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Automorphism Classification of Cellular Automata—a continuation
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Kyoto University
Abstract

Following the previous studies on the automorphism classification of CA, we treat here a few
new topics: (1) We prove first a lemma that the equivalence/automorphism of CA is conserved when
changing the neighborhood. (2) We recollect the past studies on the enumeration of equivalence

classes of Boolean functions in 1950-60s and generalize thereunder the automorphism classification
of CA.

1 Preliminaries

The definitions and previous results are briefly restated, of which details will be found in [1, 2, 3].

1.1 CA and local structures

A cellular automaton is defined by a 4-tuple (Z%, Q, f, v), where Z% is a d-dimensional Euclidean space,
Q is a finite set of cell states, f : Q™ — Q is a local function and v is a neighborhood.

e [neighborhood] A neighborhood is an injective map v : N, — Z¢, where N,, = {1,2,... ,n}

and n € N. This can equivalently be seen as a list v with n components (v1,...,v,), where
v; = v(1),1 < i < n, is called the i-th neighbor. The i-th variable of f is connected to the i-th
neighbor.

e [local structure] A pair (f,v) is called a local structure of CA. We call n the amity of the local
structure. When the space Z? and the state set Q are understood, CA is often identified with its
local structure.

¢ [global function] A local structure uniquely induces a global function F : de — de, which is
defined by

F(C)(p) = f(C(p+V1),C(p+I/2),--~,C(})+Vn)), (1)

for any global configuration c € QZd , where c(p) is the state of cell p € Z% in c.
Yy & 8!

Remark 1 In [2] the local structure is defined more generally, but in this paper we assume, without loss
of generality, a restricted but most usual case of reduced local structures, see the following definition
and Lemma 1.

Definition 1 [reduced local structure] A Jocal structure is called reduced, if and only if
e v is injective, i.e. v; # v; fori # j in the list of neighborhood v and

e f depends on all arguments.

Lemma 1 For each local structure (f,v) there is an equivalent reduced local structure (f',v").
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1.2 Permutation equivalence of local structures

Definition 2 [equivalence] Two local structures (f,v) and (f',V') are called equivalent, if and only if
they induce the same global function. In that case we write (f,v) = (f',V).

Definition 3 [permutation of local structures] Let m denote a permutation of the numbers inN,,. The
set of all permutations ms of the numbers from N,, constitutes a symmetric group S, of degree n.

o For a neighborhood v, denote by v™ the neighborhood defined by vT a(i) = Vi-
e forann-tuplel € Q", denote by {™ the permutation of £ such that £™ (i) = £(m(i)) for1 < i < n.

For a local function f : Q™ — Q, denote by f™ the local function f™ : Q™ — Q such that
f™(€) = f(€™) for all ¢.

Remark 2 As for the definition of the permutation of local functions, we have the following lemma.

Lemma 2 When a local function f : Q™ — Q is expressed by a polynomial f (1, ..., Tr) over GF(q), q =
|QI. we have another equivalent definition for the permutation of local functions — permutation of the
order of arguments.

(@1, -, Zn) = F(@r()s > Tr(n)) @)

Example 1 Permutations of 3 objects are usually expressed by a symmetric group S3 = {m;,0 < i < 5}

as is shown below.
_1237r_1237r_123
=12 3/°™MT\1 3 2) ™ \2 1 3)°

(1 2 3 (123 (123
=23 1)"™T\3 1 2)"™\3 2 1

Neighborhood (—1, 0, 1) is called the elementary nelghborhood and denoted ENB. Then 6 permutations
of ENB are seen isomorphic to S3 as follows.

ENB™ = (-1,0,1), ENB™ = (~1,1,0), ENB™ = (0,-1,1),

ENB™ = (0,1,-1), ENB™ = (1,-1,0), ENB™ = (1,0, —1)

The local function of an ECA is called an elementary local function denoted ELF, which is expressed by
a polynomial over GF(2) or a Boolean function in 3 variables.

The Iocal function of computation universal ECA rule 110 is expressed by frio(z1, T2, 23) = 712273 +
z2x3 + T2 + x3. Then 6 permutations of f11o are shown as follows.

fuo = flio = Z1%2%3 + T223 + T2 + z3. 3
110 f110 = T1T2Z3 + 123 + T1 + 3. (4)
flio = fito = T1Z2%3 + T122 + T1 + T2. 5)
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1.3 Previous results
Here we extract from the previous papers some basic results on the equivalence of local structures.

Lemma 3 (f,v) and (f™,v™) are equivalent for any permutation .

