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to the Euler equations

RALRFERZGIEFSERE &l 7 (Ryo Takada)
Mathematical Institute, Tohoku University

Dedicated to Professor Kenji Nishihara on his sixtieth birthday

1 Introdunction and Main Result

Let us consider the Euler equations in R” with » > 2, describing the motion of perfect
incompressible fluids,

av n
S, HVEYp=0, (x,1) ER"x (0,%0), (B)
divv =0, (x,2) € R" x (0,00),

where v = v(x,t) = (vi(x,7),--- ,vn(x,t)) and p = p(x,?) denote the unknown velocity
vector and the unknown pressure of the fluid at the point (x,¢) € R” x (0,<0), respectively.

There are a number of results on local-in-time existence and uniqueness of smooth
solutions to (E). Kato [10] proved that for the given initial velocity vy € [H™(R")]” with
m > n/2+ 1 satisfying divvy = 0, there exist T = T'(||vg||#m) > 0 and a unique solution v
of (E) with v(x,0) = vy (x) in the class C([0, T]; [H™(R")]"). Kato and Ponce [11] extended
this result to the fractional-order Sobolev space W*?(R") = (1 — A)~%/2LP(R") for s >
n/p+1,p € (1,0). Later, Chae [2] obtained a local-in-time existence result in the Triebel-
Lizorkin space Fj ,(R") withs > n/p+1,(p,q) € (1,°0)?. Moreover, a number of studies
on the Euler equations in the Besov spaces B;,q (R™) have been done by Vishik [20] [21]
[22], Chae [3], Zhou [23], Pak and Park [17] and the author [18].

It is an interesting question whether the local-in-time solution v(x,?) blowsup att =T
or can be extended to the solution in the same class beyond 7. Beale, Kato and Majda
[1] showed a criterion for solutions in the class C([0, T); [H™(R3)]?) in terms of the vor-
ticity @ = curlv, which states that if @ € L'(0, T;[L”(R3)]3), then v can be continued
to the solution in the class C([0, T'); [H™(R3)]3) for some 77 > T. Kozono and Taniuchi
[12] extended this results by replacing the L™-norm by the BMO-norm for the vortic-
ity, and H™(R") by W*P(IR") for the velocity, respectively. Moreover, Kozono, Ogawa
and Taniuchi [13] gave a criterion which is a refinement of the above results in the sense
that the BMO-norm is replaced by the Besov space Bg,w-norm for the vorticity (We re-
mark the continuous embedding properties L= (R") — BMO(R”) — Bg,m (R™)). Later,
Chae [2] improved these results by replacing the W*:#(R") by the Triebel-Lizorkin spaces
Fy 4 (R7™) for the velocity, and obtained similar results in terms of the Besov spaces [3].

The purpose of this paper is to investigate the relation between the blow-up phenom-
ena and the backward self-similar solutions of (E). It is known that if (v, p) solves (E),
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then so does the pair of family (vV}'*, p*®) forall A > 0 and all @ € R\ {—1}, where
V% (1) = A% (Ax, A% ), pM o (x,0) = A2 p(Ax, A% )

for (x,¢) € R” x (0,). From the above scaling properties, the singular solution (v, p) of
the self-similar type for (E) should be of the form

1 x 1 x
v(x,t) = = — 1, x,l) = = : 1.1
(1) (T_,)mV((T_,)m) plx.1) (T-,)mp((T_,)m) (1.1)

for some o € R\ {—1}, where (¥, P) is a solution of the following system

1
%y (x-V)V +(V-V)V +VP =0, xER",
o+1 o+ 1 (SEq)
divV =0, x € R™.

Note that (SEy) may be regarded as the Euler version of Leray’s idea for the Navier-
Stokes equations introduced in [14]. If (SE,) possesses a non-trivial solution V, then
v of the form (1.1) would be a non-trivial solution to (E) and develop a singularity at
time = T. Concerning the 3-dimensional Navier-Stokes equations, the question of the
existence of self-similar soluiotns was originally proposed by Leray [14], and its nonexis-
tence in the energy class was proved by Necas, Riizitka and Sverak [16] (see also Malek,
Necdas, Pokorny and Schonbek [15]). Later on, Tsai [19] relaxed the hypothesis of nonex-
istence on the asymptotic decay properties of backward self-similar solutions. For the
3-dimensional Euler equations, similar nonexistence results have been obtained by Chae
[4] [5]. In [5], he excluded any possibility of self-similar singularities assuming fast de-
cay near infinity for the vorticity. Moreover, more refined notions of asymptotically self-
similar singularity and locally self-similar blow-up were considered by Chae [5] [6] and
by Hou and Li [9] for both the Euler and the Navier-Stokes equations, and they obtained
the nonexistence results.

