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Abstract

FollowIng the previous studies on the automorphism classification of CA, we treat here a few
new topics: (1) We prove first a lemma that the equivalence/automorphism of CA is conserved when
changing the neighborhood. (2) We recollect the past studIes on the enumeration of equivalence
classes of Boolean functions in 1950-60s and generalize thereunder the automorphism classification
of CA.

1 Preliminaries

The definitions and previous results are briefly restated, of which details will be found in [1, 2, 3].

1.1 CA and local structures

A cellular automaton is defined by a 4-tuple $(\mathbb{Z}^{d}, Q, f, \nu)$ , where $\mathbb{Z}^{d}$ Is a d-dimensional Euclidean space,
$Q$ is a finite set of cell states, $f$ : $Q^{n}arrow Q$ is a local function and $\nu$ is a neighborhood.. [neighborhood] A neighborhood is an injective map $\nu$ : $\mathbb{N}_{n}arrow \mathbb{Z}^{d}$ , where $\mathbb{N}_{n}=\{1,2, \ldots, n\}$

and $n\in \mathbb{N}$ . This can equivalently be seen as a list $\nu$ with $n$ components $(\nu_{1}, \ldots, \nu_{n})$ , where
$\nu_{i}=\nu(i),$ $1\leq i\leq n$ , is called the i-th neighbor. The i-th variable of $f$ Is connected to the i-th
neighbor.. [local structure] A pair $(f, \nu)$ is called a local structure of CA. We call $n$ the amity of the local
structure. When the space $\mathbb{Z}^{d}$ and the state set $Q$ are understood, CA is often identified with its
local structure.. [global function] A local structure uniquely induces a global function $F$ : $Q^{Z^{d}}arrow Q^{Z^{d}}$ . which is
defined by

$F(c)(p)=f(c(p+\nu_{1}), c(p+\nu_{2}), \ldots, c(p+\nu_{n}))$ , (1)

for any global configuration $c\in Q^{\mathbb{Z}^{d}}$ , where $c(p)$ is the state of cell $p\in \mathbb{Z}^{d}$ in $c$ .

Remark 1 In [2] the local structure is defined more generally, but in this paper we assume, without loss
ofgenerality, a restricted but most usual case of reduced local structures, see the following definition
and Lemma 1.

Definition 1 [reduced local structure] A local structure is called reduced, ifand only if. $\nu$ is injective, $i.e$. $\nu_{i}\neq\nu_{j}$ for $i\neq j$ in the list ofneighborhood $\nu$ and. $f$ depends on all arguments.

Lemma 1 For each local structure $(f, \nu)$ there is an equivalent reduced local structure $(f’, \nu’)$ .
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1.2 Permutation equivalence of local structures

Definition 2 $[equivalence|$ Two local structures $(f, \nu)$ and $(f’, \nu’)$ are called equivalent, if and onJy if
they induce the same global function. In that case we write $(f, \nu)\approx(f’, \nu’)$ .

Definition 3 [permutation of local structures$|$ Let $\pi$ denote a permutation of the numbers in $\mathbb{N}_{n}$ . The
set ofall permutations $\pi s$ of the numbers from $\mathbb{N}_{n}$ constitutes a symmetric group $S_{n}$ ofdegree $n$ .. For a neighborhood $\nu$ . denote by $\nu^{\pi}$ the neighborhood defined by $\nu_{\pi(i)}^{\pi}=\nu_{i}$ .. For an n-tuple $\ell\in Q^{n}$ , denote by $\ell^{\pi}$ the permutation $of\ell$ such $that\ell^{\pi}(i)=\ell(\pi(i))$ for $1\leq i\leq n$ .

For a local function $f$ : $Q^{n}arrow Q$ , denote by $f^{\pi}$ the local function $f^{\pi}$ : $Q^{n}arrow Q$ such that
$f^{\pi}(\ell)=f(\ell^{\pi})$ for $alJ\ell$ .

Remark 2 As for the definition of the permutation oflocal functions, we have the following lemma.

Lemma 2 When a local function $f$ : $Q^{n}arrow Q$ is expressed $bya$ polynomial $f(x_{1}, \ldots,x_{n})overGF(q),$ $q=$
$|Q|$ , we have another equIvalent definition for the permutation oflocal functions –permutation of the
order ofarguments.

