat{\mathcal{L}}_{s}]+\frac{1}{1-z}Z_{11}\hat{\mathcal{L}}_{s})dz$.

In terms of iterated integral, it is expressed as

$\hat{\mathcal{L}}_{s}(z)=\sum_{k_{1}+\cdots+k_{r}=s}\{\int_{0}^{z}\zeta_{1}^{k_{1}-1}0\zeta_{11}0\cdots 0\zeta_{1}^{k_{r}-1}0\zeta_{11}\}$

$\cross$ ad$(Z_{1})^{k_{1}-1}\mu(Z_{11})\cdots$ ad $(Z_{1})^{k_{r}-1}\mu(Z_{11})(I)$ .

Here ad$(Z_{1})\in$ End $(\mathcal{U}(\mathfrak{X}))$ stands for the adjoint operator by $Z_{1}$ , and $\mu(Z_{11})\in$

End $(\mathcal{U}(\mathfrak{X}))$ the multiplication of $Z_{11}$ from the left. From these considerations,
it follows that the fundamental solution normalized at $z=0$ exists and
is unique.

The iterated integral in the right hand side is a multiple polylogarithm
of one variable:

Li $k_{1}, \ldots,k_{r}(z)=\int_{0}^{z}\zeta f^{1}-1\circ\zeta_{11}0\cdots 0\zeta_{1}^{k_{r}-1}\circ\zeta_{11}$. (IMPL)

If $|z|<1$ , it has a Taylor expansion

$Li_{k_{1},\ldots,k_{r}}(z)=\sum_{n_{1}>n_{2}>\cdots>n_{r}>0}\frac{z^{n_{1}}}{n_{1}^{k_{1}}\cdots n_{r}^{k_{r}}}$ .
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If $k_{1}\geq 2$ , we have

$\lim_{zarrow 1-0}$
$Li$

$k_{1},\ldots,k_{r}(z)=\zeta(k_{1}, \ldots, k_{r})$ ,

where the right side above is a multiple zeta value,

$\zeta(k_{1}, \ldots, k_{r})=\sum_{n_{1}>\cdots>n_{r}>0}\frac{1}{n_{1}^{k_{1}}\cdots n_{r}^{k_{r}}}$ . (MZV)

3.3 The fundamental solution of the formal generalized
KZ equation of one variable

Let us consider a generalization of (lKZ). For mutually distinct points $a_{1},$ $\ldots,$ $a_{m}\in$

$C-\{0\}$ we set

$dG=\Omega G$ , $\Omega=\frac{dz}{z}X_{0}+\sum_{i=1}^{m}\frac{a_{i}dz}{1-a_{i^{Z}}}X_{i}$ . (GIKZ)

Here the coefficients $X_{0},$ $X_{1},$
$\ldots,$

$X_{m}$ are free formal elements. For $r=1,$ $a_{1}=1$ ,
this is the formal KZ equation of one variable. This is a differential equation of
the Schlesinger type with regular singular points $0,1/a_{1},$

$\ldots,$
$1/a_{m},$ $\infty$ . We call

(GIKZ) the formal generalized KZ equation of one variable.
Let $\mathfrak{X}=C\{X_{0}, X_{1}, \ldots, X_{m}\}$ be a free Lie algebra generated by $X_{0},$ $X_{1},$

$\ldots,$
$X_{m}$ ,

and $\mathcal{U}(\mathfrak{X})$ the universal enveloping algebra.
The free shuflle algebra $S(\xi_{0}, \xi_{1}, \ldots, \xi_{m})$ where

$\xi_{0}=\frac{dz}{z}$ , $\xi_{i}=\frac{a_{i}dz}{1-a_{i^{Z}}}$ , $(1 \leq i\leq m)$ ,

is a dual Hopf algebra of $\mathcal{U}(\mathfrak{X})$ .
The fundamental solution $\mathcal{L}(z)$ normalized at the origin $z=0$ of

this equation exists and is unique. It satisfies the following conditions:
$\mathcal{L}(z)=\hat{\mathcal{L}}(z)z^{X_{0}}$

where $\hat{\mathcal{L}}(z)$ is represented as

$\hat{\mathcal{L}}(z)=\sum_{s=0}^{\infty}\hat{\mathcal{L}}_{s}(z)$ , $\hat{\mathcal{L}}_{s}(z)\in \mathcal{U}_{s}(\mathfrak{X})$ , $\hat{\mathcal{L}}_{s}(0)=0(s>0)$ , $\hat{\mathcal{L}}_{0}(z)=I$ .

$\hat{\mathcal{L}}_{s}(z)=\sum_{:i_{1},..,i_{r}\in\{1m\}}..,L(a_{i_{1}}\cdots a_{i_{r}};z)k_{1}.+\cdots+k=s$

$\cross$ ad $(X_{0})^{k_{1}-1}\mu(X_{i_{1}})\cdots$ ad $(X_{0})^{k_{r}-1}\mu(X_{i_{r}})(I)$ .