In this paper, we consider the self-similar singularities for weak solutions of (E) in
the energy class and prove that the weak solutions to (E) in the form (1.1) must be trivial
if the pressure satisfies some integrability and sign conditions. Moreover, we also show
the nonexistence of self-similar blow-up phenomena for strong solutions to (E) under the
slow dacay condition at infinity for the velocity itself provided @ # n/2. We remark
that in terms of the asymptotic decay at space infinity, our assumption for the velocity is
slightly weak in comparison with that of L?-functions. Note that the classical solution of
the Euler equation (E) conserves the energy, that is, ||v( -,t)||%2 is a constant function on
(0, T). Hence the energy space for the Euler equation (E) is L=(0, T; [L?(R")]").

Before stating our result, we introduce some definitions. A pair (V,P) € [L2 (R")]" x
L,‘oc (R™) is called a weak solution of (SEy) if V is divergence-free in the distribution
sense, and

(04 1 ‘
m/wV(x).q)(x)d — o1 RnV(x)-dlv((p(g)x)(x)dx .

_/Rntr[V@)VV(p] (x)dx~/RnP(x) divo(x)dx =0
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holds for all vector test functions ¢ € [C5’(R™)]".

Definition 1.1. The function space X>=(R") is defined to be the set of all locally square
integrable functions f € L2 (R") such that

limsup/ |f(x)|?dx < oo.
R<|x|<2R

R—00

It is easy to see the inclusion relation L?(R") C X2 (R"). For example, if we define
the function f such that f(x) = |x|~"/2 for |x| > 1, and f(x) = 0 for |x| < 1, then we have
feX®(R")\ L2(R").

Our result now reads:

Theorem 1.2. Let oo € R\ {—1} and let (V, P) be a weak solution of (SEq). Suppose that
(V,P) € [X3=(RM)]" x L' (R"). Then V € [L*(R™)]" and

/ {V;(x)2+ P(x) bdx = 0 (1.3)
]Rn
Jorall j=1,2,--- 'n. Inparticular, if
P(x)dx >0
]Rn

then V (x) = 0 and P(x) = 0 for almost every x € R".

Remark 1.3. This type of nonexistence results were recently obtained by Chae [7] for
the original Euler and Navier-Stokes equations. He treated weak solutions of the Eu-
ler and the Navier-Stokes equations in the class L' (0, T;[L?(R")]") for the velocity, and
L'(0,T;L'(R™)) for the pressure, respectively. If the solution (v, p) is of the form (1.1),
then above classes for (v, p) correspond to the conditions that ¥ € [L?(R”)])” and o > —1
for the velocity, and P € L' (R") and —1 < a < n+ 1 for the pressure, respectively. Hence,
our result here could be regarded as one of the improvements of his in the sense that the
assumption for the velocity L2(R") is replaced by X>=(R"), and there is no restriction for
the range of o.

We next consider the self-similar singularities of strong solutions to (E). A function
V € [C'(R™)]" is called a strong solution of (SE) if ¥ belongs to [LP(R")]” for some
p € (1,0, satisfies the divergence-free condition, and there exists a function P € L1(R")
with some g € [1,00) such that

o
_&——ﬁ - V(X) (p dx+ 1 /n X- V (x)dx

(1.4)
_,_/Rn(V(x) .V)V(x).(p(x)dx—/RnP(x) dlvq)(x)dx: 0

holds for all ¢ € [C} (R™)]".
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Remark 1.4. We remark the uniqueness of the pressure for the strong solution of (SEg).
Let V be a strong solution of (SEy) with V' € {ézp(R")]" for some p € (1,o). Then the
pressure P associated with V' can be chosen as P,

n
P= Z Rij(I/ij)a
Jik=1

where {R j};le are the n-dimensional Riesz transforms. Indeed, by the boundedness of
R; and the Fourier transforms, we have P € LP(R") and