$f^{\pi}(x_{1}, \ldots, x_{n})=f(x_{\pi(1)}, \ldots, x_{\pi(n)})$ (2)

Example 1 Permutations $of3$ objects a$re$ usualJy expressed by a symmetricgroup $S_{3}=\{\pi_{i}, 0\leq i\leq 5\}$

as is shown below

$\pi_{0}=(\begin{array}{lll}l 2 3l 2 3\end{array})$ $\pi_{1}=(_{1}^{1}$

$\pi_{3}=(\begin{array}{lll}l 2 32 3 l\end{array})$ $\pi_{4}=(_{3}^{1}$

$32$ $23)$ $\pi_{2}=(\begin{array}{lll}1 2 32 l 3\end{array})$ ,

$21$ $23)$ $\pi_{5}=(\begin{array}{lll}1 2 33 2 l\end{array})$

Neighborhood $(-1,0,1)$ is $caJled$ the elementary neighborhood and denoted $ENB$. Then 6permutations
ofENB are seen isomorphic to $S_{3}$ as follows.

$ENB^{\pi_{0}}=(-1,0,1),$ $ENB^{\pi_{1}}=(-1,1,0),$ $ENB^{\pi}2=(0, -1,1)$ ,

$ENB^{\pi}3=(0,1, -1),$ $ENB^{\pi_{4}}=(1, -1,0),$ $ENB^{\pi}5=(1,0, -1)$

The local function ofan $ECA$ is called an elementary local function denoted ELF which is expressed by
a poJynomial over $GF(2)$ or a Boolean function in 3 variables.

The local function ofcomputation universal $ECA$ rule 110 is expressed by $f_{110}(x_{1}, x_{2}, x_{3})=x_{1}x_{2}x_{3}+$

$x_{2}x_{3}+x_{2}+x_{3}$ . Then 6permutations of$f_{110}$ are shown as follows.

$f_{110}^{\pi 0}=f_{110}^{\pi_{1}}=x_{1}x_{2}x_{3}+x_{2}x_{3}+x_{2}+x_{3}$ . (3)
$f_{110}^{\pi_{2}}=f_{110}^{\pi_{4}}=x_{1}x_{2}x_{3}+x_{1}x_{3}+x_{1}+x_{3}$ . (4)
$f_{110}^{\pi}3=f_{110}^{\pi_{5}}=x_{1}x_{2}x_{3}+x_{1}x_{2}+x_{1}+x_{2}$ . (5)

52



1.3 Previous results

Here we extract from the previous papers some basic results on the equivalence of local structures.

Lemma 3 $(f, \nu)$ and $(f^{\pi}, \nu^{\pi})$ are equivalent for anypermutation $\pi$ .

Lemma 4 If $(f, \nu)$ and $(f’, \nu’)\partial Ie$ two reduced local structures which are equivalent, then there is a
permutation $\pi$ such that $\nu^{\pi}=\nu’$ .

Theorem 1 [permutation-equivalence of local structures]
If $(f, \nu)$ and $(f’, \nu’)$ are two reduced local structures which are equivalent, then there is a permutation
$\pi$ such $that(f^{\pi}, \nu^{\pi})=(f’, \nu’)$ .

Automorphism classification of CA

Definition 4 Two $CA$ $A$ and $B$ are called automorphic, denoted $A\cong B$ , ifand only if there is a pair of
permutations $(\pi, \varphi)$ such that

$(f_{B}, \nu_{B})=(\varphi^{-1}f_{A}^{\pi}\varphi, \nu_{A}^{\pi})$ . (6)

The automorphism naturally induces a classification of local functions of $CA$ , which will be called the
automorphism classification. Eveiy $CA$ belonging to an automorphism class is said to have the same
behavior up to permutations.

As a typical example of the automorphism classification, the set of 256 ELF is classified into 46 classes,
see k\^oky\^uroku of RIMS workshop (LA Symposium, Feb. 2009) [1].

2 Equivalence is conserved when changing neighborhoods
We prove here a lemma that equIvalence oflocal structures is conserved when changing the position of
neighborhoods. Owing to this lemma, the automorphism classification is not affected by changing the
neighborhood. We notice that the mapping $r$ introduced below conserves the equivalence, but generally
not the global properties of CA like reversibIlIty.

Consider an injective map $r$ : $\mathbb{Z}^{d}arrow \mathbb{Z}^{d’},$ $d,$ $d’\geq 1$ which is used to change the positions of neighbors.
Note that we are considering a mapping in possibly different dimensional spaces, see the example below.
To neighborhood $\nu=(\nu_{1}, \ldots, \nu_{n}),$ $r$ is applied componentwise. For the resulting neighborhood we
write $r\nu$ . That is $(\forall i)(r\nu)_{i}=r(\nu_{i})$ . See Fig. 1.

Lemma 5 If $(f, \nu)\approx(f’, \nu’)$ , then $(f, r\nu)\approx(f’, r\nu’)$ .