Here $L(a_{i_{1}}\cdots a_{i_{r}};z)$ is a hyperlogarithm of the general type:

$L(a_{i_{1}}\cdots a_{i_{r}};z)$ $:= \int_{0}^{z}\xi_{0}^{k_{1}-1}\circ\xi_{i_{1}}\circ\xi_{0}^{k_{2}-1}\circ\xi_{i_{2}}\circ\cdots\circ\xi_{0}^{k_{r}-1}0\xi_{i_{r}}$ . (HLOG)

For $r=1$ and $a_{1}=1$ , this is (IMPL). If $|z|< \min\{\frac{1}{|a_{i_{1}}|}, \ldots, \frac{\dot{1}}{|a_{r}|}\}$ , it has a
Taylor expansion

$L(a_{i_{1}} \cdots a_{i_{r}};z)=\sum_{n_{1}>n_{2}>\cdots>n_{r}>0}\frac{a_{i_{1}}^{n_{1}-n_{2}}a_{i_{2}}^{n_{2}-.n_{3}}\cdots a_{i_{r}}^{n_{r}}}{n_{1}^{k_{1}}\cdot\cdot n_{r}^{k_{r}}}z^{n_{1}}$ .
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4 The fundamental solution of the formal KZ
equation on $\mathcal{M}_{0,5}$

4.1 The reduced bar algebra and iterated integrals on $\mathcal{M}_{0,5}$

Let $S=S(\zeta_{1}, \zeta_{11}, \zeta_{2}, \zeta_{22}, \zeta_{12})$ be a free shuflle algebra generated by $\zeta_{1},$ $\zeta_{11},$ $\zeta_{2},$ $\zeta_{22},$ $\zeta_{12}$

which are l-forms in $(2KZ)$ . The iterated integral of an element in $S$ , in general,
depends on the integral path. We want to construct a shuflle subalgebra of $S$

such that the iterated integral of any element in this subalgebra depends only
on the homotopy class of the integral path. We say that an element

$S \ni\varphi=\sum_{I=(i_{1},..i_{s})}.,c_{I}\omega_{i_{1}}0\cdots 0\omega_{i_{s}}$
,

where $\omega_{i}\in\{\zeta_{1}, \zeta_{11}, \zeta_{2}, \zeta_{22}, \zeta_{12}\}$ , satisfies Chen’s integrability condition [Cl]
if and only if

$\sum_{I}c_{I}\omega_{i_{1}}\otimes\cdots\otimes\omega_{i_{l}}\wedge\omega_{i_{l+1}}\otimes\cdots\otimes\omega_{i_{s}}=0$ (CIC)

holds for any $l$ $(1 \leq l< s)$ as a multiple differential form. Let $\mathcal{B}$ be the
subalgebra of elements satisfying (CIC). We call it the reduced bar algebra,
which coincides with the 0-th cohomology of the reduced bar complex [C2]
associated with the Orlik-Solomon algebra [OT] generated by $\zeta_{1},$ $\zeta_{11},$ $\zeta_{2},$ $\zeta_{22},$ $\zeta_{12}$ .

For any element $\varphi\in \mathcal{B}$ , the iterated integral

$\int_{(z_{1}^{(O)},z_{2}^{(0)})}^{(z_{1},z_{2})}\varphi$

gives a many-valued analytic function on $P^{1}\cross P^{1}-D(\mathcal{M}_{0,5}^{cubic})$ .
Let us consider more on the structure of $\mathcal{B}$ : It is a graded algebra; $\mathcal{B}=$

$\oplus_{s=0}^{\infty}\mathcal{B}_{s}$ , $\mathcal{B}_{s}=\mathcal{B}\cap S_{s}$ where $S_{s}$ denotes the degree $s$ part of $S$ : We have

$\mathcal{B}_{0}=$ Cl, $\mathcal{B}_{1}=C\zeta_{1}\oplus C\zeta_{11}\oplus C\zeta_{2}\oplus C\zeta_{22}\oplus C\zeta_{12}$ ,

$\mathcal{B}_{2}=\bigoplus_{\omega\in A}C\omega 0\omega\oplus\bigoplus_{i=1,2}C\zeta_{i}0\zeta_{ii}\oplus\bigoplus_{i=1,2}C\zeta_{ii}\circ\zeta_{i}$

$\oplus$ $\oplus$
$C(\omega_{1}\circ\omega_{2}+\omega_{2}0\omega_{1})\oplus\bigoplus_{\omega\in A-\{\zeta_{12}\}}C(\omega 0\zeta_{12}+\zeta_{12}0\omega)$

$\omega_{2}=\zeta_{2},\zeta_{22}^{11}\omega_{1}=\zeta_{1},\zeta$

$\oplus C(\zeta_{1}\circ\zeta_{12}+\zeta_{2}0\zeta_{12})\oplus C(\zeta_{11}\circ\zeta_{12}+\zeta_{22}0\zeta_{11}-\zeta_{22}0\zeta_{12}-\zeta_{2}0\zeta_{12})$

where $A:=\{\zeta_{1}, \zeta_{11}, \zeta_{2}, \zeta_{22}, \zeta_{12}\}$ . For $s>2,$ $\mathcal{B}_{s}$ is characterized as follows [B];

$\mathcal{B}_{s}=\overline{\bigcap_{j=1}^{s1}}\mathcal{B}_{j}0\mathcal{B}_{s-j}=\overline{\bigcap_{j=0}^{s2}}\mathcal{B}_{1}0\cdots 0\mathcal{B}_{1}0\mathcal{B}_{2}0\mathcal{B}_{1}0\cdots 0\mathcal{B}_{1}\tilde{jtimes}\tilde{s-j-2times}$.