Lemma 4 If (f,v) and (f',v') are two reduced local structures which are equivalent, then there is a
permutation 7 such thatv™ = /',

Theorem 1 [permutation-equivalence of local structures]

If(f,v) and (f',v") are two reduced local structures which are equivalent, then there is a permutation
7 such that (f",v™) = (f',V').

Automorphism classification of CA

Definition 4 Two CA A and B are called automorphic, denoted A = B, if and only if there is a pair of
permutations (m, @) such that '

(fB,vB) = (¢~ ' fhw, v]4). (6)

The automorphism naturally induces a classification of local functions of CA, which will be called the
automorphism classification. Every CA belonging to an automorphism class is said to have the same
behavior up to permutations.

As a typical example of the automorphism classification, the set of 256 ELF is classified into 46 classes,
see kokyuroku of RIMS workshop (LA Symposium, Feb. 2009) [1].

2 Equivalence is conserved when changing neighborhoods

We prove here a lemma that equivalence of local structures is conserved when changing the position of
neighborhoods. Owing to this lemma, the automorphism classification is not affected by changing the
neighborhood. We notice that the mapping r introduced below conserves the equivalence, but generally
not the global properties of CA like reversibility.

Consider an injective map r : Z¢ — Z% | d,d’ > 1 which is used to change the positions of neighbors.
Note that we are considering a mapping in possibly different dimensional spaces, see the example below.
To neighborhood v = (v1,...,v,), r is applied componentwise. For the resulting neighborhood we
write rv. That is (Vi)(rv); = r(v;). See Fig.1.

Lemma 5 If(f,v) = (f',V), then (f,rv) = (f', V).

Proof. For a proof by contradiction assume, that (f,rv) % (f’,r/). Denote the corresponding global
functions by F and Fy. Then there is a configuration c,, such that Fy.(c,) # F’(c,). Without loss of
generality, we assume Fr.(c.)(0) # F/(c,)(0).

Define a configuration c as c(z) = ¢, (r(z)) for all z € Z%. We claim that F(c,)(0) # F’(c,)(0), i.e.
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(fiv) # (f,0).
F(e)(0) = F(c(w), .-, c(vn)
= f(Cf(T(Vl)), s er(r(vn)))
= fler((rv)1), - -y er((TV)n))
— Fo(er)(0)
£ F(c;)(0)

= F'(c)(0)

Z>? v3

Vs | 1 | V2

V4

Tvs | vy | Tvg | Yo TV3

-1 0 1 2 3 4

Figure 1: Mapping of von Neumann neighborhood r : Z? — Z.

Example 2 Consider an injective map v from Z? to Z. r is defined by 4 partial maps ry,ry;, 7111 and
rrv as given below, each of which maps (I) the first quarter (x > 0,y > 0), (II) the second quarter
(zx > 0,y < 0), (1) the 3rd quarter (x < 0,y < 0) and (IV) the 4th quarter (zx < 0,y > 0) into (I)
nonnegative even, (II) positive odd, (II]) negative even and (IV) negative odd integers, respectively. Note
thatr1(0,0) = 0. It is also seen that r is surjective and therefore bijective.

ri(z,y) = (z+y)(z+y+1)+ 2y, wherez > 0,y > 0. (7
rir(z,y) = (z—y)lz—-y—1)—2y—1, wherez > 0,y < 0. 8)
rrri(z,y) = —{(z+y+1)(z+y+2)— 2y}, wherez <0,y <O0. 9
riviz,y) = —{(z—-y)x—y+1)+2y+ 1}, wherez <0,y > 0. (10)

By this r, for instance the 2-dimensional von Neumann neighborhood
((0,0),(1,0),(0,1),(0,—1),(—1,0)) is mapped to 1-dimensional neighborhood
(0,2,4,1, —1) as illustrated in Fig.1.

Of course, as noticed above this example of v : Z? — Z is independent from the decidability issue of
reversibility: reversibility is decidable in Z but not in Z2.
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3 Enumeration of symmetry types of Boolean functions

The equivalence class of Boolean functions defined below is called a symmetry type and the enumeration
problem of the number of symmetry types (equivalence classes) was generally solved (for arbitrary n)
by D. Slepian (1953) (4] and M. Harrison (1963) [5] by use of Pédlya’s enumeration theorem (1937)[6].
One of their motivations for such a classification study is the cost of logical designs at the early stage of
digital computers. The two circuits in Fig.2 are considered to be of the same cost and the corresponding
Boolean functions are classified into one class. '

z] )