Proof. For a proof by contradiction assume, that $(f, r\nu)\not\simeq(f’, r\nu’)$ . Denote the corresponding global
functIons by $F_{r}$ and $F_{r}’$ . Then there is a configuration $c_{r}$ , such that $F_{r}(c_{r})\neq F_{r}’(c_{r})$ . Without loss of
generality, we assume $F_{r}(c_{r})(0)\neq F_{r}’(c_{r})(0)$ .

Define a configuration $c$ as $c(x)=c_{r}(r(x))$ for all $x\in \mathbb{Z}^{d}$ . We claim that $F(c_{r})(0)\neq F’(c_{r})(0)$ , i.e.
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$(f, \nu)$ ce $(f’, \nu’)$ .

$F(c)(0)=f(c(\nu_{1}), \ldots, c(\nu_{n}))$

$=f(c_{r}(r(\nu_{1})))\ldots,$ $c_{r}(r(\nu_{n})))$

$=f(c_{r}((r\nu)_{1}), \ldots, c_{r}((r\nu)_{n}))$

$=F_{r}(c_{r})(0)$

$\neq F_{r}(c_{r})(0)$

$=\ldots$

.
$=F’(c)(0)$

$\square$

$\mathbb{Z}^{2}$

$\ovalbox{\tt\small REJECT}_{\nu_{4}}^{\nu_{3}}\nu_{5}\nu_{1}\nu_{2}$

$|r$

$\mathbb{Z}$

. . $-1$ $0$ 1 2 3 4 . . .

Figure 1: Mapping of von Neumann neighborhood $r$ : $\mathbb{Z}^{2}arrow \mathbb{Z}$ .

Example 2 Consider an injective map $r$ from $\mathbb{Z}^{2}$ to $\mathbb{Z}$ . $r$ is defned by 4 partial maps $r_{I},$ $r_{II},$ $r_{III}$ and
$r_{IV}$ as given below, each of which maps (I) the first quarter $(x\geq 0, y\geq 0),$ $(II)$ the second quarter
$(x\geq 0, y<0),$ $(III)$ the 3rd quarter $(x<0, y<0)$ and (IV) the 4th quarter $(x<0, y\geq 0)$ into (I)
nonnegative even, (II) posItive odd, (III) negatIve even and (IV) negatIve odd integers, respectively. Note
$thatr_{I}(0,0)=0$ . It is also seen that $r$ is surjective and therefore bijective.

$r_{I}(x, y)$ $=$ $(x+y)(x+y+1)+2y$ , where $x\geq 0,$ $y\geq 0$ . (7)
$r_{II}(x, y)$ $=$ $(x-y)(x-y-1)-2y-1$ , where $x\geq 0,$ $y<0$ . (8)

$r_{III}(x, y)$ $=$ $-\{(x+y+1)(x+y+2)-2y\}$ , where $x<0,$ $y<0$ . (9)

$r_{IV}(x, y)$ $=$ $-\{(x-y)(x-y+1)+2y+1\}$ , where $x<0,$ $y\geq 0$ . (10)

By this $r$ , for instance the 2-dimensional von Neumann neighborhood
$((0,0), (1,0), (0,1), (0, -1), (-1,0))$ is mapped to 1-dimensional neighborhood
$(0,2,4,1, -1)$ as iJlustrated in Fig. 1.

Of course, as noticed above this example of $r$ : $\mathbb{Z}^{2}arrow \mathbb{Z}$ is independent from the decidabiJity issue of
reversibility: reversibility is decidable in $\mathbb{Z}$ but not in $\mathbb{Z}^{2}$ .
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3 Enumeration of symmetry types of Boolean functions

The equivalence class of Boolean functions defined below is called a symmetry type and the enumeration
problem of the number of symmetry types (equivalence classes) was generally solved (for arbitrary n)
by D. Slepian (1953) [4] and M. Harrison (1963) [5] by use of P\’olya’s enumeration theorem (1937) [6].
One of their motivations for such a classification study is the cost of logical designs at the early stage of
digital computers. The two circuits in Fig.2 are considered to be of the same cost and the corresponding
Boolean functions are classified into one class.