Put

$\zeta_{12}^{(1)}=\frac{z_{2}dz_{1}}{1-z_{1}z_{2}}$ , $\zeta_{12}^{(2)}=\frac{z_{1}dz_{2}}{1-z_{1}z_{2}}$ .
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One can define a linear map

$\iota_{1\otimes 2}:\mathcal{B}arrow S(\zeta_{1}, \zeta_{11}, \zeta_{12}^{(1)})\otimes S(\zeta_{2}, \zeta_{22})$

by the following procedure;

(i) pick up the terms only having a form $\psi_{1}0\psi_{2}\in S(\zeta_{1}, \zeta_{11}, \zeta_{12})oS(\zeta_{2}, \zeta_{22})$ .

(ii) change each term $\psi_{1}\circ\psi_{2}$ to $\psi_{1}\otimes\psi_{2}\in S(\zeta_{1}, \zeta_{11}, \zeta_{12})\otimes S(\zeta_{2}, \zeta_{22})$ .

(iii) replace $\zeta_{12}$ to $\zeta_{12}^{(1)}$ .

A linear map

$\iota_{2\otimes 1}:\mathcal{B}arrow S(\zeta_{2}, \zeta_{22}, \zeta_{12}^{(2)})\otimes S(\zeta_{1}, \zeta_{11})$

is defined in the same way.
One can show that

$\mathcal{U}(\mathfrak{X})\cong \mathcal{U}(C\{Z_{1}, Z_{11}, Z_{12}\})\otimes \mathcal{U}(C\{Z_{2}, Z_{22}\})$

$\cong \mathcal{U}(C\{Z_{2}, Z_{22}, Z_{12}\})\otimes \mathcal{U}(C\{Z_{1}, Z_{11}\})$

and that $\mathcal{B}$ is a dual Hopf algebra of $\mathcal{U}(\mathfrak{X})$ . Through this isomorphism and the
duality, one can show the following proposition:

Proposition 1. The maps $\iota_{1\otimes 2}$ and $\iota_{2\otimes 1}$ are iu-isomorphisms.

(Such an isomorphism is also obtained by [B].)
Let $\mathcal{B}^{0}$ be the subspace of $\mathcal{B}$ spanned by elements which have no terms ending

with $\zeta_{1}$ and $\zeta_{2}$ , and $S^{0}(\zeta_{1}, \zeta_{11}, \zeta_{12}^{(1)})$ (resp. $S^{0}(\zeta_{2},$ $\zeta_{22})$ ) the subspace spanned by
elements which have no terms ending with $\zeta_{1}$ (resp. $\zeta_{2}$ ), and so on. They are
shuffle algebras. One can show the following isomorphism:

Proposition 2. By $\iota_{1\otimes 2}$ and $\iota_{2\otimes 1}$ ,

$\mathcal{B}^{0}\cong S^{0}(\zeta_{1}, \zeta_{11}, \zeta_{12}^{(1)})\otimes S^{0}(\zeta_{2}, \zeta_{22})\cong S^{0}(\zeta_{2}, \zeta_{22}, \zeta_{12}^{(2)})\otimes S^{0}(\zeta_{1}, \zeta_{11})$ .

The hee shuffle algebra $S(\zeta_{1}, \zeta_{11}, \zeta_{12}^{(1)})$ is a polynomial algebra over $S^{0}(\zeta_{1}, \zeta_{11}, \zeta_{12}^{(1)})$

of the variable $\zeta_{1}$ as a shufHe algebra [R]:

$S(\zeta_{1}, \zeta_{11}, \zeta_{12}^{(1)})\cong S^{0}(\zeta_{1}, \zeta_{11}, \zeta_{12}^{(1)})[\zeta_{1}]$ .

Likewise, we have

$S(\zeta_{2}, \zeta_{22})\cong S^{0}(\zeta_{2}, \zeta_{22})[\zeta_{2}]$

as a shuffle algebra. Applying these isomorphisms to Proposition 2, we have

Proposition 3. The reduced bar algebra $\mathcal{B}$ is a polynomial algebra over $\mathcal{B}^{0}$ of
the variables $\zeta_{1},$ $\zeta_{2}$ as a shuffle algebra:

$\mathcal{B}\cong \mathcal{B}^{0}[\zeta_{1}, \zeta_{2}]$ .
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Assume that $0<|z_{1}|,$ $|z_{2}|<1$ and define the following two contours $C_{1\otimes 2},$ $C_{2\otimes 1}$ :

The composition of paths $CoC’$ is defined by connecting $C$ after $C’$ .
For $\psi_{1}\otimes\psi_{2}\in S^{0}(\zeta_{1}, \zeta_{11}, \zeta_{12}^{(1)})\otimes S^{0}(\zeta_{2}, \zeta_{22})$, we set

$\int_{C_{1\otimes 2}}\psi_{1}\otimes\psi_{2}:=\int_{z_{1}=0}^{z_{1}}\psi_{1}\int_{z_{2}=0}^{z_{2}}\psi_{2}$

and for $\psi_{1}\otimes\psi_{2}\in S^{0}(\zeta_{2}, \zeta_{22}, \zeta_{12}^{(2)})\otimes S^{0}(\zeta_{1}, \zeta_{11})$,

$\int_{C_{2\emptyset 1}}\psi_{1}\otimes\psi_{2}:=\int_{z_{2}=0}^{z_{2}}\psi_{1}\int_{z_{1}=0}^{z_{1}}\psi_{2}$ .