_ /R ” jo“(x)m,/(x)arx=Mz;l /R Vi ()Vix) 9w (@), (1.5)

for all y € #(R"). On the other hand, since divV = 0, if we choose the vector test
function ¢ in (1.4) as ¢ = Vy, y € C5(R"), we have

_/R" P(x)AV/(x)dx:j,kizl/l;{” Vi(x)Vi(x)0dky(x)dx. (1.6)

From (1.5), (1.6) and Weyl’s lemma, we have P — P € C(R") and A(P ——~I5) = 0. Then, it
follows from the mean value property for harmonic functions that P = P, which implies
the uniqueness of the pressure.

Our result on strong solutions now reads:

Theorem 1.5. Let x € R\ {—1,n/2} and let V be a strong solution of (SEq) with V €
[(X*>=NLP)(R™)]" for some finite p € [;:2%, n—4_"—2] ThenV =0 in R"

Remark 1.6. Let @« € R\ {—1,n/2} and let ¥ be a strong solution of (SE) with
Vix)= O(|x|’"/2), as |x| — oo.

Then, since ¥ € [(X%>>NLP)(R™)]" for all p > 2, we have ¥ = 0 by Theorem 1.5. On the
other hand, He [8] treated 3-dimensional case and showed the nonexistence result under
the stronger condition such as

Vix)= O(|x|_k), P(x) = O([xl—'"), as |x| — oo,

where k > 3/2 and m > 1/2. Hence our result includes [8].

2 Proof of Theorems
Proof of Theorem 1.2. Let us first introduce the cut-off function o € C7(R") such that

1 if|x| <1,

o(x) =0 (xl) = {0 if x| > 2
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and0< o(x) <1forl<|x|<2 GivenR>O0and€{l,2,---,n}, we put

x2
or(x) =0 (%) grs() = Lor()

for x = (x1,--- ,x;, -+ ,xn) € R". Then, we choose the vector test function ¢ € [Cy (R”)]"
in (1.2) as
3 3 3
¢(x) = Vgr,j(x) = | 50 Or(x),- - ,%jOR(x) + - 95,08 (x), -+, -0x, OR(x) |.
We remark that this type of vector test function was first introduced in [7]. Since

(04

o [ ve)-owdx=—=5 [ V() Vgr(x)dx =0

and

1 1
- .di — ) _1 . .V : -0
P /]R" V(x)-div(e ®x)(x)dx o A;n V(x)-V((n—1)gr;+ (x-V)gr,;) (x)dx
from the divergence-free condition for V', we have by (1.2) that

0= /R Vj(x)20n(x)dx

2 X5 s
+/Ran(x) {ijaxjdk(x)+?jc9xj0';q(x)}dx
2

+23, / x)Vk(x){x,ébc,(cﬁ»(x)Jr ax]axko,g(x)}

k#/

+ > / Vk(x)Vl(x)xzaxkax,GR(x)dx
2 a7

+ /IR" P(x)or(x)dx

x2
+/l.& P(x){ijaij'R(x)—i— ~21A0'R(x)}dx
— 4+ b4 L+ I+ 15 + L. 2.1)

We shall derive estimates for L, 13,14 and Is. Let m € N, € (NU{0})” with |at| = m and
k,l € {1,2,---,n}. Since suppd¥or C {x € R"|R < |x| < 2R}, we have

”_aa <R)

< 2™ sup IBan'(X)I/R<Ix,<|2VR(x)!2dx’

I<|x|<2

S LACLICIEY dx

<x<

‘]&fﬁﬁﬁﬁ@h¥930k@ya
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which yields
B+l Hal<C [ v Pax 22)
Similarly, we have
1 b
moo m| - S« d
' /R (R} or(x)dx| < /R L QI ot o(%)|ax
<2" sup [9%c()| [ |P(x)ldx,
1<|x|<2 R<|x|<2R
which yields
sl<c | Pl (2.3)
<|x|<2R
Since P € L'(R"), it holds that
Is — / P(x)dx 2.4)
Rn
as R — oo, From (2.1), (2.2) and (2.3), we have
/ Vi(x)%or(x)dx < C 14 x)|2dx+‘/ P(x)or(x)dx
R" R<|x|<2R (2.5)
+C |P(x)|dx.
R<|x|<2R