— f(z1.%2,73) = 7172 + Z123
Tr T3
T3 Ty

] f(21. 22, 23) = 22T3 + 2123
Ty T

Figure 2: Logical circuits obtained by replacing z2 by Z3 and z, by 3. Remake of Fig.2 of M. Harri-
son(1963)

3.1 Basics
e Boolean logic: B = ({0,1}, V, A, @) with well known derivation rules.
e Boolean function in n variables: f(z1, ..., zn).
e Boolean vs polynomial: aVb=a+ b+ abaAb=ab,a=1+a.

e Conjugation o™ fo =1+ f(1 +z1,...,1 + z,) = f(T] T3...Tn)-

Any n variable Boolean function f,, u = 0, ..., 22" — 1 is expressed by a disjunctive normal form:

2n—-1

fu(xla ---al'n) = Z CuvSv, (11)

v=0

where €, € {0,1} and sp = z1Z2...Tn, S1 = T1T2...Tn,s ..., S2n_1 = T] T2...Tp-

3.2 Permutation and negation of Boolean functions

e Permutation of (variables of) a Boolean function is defined in the same way as Definition 3:
fT(x1, s Zn) = f(Zx(1), > Tr(n))- The set of permutations is isomorphic with Sy,.

e For expressing a negation of z;, we use a superfix z7*; for Z; let o; = 1 and for x;, let a;; = 0.
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® Alista = (a, ..., an) expresses a combined negation of variables of Boolean function f(z, ..., Z,,):
af(zy,...,zn) = f(z7, ..., 2%").

e The set S7 of all as is a permutation group of order 2™.

3.3 Equivalence relation defined by (5, S})

The pair G™ = (Sp, §3) of permutation groups S, and SZ naturally defines an equivalence relation &~gn
among the set of Boolean functions in n variables;

f=gn f < f =af" for 3r € S,,3a € ST. (12)

Utilizing this relation, we can classify Boolean functions. D. Slepian (1953) uses Pélya’s enumeration
theorem for getting the number of equivalence classes for any Boolean functions in 7 variables [4].

Example 3 Case ofn = 2: 22" = 16 Boolean functions f (z,y) are classified into 6 equivalence classes:
[0, (1], [z, %, v, 7], [y, 27, Ty, T G), [z V4, TV 4,z VET VT, [ v,z = y]

Case of n = 3: 256 Boolean functions are classified into 22 classes, which is compared with 46 in our
automorphism classification of ECA.

4 Generalization of the automorphism of CA

Inspired by the above equivalence classes of Boolean functions, we generalize the definition of automor-
phisms of CA; The states of neighbors v; (i = 1, ...,n) of a cell are permuted independently and then the
function value is computed. The positions of the arguments (the neighbors) are also permuted as before.
Formally, we have

Definition 5 Let S7 = S, x --- x Sg and (™ € Sg- Denote G™ = (Sy, S7). Then two CA A and
B are defined to be automorphic, denoted A =gn B, if and only if there are permutations = € S, and
o™ ¢ Sg such that

(fB,vB) = (f5\™,03), (13)

where 5™ stands for f3(z$*, ..., z%"), where z¥* is a permutation ¢; € S, of the i-th argument z;
for1 < i < n. In this case we write o™ = (¢1, ..., 05) € Sg- The case of @ = 2 is nothing other than
the equivalence of Boolean functions.

Another definition will be possible; An additional permutation of states ' € S, is applied to the function
value.

(fB,vB) = (¢ f10™,07). (14)

If every permutation of the states is equal, i.e. p; = ¢, 1 < i < n, for some p € S,, the automorphism
is same as the original automorphism.

This generalized automorphism is an equivalence relation and induces a classification of CA like the
original one. Any two local functions in a class have the same global behavior up to permutations. The
classification is considered to be a group action of G™ on the set of polynomials P,, , over GF(q) in
n-variables, where the action of a larger group generally gives a smaller number of classes, see [3].
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9 Concluding remarks and acknowledgements

In this paper we discussed a generalization of the automorphism classification of CA following the past
studies on the symmetry classes of Boolean functions. A motivation for that is to extract the symmetric
structure of local functions by disregarding the effects of neighborhoods. The number of the generalized
automorphism classes will be obtained using the orbit counting lemma and/or Pélya’s enumeration the-
orem as was done for classifying Boolean functions. The computation itself, however, has been left for
future work.

The author thanks to Thomas Worsch from the University of Karlsruhe for valuable discussions, partic-
ularly for establishing Lemma 5 and to Mitsuhiko Fujio from the Kyushu Institute of Technology for
commenting on the résume presented at the RIMS workshop (LA Symposium) held in Kyoto University
on February 2, 2010.
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