Since the map $\iota_{1\otimes 2}$ (resp. $\iota_{2\otimes 1}$ ) picks up the terms of $\mathcal{B}^{0}$ whose iterated integral
along $C_{1\otimes 2}$ (resp. $C_{2\otimes 1}$ ) does not vanish, we have

$\int_{(0_{1}0)}^{(z_{1},z_{2})}\varphi=\int_{C_{1\otimes 2}}\varphi=\int_{C_{1\otimes 2}}\iota_{1\otimes 2}(\varphi)$

$= \int_{C_{2\otimes 1}}\varphi=\int_{C_{2\otimes 1}}\iota_{2\otimes 1}(\varphi)$

for $\varphi\in \mathcal{B}^{0}$ .

4.2 The fundamental solution of $(2KZ)$

We consider the fundamental solution $\mathcal{L}(z_{1}, z_{2})$ of $(2KZ)$ normalized at the origin
$(z_{1}, z_{2})=(0,0)$ . It is a solution satisfying the following conditions:

$\mathcal{L}(z_{1}, z_{2})=\hat{\mathcal{L}}(z_{1}, z_{2})z_{1}^{Z_{1}}z_{2}^{Z_{2}}$

where

$\hat{\mathcal{L}}(z_{1}, z_{2})=\sum_{s=0}^{\infty}\hat{\mathcal{L}}_{s}(z_{1}, z_{2})$ , $\hat{\mathcal{L}}_{s}(z_{1}, z_{2})\in \mathcal{U}_{s}(\mathfrak{X})$ , $\hat{\mathcal{L}}_{s}(0,0)=0(s>0)$ ,
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and $\hat{\mathcal{L}}_{0}(z_{1}, z_{2})=I$ . We put

$\Omega_{0}=\zeta_{1}Z_{1}+\zeta_{2}Z_{2}$ ,
$\Omega’=\Omega-\Omega_{0}=\zeta_{11}Z_{11}+\zeta_{22}Z_{22}+\zeta_{12}Z_{12}$.

It is easy to see that $\hat{\mathcal{L}}_{s}(z_{1}, z_{2})$ satisfies the following recursive equation:

$d\hat{\mathcal{L}}_{s+1}(z_{1}, z_{2})=[\Omega_{0},\hat{\mathcal{L}}_{s}(z_{1}, z_{2})]+\Omega’\hat{\mathcal{L}}_{s}(z_{1}, z_{2})$ .

Hence we have

$\hat{\mathcal{L}}_{s}(z_{1}, z_{2})=\int_{(0,0)}^{(z_{1},z_{2})}$ $(ad(\Omega_{0})+\mu(\Omega’))^{s}(1\otimes 1)$ . (IISOL)

Here we use the following convention of notations:

ad $(\omega\otimes X)(\varphi\otimes F)=(\omega\circ\varphi)\otimes$ ad$(X)(F)$ ,
$\mu(\omega\otimes X)(\varphi\otimes F)=(\omega\circ\varphi)\otimes\mu(X)(F)$

for $\varphi\otimes F\in S(A)\otimes \mathcal{U}(\mathfrak{X}),$ $\omega\otimes X\in \mathcal{B}_{1}\otimes \mathfrak{X}$ .
This says that the fundamental solution normalized at $(z_{1}, z_{2})=(0,0)$

exists and is unique. Moreover we can show that

$($ ad $(\Omega_{0})+\mu(\Omega’))^{s}(1\otimes I)\in \mathcal{B}^{0}\otimes \mathcal{U}_{s}(\mathfrak{X})$. (IIFORM)

5 Decomposition theorem and hyperlogarithms

5.1 The decomposition theorem of the normalized funda-
mental solution

We consider the following four formal (generalized) lKZ equation. In the fol-
lowing $d_{z_{1}}$ (resp. $d_{z_{2}}$ ) stands for the exterior differentiation by the variable $z_{1}$

(resp. $z_{2}$ ):

$d_{z_{1}}G(z_{1}, z_{2})=\Omega_{1\otimes 2}^{(1)}G(z_{1}, z_{2})$, $\Omega_{1\otimes 2}^{(1)}=\zeta_{1}Z_{1}+\zeta_{11}Z_{11}+\zeta_{12}^{(1)}Z_{12}$ ,
$d_{z_{2}}G(z_{2})=\Omega_{1\otimes 2}^{(2)}G(z_{2})$ , $\Omega_{1\otimes 2}^{(2)}=\zeta_{2}Z_{2}+\zeta_{22}Z_{22}$ ,

$d_{z_{2}}G(z_{1}, z_{2})=\Omega_{2\otimes 1}^{(2)}G(z_{1}, z_{2})$, $\Omega_{2\otimes 1}^{(2)}=\zeta_{2}Z_{2}+\zeta_{22}Z_{22}+\zeta_{12}^{(2)}Z_{12}$ ,

$d_{z_{1}}G(z_{1})=\Omega_{2\otimes 1}^{(1)}G(z_{1})$ , $\Omega_{2\otimes 1}^{(1)}=\zeta_{1}Z_{1}+\zeta_{11}Z_{11}$ .