Since V € [X?>=(R")]"” and P € L' (R"), we obtain from (2.4) and (2.5) that

hmsup/ Vi(x)*or(x)dx < Climsup |V(x)|2dx+ II1P|l 1 < oo,

R— oo R< x

which implies ¥; € L?>(R"). Since j € {1,2,---,n} is arbitrary, we have V € [L?(R")]".
Now, we shall prove the identities (1.3). Since we have derived V € [L?(R")]” and
since P € L' (R") by the hypothesis, we have

1-—/ Vi(x)%d
1 R j(x) X

as R — oo. Moreover, by (2.2) and (2.3), we have

< /beR Vj(x)2 |1 —or(x)|dx < ./|x|>R Vj(x)zdx -0 (2.6)

Bl + 1B+ <C [ [V@)Pdx—o, @7
JR<|x|<2R

ls| < C / |P(x)[dx -0 (2.8)

R<|x|<2R

as R — oo. Hence letting R — o in (2.1), from the convergences (2.6), (2.7), (2.4) and
(2.8), we obtain the identity

/1;" {Vj(x)2 +P(x)}dx =0

forall j =1,2,--- n. This completes the proof of Theorem 1.2. O
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Proof of Theorem 1.5. As in the proof of Theorem 1.2, we consider the cut-off function
Or € Cy(R™). Then, if we choose the test function ¢ € [C}(R”)]” in (1.4) as @(x) =
or(x)V (x), we obtain from integration by parts that

200 —n
0= 3o 1) Jo ROV (e~ 2(a+1)/ x-V)or(x) |V (x)[2dx
—.;. L, (7@ V)or@Iy ()P - /R (V%) V) or(x)P(x)dx
=1+ +J+Js. (2.9)

For the estimate of .J;, we have

1

— x||[Vor OV (x)|%dx
2o+ 1] R<|x|L2|]l RV )

R 1 X

|a+ 1] Jr<jx|<2r | R (R)ll )

1
< \v4 / V (x)|%dx. 2.10
o+ 1] 1<S|1i|p<2| o ()] R<|xll21gx)| o ( )

2] <

Next, we derive the estimates for J3 and J4. Put

1=1_3
— n_p
a=—g—7
2 p
Notethat 0 <a<1forn>3,0<a< 1 forn=2and
1 2 a 1—a
-t — 4=+ =1,
n p 2 )2

for n > 2. Then, by the Holder inequality, we have
1

2 JR<|x|<2

—“VO-“L"“V”LI’“VXR”LZZHVXR”LP : (2.11)

3l <5 IVGR(x)IIV(X)|3dx

where xr is the characteristic function of the annulus {x € R" | R < |x| <2R}. As we
mentioned in Remark 1.4, we have the representation of pressure P =37 ,_; R;jRx(V;Vk),

which yields [|P|| ; < C||V||2,. Hence we have

Ja| < [Vor(x)[|P(x)I|V (x)|dx
R<|x|<2R

< IVl Pl g IV xrlg= NV Xzl L
< Vol VI 1V xrll 21V xRl (2.12)
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From (2.9), (2.10), (2.11) and (2.12), we obtain

200 —n
< sup |Vo(x V(x)|*dx
|a+1ll<|x|<2| (x)] R<|x|l21g )]
+C|IVoll IV IV 2RIV 2RI 15 % (2.13)

Since ¥ € [(X%~ NLP)(R")]", we obtain from (2.13) that

limsup [ or(x)|V(x)|%dx
Rn

R—oo
2
< ——— sup |Vo(x)|limsup [V (x)|>dx
120 — 1| 1< ix<2 R—soo JR<|x|<2R
Cl2(a+1)]

20— 7] Vo ||L"HV||LphznsupIIVXRIleHVXRII

< oo,

which implies V' € [L2(R")]".
Next, we will prove the convergences of Ji,.J2,J3 and Js. Since we have derived
V € [L?(R")]", we have

|20 — n|
12(c + 1) Jix)>
|20 — |

= 2(a+1)] x>

/ WV (x)[2dx| <

!Jl 2( +1) LV(x)| |1 — or(x)|dx
J?V(x)|2dx — 0,
as R — oo, and from (2.10), (2.11) and (2.12)