The fundamental solution normalized at the origin to each equation satisfies the
conditions

$\mathcal{L}_{i_{1}\otimes i_{2}}^{(i_{k})}=\hat{\mathcal{L}}_{i_{1}\otimes i_{2}}^{(i_{k})}z_{i_{k}}^{Z_{\mathfrak{i}_{k}}}$ ,

$\hat{\mathcal{L}}_{i_{1}\otimes i_{2}}^{(i_{k})}=\sum_{s=0}^{\infty}\hat{\mathcal{L}}_{i_{1}\otimes i_{2},s}^{(i_{k})}$, $\hat{\mathcal{L}}_{i_{1}\otimes i_{2},s}^{(i_{k})}|_{z_{i_{k}}=0}=0$ $(s>0)$ , $\hat{\mathcal{L}}_{i_{1}\otimes i_{2},0}^{(i_{k})}=$ I.
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Proposition 4. (i) The fundamental solution $\mathcal{L}(z_{1}, z_{2})$ of $(2KZ)$ normalized
at the origin decomposes to product of the normalized fundamental solu-
tions of the (generalized) formal lKZ equations as follows:

$\mathcal{L}(z_{1}, z_{2})=\mathcal{L}_{1\otimes 2}^{(1)}\mathcal{L}_{1\otimes 2}^{(2)}=\hat{\mathcal{L}}_{1\otimes 2}^{(1)}\hat{\mathcal{L}}_{1\otimes 2}^{(2)}z_{1}^{Z_{1}}z_{2}^{Z_{2}}$

$=\mathcal{L}_{2\otimes 1}^{(2)}\mathcal{L}_{2\otimes 1}^{(1)}=\hat{\mathcal{L}}_{2\otimes 1}^{(2)}\hat{\mathcal{L}}_{2\otimes 1}^{(1)}z_{1}^{Z_{1}}z_{2}^{Z_{2}}$ .

(ii) If the decomposition

$\mathcal{L}(z_{1}, z_{2})=G_{i_{1}\otimes i_{2}}^{(i_{1})}G_{i_{1}\otimes i_{2}}^{(i_{2})}$

holds, where $G_{i_{1}\otimes i_{2}}^{(i_{k})}=\hat{G}_{i_{1}\otimes i_{2}}^{(i_{k})}z_{i_{k}}^{Z_{i_{k}}}$ satisfies the same conditions as $\mathcal{L}_{i_{1}\otimes i_{2}}^{(i_{k})}$

does, we have $G_{i_{1}\otimes i_{2}}^{(i_{k})}=\mathcal{L}_{i_{1}\otimes i_{2}}^{(i_{k})}$ .

5.2 The iterated integral solution along the contours $C_{1\otimes 2}$

and $C_{2\otimes 1}$

$\mathbb{R}om$ (IIFORM), we can choose $C_{1\otimes 2}$ as the integral contour in (IISOL). Hence
we have

$\hat{\mathcal{L}}_{s}(z_{1}, z_{2})=\int_{C_{1\otimes 2}}(ad(\Omega_{0})+\mu(\Omega’))^{s}(1\otimes 1)$

$= \int_{C_{1\otimes 2}}(\iota_{1\otimes 2}\otimes id_{\mathcal{U}(X)})((ad(\Omega_{0})+\mu(\Omega’))^{s}(1\otimes 1))$

$=$ $\sum$$s’+s”=s \sum_{W,W’’}\int_{0}^{z_{1}}\theta_{1\otimes 2}^{(1)}(W’)\int_{0}^{z_{2}}\theta_{1\otimes 2}^{(2)}(W’’)\alpha(W’)\alpha(W’’)(I)$ .

Here $W’$ runs over $\mathcal{W}_{s}^{0},$ $(Z_{1}, Z_{11}, Z_{12}),$ $W”$ runs over $\mathcal{W}_{s}^{0},,$ $(Z_{2}, Z_{22})$ . $(\mathcal{W}_{s}^{0}(\mathfrak{A})=$

$\mathcal{W}^{0}(\mathfrak{A})\cap \mathcal{U}_{s}(\mathfrak{X})$ , and $\mathcal{W}^{0}(\mathfrak{A})$ stands for the set of words of the letters $\mathfrak{U}$ which
do not end with $Z_{1},$ $Z_{2}.$ ) $\alpha$ : $\mathcal{U}(\mathfrak{X})arrow$ End $(\mathcal{U}(\mathfrak{X}))$ is an algebra homomorphism

$\alpha$ : $(Z_{1}, Z_{11}, Z_{2}, Z_{22}, Z_{12})\mapsto(ad(Z_{1}), \mu(Z_{11}), ad(Z_{2}), \mu(Z_{22}), \mu(Z_{12}))$,

and $\theta_{1\otimes 2}^{(1)}$ : $\mathcal{U}(C\{Z_{1}, Z_{11}, Z_{12}\})arrow S(\zeta_{1}, \zeta_{11}, \zeta_{12}^{(1)})$ and $\theta_{1\otimes 2}^{(2)}$ : $\mathcal{U}(C\{Z_{2}, Z_{22}\})arrow$

$S(\zeta_{2}, \zeta_{22})$ are linear maps defined by replacing

$\theta_{1\otimes 2}^{(i)}(Z_{i})=\zeta_{i},$ $\theta_{1\otimes 2}^{(i)}(Z_{ii})=\zeta_{ii}(i=1,2),$ $\theta_{1\otimes 2}^{(1)}(Z_{12})=\zeta_{12}^{(1)}$ .

In the same way, we have

$\hat{\mathcal{L}}_{s}(z_{1}, z_{2})=\int_{C_{2\otimes 1}}(ad(\Omega_{0})+\mu(\Omega’))^{s}(1\otimes 1)$

$= \int_{C_{2\otimes 1}}(\iota_{2\otimes 1}\otimes id_{\mathcal{U}(\mathfrak{X})})((ad(\Omega_{0})+\mu(\Omega’))^{s}(1\otimes I))$

$=$ $\sum$$s’+s”=s \sum_{W,W’’}\int_{0}^{z_{2}}\theta_{2\otimes 1}^{(2)}(W’)\int_{0}^{z_{1}}\theta_{2\otimes 1}^{(1)}(W’’)\alpha(W’)\alpha(W’’)(I)$ .
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Here $W’$ runs over $\mathcal{W}_{s}^{0},$ $(Z_{2}, Z_{22}, Z_{12})$ , and $W”$ runs over $\mathcal{W}_{s}^{0},,$ $(Z_{1}, Z_{11})$ . $\theta_{2\otimes 1}^{(2)}$ :
$\mathcal{U}(C\{(Z_{2}, Z_{22}, Z_{12}\})arrow S(\zeta_{2}, \zeta_{22}, \zeta_{12}^{(2)})$ and $\theta_{2\otimes 1}^{(1)}$ : $\mathcal{U}(C\{Z_{1}, Z_{11}\})arrow S(\zeta_{1}, \zeta_{11})$

are linear maps defined by replacing

$\theta_{2\otimes 1}^{(i)}(Z_{i})=\zeta_{i},$ $\theta_{2\otimes 1}^{(i)}(Z_{ii})=\zeta_{ii}(i=1,2),$ $\theta_{2\otimes 1}^{(2)}(Z_{12})=\zeta_{12}^{(2)}$ .

Since $[Z_{1}, Z_{2}]=[Z_{1}, Z_{22}]=0$ , we have

$\hat{\mathcal{L}}(z_{1}, z_{2})=(\sum_{W’}\int_{0}^{z_{1}}\theta_{1\otimes 2}^{(1)}(W’)\alpha(W’)(I))(\sum_{W’’}\int_{0}^{z_{2}}\theta_{1\otimes 2}^{(2)}(W’’)\alpha(W’’)(I))$ .

This says that each decomposition in Proposition 4 corresponds to the
choice of the integral contours $C_{1\otimes 2},$ $C_{2\otimes 1}$ .

5.3 Hyperlogarithms of the type $\mathcal{M}_{0,5}$

In (HLOG), let $m=2,$ $a_{1}=1,$ $a_{2}=z_{2}$ , replace $\xi_{0},$ $\xi_{1},$ $\xi_{2}$ by $\zeta_{1},$ $\zeta_{11},$
$\zeta_{12}^{(1)}$ respec-

tively, and put $\zeta(a_{i})=\xi_{i}(i=1,2)$ . Then (HLOG) reads as

$L(a_{i_{1}} \cdots a_{i_{r}};z_{1})=\int_{0}^{z_{1}}\zeta_{1}^{k_{1}-1}0\zeta(a_{i_{1}})0\zeta f^{2}-1\circ\zeta(a_{i_{2}})0\cdots 0\zeta_{1}^{k_{r}-1}0\zeta(a_{i_{r}})$

$= \sum_{n_{1}>n_{2}>\cdots>n_{r}>0}\frac{a_{i_{1}}^{n_{1}-n_{2}}a_{i_{2}}^{n_{2}-.n_{3}}\cdots a_{i_{r}}^{n_{r}}}{n_{1}^{k_{1}}\cdot\cdot n_{r}^{k_{r}}}z_{1}^{n_{1}}$ ,

which is referred to as a hyperlogarithm of the type $\mathcal{M}_{0,5}$ . If $a_{i_{1}}=\cdots=$

$a_{i_{r}}=1$ , it is a multiple polylogarithm of one variable (IMPL)

$Li_{k_{1},\ldots,k_{r}}(z_{1})=L(1\cdots 1;z_{1})$ ,

and

$Li_{k_{1},\ldots,k}:+j(i,j;z_{1}, z_{2}):=L(1\cdots 11z_{2}\cdots z_{2};z_{1})$ $(2MPL)$

is called a multiple polylogarithm of two variables. They constitute a
subclass of hyperlogarithms of the type $\mathcal{M}_{0,5}$ .