2] <

I 2
sup |Vo(x / V(x dx — 0,
FEST l<]x|<2l (x)] 4

3| + [l < ClIVo eV 12 HVJCRIILzIIVxRIIl “—0,
as R — oo. Hence letting R — oo in (2.9), from the above convergences, we obtain

200 —n

2
et =0
2o+ 1) S I

which implies ¥ = 0. This completes the proof of Theorem 1.5. 0J

Acknowledgement: The author would like to express his sincere gratitude to Professor
Hidco Kozono for his great encouragement and helpful discussions. The author is partly
supported by Research Fellow of the Japan society for the Promotion of Science for Young
Scientists



155

References

[1] J.T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler
equations, Comm. Math. Phys. 94 (1984), no. 1, 61-66.

[2] D. Chae, On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces, Comm. Pure
Appl. Math. 55 (2002), no. 5, 654-678.

» Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot.
Anal. 38 (2004), no. 3-4, 339-358.

, Remarks on the blow-up of the Euler equations and the related equations, Comm. Math.
Phys. 245 (2004), no. 3, 539-550.

(3]

(4]

[5] , Nonexistence of self-similar singularities for the 3D incompressible Euler equations, Comm.
Math. Phys. 273 (2007), no. 1, 203-215.

[6] , Nonexistence of asymptotically self-similar singularities in the Euler and the Navier-Stokes
equations, Math. Ann. 338 (2007), no. 2, 435-449,

[7] , Liouville type of theorems for the Euler and the Navier-Stokes equations, arXiv:0809.0743.

[8] X.He, Self-similar singularities of the 3D Euler equations, Appl. Math. Lett. 13 (2000), no. 5, 41-46.

[9] T.-Y. Hou and R. Li, Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-
Stokes equations, Discrete Contin. Dyn. Syst. 18 (2007), no. 4, 637-642.

[10] T. Kato, Nonstationary flows of viscous and ideal fluids in R*, J. Functional Analysis 9 (1972), 296
305.

[11] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure
Appl. Math. 41 (1988), no. 7, 891-907.

[12] H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the
Euler equations, Comm. Math. Phys. 214 (2000), no. 1, 191-200.

[13] H.Kozono, T. Ogawa, and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity
criterion to some semi-linear evolution equations, Math. Z. 242 (2002), no. 2, 251-278.

[14] J. Leray, Sur le mouvement d’un liquide visqueux emplissant [’espace, Acta Math. 63 (1934), no. 1,
193--248.

[15] J. Milek, J. Necas, M. Pokorny, and M. E. Schonbek, On possible singular solutions to the Navier-
Stokes equations, Math. Nachr. 199 (1999), 97-114.

[16] J.Neéas, M. RiiZi¢ka, and V. Sverik, On Leray's self-similar solutions of the Navier-Stokes equations,
Acta Math. 176 (1996), no. 2, 283-294.

[17] H. C. Pak and Y. J. Park, Existence of solution for the Euler equations in a critical Besov space
BLJ (R"), Comm. Partial Differential Equations 29 (2004), no. 7-8, 1149-1166.

[18] R. Takada, Local existence and blow-up criterion for the Euler equations in Besov spaces of weak
type, J. Evol. Equ. 8 (2008), no. 4, 693-725.

[19] T.-P. Tsai, On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy
estimates, Arch. Rational Mech. Anal. 143 (1998), no. 1, 29-51.

[20] M. Vishik, Hydrodynamics in Besov spaces, Arch. Ration. Mech. Anal. 145 (1998), no. 3, 197-214.

[21] , Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann.
Sci. Ecole Norm. Sup. (4) 32 (1999), no. 6, 769812,

, Incompressible flows of an ideal fluid with unbounded vorticity, Comm. Math. Phys. 213
(2000), no. 3, 697-731.

[23] Y. Zhou, Local well-posedness for the incompressible Euler equations in the critical Besov spaces,
Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 773-786.

[22]