We should note that, in the previous subsection, the iterated integral

$L( \theta_{1\otimes 2}^{(1)}(W’);z_{1}):=\int_{0}^{z_{1}}\theta_{1\otimes 2}^{(1)}(W’)$ $(W’\in \mathcal{W}_{s}^{0},(Z_{1}, Z_{11}, Z_{12}))$

is a hyperlogarithm of the type $\mathcal{M}_{0,5}$ , and the iterated integral

$L( \theta_{1\otimes 2}^{(2)}(W’’);z_{2}):=\int_{0}^{z_{2}}\theta_{1\otimes 2}^{(2)}(W’’)$ $(W”\in \mathcal{W}_{s}^{0_{l}},(Z_{2}, Z_{22}))$

is a multiple polylogarithm of one variable. Thus, the normalized funda-
mental solution $\mathcal{L}(z_{1}, z_{2})$ is a generating function of hyperlogarithms
of the type $\mathcal{M}_{0,5}$ .
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6 Relations of multiple polylogarithms
6.1 Generalized harmonic product relations of hyperlog-

arithms
From Proposition 2, one can define

$\varphi(W’, W’’)=\iota_{1\otimes 2}^{-1}(\theta_{1\otimes 2}^{(1)}(W’)\otimes\theta_{1\otimes 2}^{(2)}(W’’))\in \mathcal{B}^{0}$

for $W’\in \mathcal{W}^{0}(Z_{1}, Z_{11}, Z_{12}),$ $W”\in \mathcal{W}^{0}(Z_{2}, Z_{22})$ . Then we have

$\int_{C_{1\otimes 2}}\iota_{1\otimes 2}(\varphi(W’, W’’))=L(\theta_{1\otimes 2}^{(1)}(W’);z_{1})L(\theta_{1\otimes 2}^{(2)}(W’’);z_{2})$,

and

$\hat{\mathcal{L}}_{s}(z_{1}, z_{2})=\sum_{s’+s’’=s}W’\in \mathcal{W}_{s}^{0},(Z_{1},Z_{11},Z_{12})\sum_{W’\in \mathcal{W}_{s’}^{0},(Z_{2},Z_{22})}\int_{(00)}^{(z_{1},z_{2})}\}\varphi(W’, W’’)\alpha(W’)\alpha(W’’)(I)$

.

Since $\{\alpha(W’)\alpha(W’)(I)|W’\in \mathcal{W}^{0}(Z_{1}, Z_{11}, Z_{12}), W’’\in \mathcal{W}^{0}(Z_{2}, Z_{22})\}$ is a lin-
early independent set, we obtain the following proposition:

Proposition 5. We have

$L( \theta_{1\otimes 2}^{(1)}(W’);z_{1})L(\theta_{1\otimes 2}^{(2)}(W");z_{2})=\int_{C_{2\otimes 1}}\iota_{2\otimes 1}(\varphi(W’, W’))$ (GHPR)

for $W’\in \mathcal{W}^{0}(Z_{1}, Z_{11}, Z_{12}),$ $W”\in \mathcal{W}^{0}(Z_{2}, Z_{22})$ .
We call (GHPR) the generalized harmonic product relations of hy-

perlogarithms.

Remark 6. We have actually

$( ad(\Omega_{0})+\mu(\Omega’))^{s}(1\otimes 1)=\sum_{s’+s’’=s}\sum_{W,W’’}\varphi(W’, W’’)\otimes\alpha(W’)\alpha(W’’)(I)$.

For the proof, see [OUl].

6.2 Harmonic product of multiple polylogarithms

For $W’=Z_{1}^{k_{1}-1}Z_{11}\cdots Z_{1}^{k_{t}-1}Z_{11}Z_{1}^{k_{i+1}-1}Z_{12}\cdots Z_{1}^{k_{i+j}-1}Z_{12},$ $W”=I$ , we have

$\int_{C_{1\otimes 2}}\varphi(W’, I)=Li_{k_{1},\ldots,k_{i+j}}(i,j;z_{1}, z_{2})$ .

Hence (GHPR) for this case reads as

$Li_{k_{1},\ldots,k}:+j(i,j;z_{1}, z_{2})=\int_{C_{2\otimes 1}}\varphi(W’, I)$ .

Moreover, by induction, one can prove that the generalized harmonic prod-
uct relations properly contain the harmonic product of multiple poly-
logarithms such as (HPMPL).

Taking the limit, we have harmonic product of multiple zeta values. Thus
we can interpret the harmonic product of multiple zeta values as a
connection problem for the formal KZ equation such as (HPMZV).
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7 The five term relation for the dilogarithm

We define the action of $\mathfrak{S}_{n}$ on $\mathcal{M}_{0,n}$ by $\sigma(x_{i})=x_{\sigma(i)}$ . For $n=5$ , the ac-
tion of $\sigma=(23)(45)\in \mathfrak{S}_{5}$ is given, in the cubic coordinates, by a birational
transformation on $P^{1}\cross P^{1}$ such as

$\sigma(z_{1}, z_{2})=(\frac{-z_{1}(1-z_{2})}{1-z_{1}},$ $\frac{-z_{2}(1-z_{1})}{1-z_{2}})$ .

It satisfies $\sigma^{2}=$ id and preserves the divisors $D(\mathcal{M}_{0,5}^{cubtC})$ .
Let $\sigma^{*}:\mathcal{B}arrow \mathcal{B}$ be the pull back induced by $\sigma$ ,

$\sigma^{*}\zeta_{1}=\zeta_{1}+\zeta_{11}-\zeta_{22}$ , $\sigma^{*}\zeta_{11}=-\zeta_{11}+\zeta_{12}$ ,
$\sigma^{*}\zeta_{2}=-\zeta_{11}+\zeta_{2}+\zeta_{22}$ , $\sigma^{*}\zeta_{22}=-\zeta_{22}+\zeta_{12}$ , $\sigma^{*}\zeta_{12}=\zeta_{12}$ .

and define an automorphism $\sigma_{*}:\mathcal{U}(\mathfrak{X})arrow \mathcal{U}(\mathfrak{X})$ by

$(\sigma^{*}\otimes$ id$)\Omega=($ id $\otimes\sigma_{*})\Omega$ .

Hence we have

$\sigma_{*}Z_{1}=Z_{1}$ , $\sigma_{*}Z_{11}=Z_{1}-Z_{11}-Z_{2}$ ,
$\sigma_{*}Z_{2}=Z_{2}$ , $\sigma_{*}Z_{22}=-Z_{1}+Z_{2}-Z_{22}$ , $\sigma_{*}Z_{12}=Z_{11}+Z_{22}+Z_{12}$ .

Since $($ id $\otimes\sigma_{*})^{-1}(\sigma^{*}\otimes$ id $)\Omega=(\sigma^{*}\otimes\sigma_{*}^{-1})\Omega=\Omega$ , the function

$\tilde{\mathcal{L}}(z, w)=(\sigma^{*}\otimes\sigma_{*}^{-1})\mathcal{L}(z_{1}, z_{2})=\mathcal{L}(\sigma(z_{1}, z_{2}))|_{Zarrow\sigma^{-1}Z},$

$(Z=Z_{1},Z_{11},Z_{2},Z_{22},Z_{12})$

is also a fundamental solution of the KZ equation of two variables which has
the asymptotic behavior

$\tilde{\mathcal{L}}(z_{1}, z_{2})\sim I(\frac{-z_{1}(1-z_{2})}{1-z_{1}})^{Z_{1}}(\frac{-z_{2}(1-z_{1})}{1-z_{2}})^{z_{2}}$ $(z_{1}, z_{2})arrow(0,0)$ .

Therefore the connection formula for $\mathcal{L}(z_{1}, z_{2})$ and $\tilde{\mathcal{L}}(z_{1}, z_{2})$ is written as

$\tilde{\mathcal{L}}(z_{1}, z_{2})=\mathcal{L}(z_{1}, z_{2})\exp($ -sgn$({\rm Im} z_{1})\pi iZ_{1})\exp($ -sgn$({\rm Im} z_{2})\pi iZ_{2})$ .

For the later use, it is convenient to rewrite this as follows:

$(\sigma^{*}\mathcal{L})(z_{1}, z_{2})=(\sigma_{*}\mathcal{L})(z_{1}, z_{2})\exp(-sgn({\rm Im} z_{1})\pi iZ_{1})\exp($ -sgn$({\rm Im} z_{2})\pi iZ_{2})$ .

The terms $[Z_{1}, Z_{11}]$ and $[Z_{2}, Z_{22}]$ in the both sides above appear in $\sigma^{*}\hat{\mathcal{L}}_{2}(z_{1}, z_{2})$

and $\sigma_{*}\hat{\mathcal{L}}_{2}(z_{1}, z_{2})$ . Comparing the coefficients of $[Z_{1}, Z_{11}]$ , we have

$Li_{2}(\frac{-z_{1}(1-z_{2})}{1-z_{1}})=$ Lil,1 $($ 1, 1; $z_{1},$ $z_{2})-Li_{2}(z_{1})-$ Lil,1 $(z_{1})+$ Li2 $(0,1;z_{1}, z_{2})$ ,

(Ll)

and comparing the coefficients of $[Z_{2}, Z_{22}]$ ,

Li2 $( \frac{-z_{2}(1-z_{1})}{1-z_{2}})=-$ Lil,1 $($ 1, 1; $z_{1},$ $z_{2})-Li_{2}(z_{2})-$ Lil, 1 $(z_{2})+$ Lil $(z_{2})$ Lil $(z_{1})$ .
(L2)
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We should observe that (Ll) is regarded as a “two-variables” analogue of
the Landen formula for the dilogarithm [Le]. Since $Li_{2}(0,1;z_{1}, z_{2})=$

$Li_{2}(z_{1}z_{2})$ and Lil,1 $(z)= \frac{1}{2}\log^{2}(1-z),$ $(L1)+(L2)$ gives the five term relation
for the dilogarithm $(5TERM)$ :

Li2 $(z_{1}z_{2})=$ Li2 $( \frac{-z_{1}(1-z_{2})}{1-z_{1}})+Li_{2}(\frac{-z_{2}(1-z_{1})}{1-z_{2}})$

$+$ Li2 $(z_{1})+$ Li2 $(z_{2})+ \frac{1}{2}\log 2(\frac{1-z_{1}}{1-z_{2}})$ .
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