Figure 2: Logical circuits obtained by replacing $x_{2}$ by $\overline{x_{2}}$ and $x_{1}$ by $\overline{x_{3}}$ . Remake of Fig.2 of M. Harri-
son(1963)

3.1 Basics. Boolean logic: $B=(\{0,1\}, \vee, \wedge, \overline{a})$ with well known derivation rules.. Boolean function In $n$ variables: $f(x_{1}, \ldots, x_{n})$ .. Boolean vs polynomial: $a\vee b=a+b+ab,$ $a\wedge b=ab,\overline{a}=1+a$ .. Conjugation $\varphi^{-1}f\varphi=1+f(1+x_{1}, \ldots, 1+x_{n})=\overline{f(\overline{x_{1}}\overline{x_{2}}\ldots\overline{x_{n}})}$ .. Any $n$ variable Boolean function $f_{u},$ $u=0,$ $\ldots,$

$2^{2^{n}}-1$ is expressed by a disjunctive normal form:

$f_{u}(x_{1}, \ldots, x_{n})=\sum_{v=0}^{2^{n}-1}\epsilon_{uv}s_{v}$ , (11)

where $\epsilon_{uv}\in\{0,1\}$ and $s_{0}=x_{1}x_{2}\ldots x_{n},$ $s_{1}=x_{1}x_{2}\ldots ZZ_{n},$
$\ldots,$

$s_{2^{n}-1}=\overline{x_{1}}$ Zii5... $\overline{x_{n}}$ .

3.2 Permutation and negation of Boolean functions
$\circ$ Permutation of (variables of) a Boolean function is defined in the same way as Definition 3:

$f^{\pi}(x_{1}, \ldots, x_{n})=f(x_{\pi(1)}, \ldots, x_{\pi(n)})$. The set of permutations is isomorphic with $S_{n}$ .. For expressing a negation of $x_{i}$ , we use a superfix $x_{i}^{\alpha_{i}}$ ; for ZE7 let $\alpha_{i}=1$ and for $x_{i}$ , let $\alpha_{i}=0$ .
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. A list $\alpha=(\alpha_{1)}\ldots, \alpha_{n})$ expresses a combined negation of variables of Boolean function $f(x_{1}, \ldots, x_{n})$ :
$\alpha f(x_{1}, \ldots, x_{n})=f(x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}})$ .. The set $S_{2}^{n}$ of all $\alpha s$ is a permutation group of order $2^{n}$ .

3.3 Equivalence relation defined by $(S_{n}, S_{2}^{n})$

The pair $G^{n}=(S_{n}, S_{2}^{n})$ of permutatIon groups $S_{n}$ and $S_{2}^{n}$ naturally defines an equivalence relation $\approx c^{n}$

among the set of Boolean functions in $n$ variables;

$f\approx c^{n}f$
’
ニ $f’=\alpha f^{\pi}$ , for $\exists\pi\in S_{n},$ $\exists\alpha\in S_{2}^{n}$ . (12)

Utilizing this relation, we can classify Boolean functions. D. Slepian (1953) uses P\’olya’s enumeration
theorem for getting the number of equivalence classes for any Boolean functions in $n$ variables [4].

Example 3 Case $ofn=2;2^{2^{2}}=16$ Boolean functions $f(x, y)$ are classifiedinto 6 equivalence classes;

$[0],$ $[1],$ $[x,\overline{x}, y,\overline{y}],$ $[xy, x\overline{y})\overline{x}y,\overline{x}\overline{y}],$ $[x\vee y,\overline{x}\vee y, x\vee\overline{y},\overline{x}\vee\overline{y}],$ $[x\oplus y, x\equiv y]$

Case $ofn=3:256$ Boolean functions are classified into 22 classes, which is compared with 46 in our
automorphism classification ofECA.

4 Generalization of the automorphism of CA

Inspired by the above equivalence classes of Boolean functions, we generalize the definition of automor-
phisms of CA; The states of neighbors $\nu_{i}(i=1, \ldots, n)$ of a cell are permuted independently and then the
function value is computed. The positions of the arguments (the neighbors) are also permuted as before.
Formally, we have

Deflnition 5 Let $S_{q}^{n}=S_{q}\cross\cdots\cross S_{q}$ and $\varphi^{(n)}\in S_{q}^{n}$ . Denote $G^{n}=(S_{n}, S_{q}^{n})$ . Then two $CA$ $A$ and
$B$ are defined to be automorphic, denoted $A\cong c^{n}B$ , ifand only if there are permutations $\pi\in S_{n}$ and
$\varphi^{(n)}\in S_{q}^{n}$ such that

$(f_{B}, \nu_{B})=(f_{A}^{\pi}\varphi^{(n)}, \nu_{A}^{\pi})$ , (13)

where $f_{A}^{\pi}\varphi^{(n)}$ stands for $f_{A}^{\pi}(x_{1}^{\varphi_{1}}, \ldots, x_{n}^{\varphi_{\mathfrak{n}}})$ , where $x_{i}^{\varphi_{i}}$ is a permutation $\varphi_{i}\in S_{q}$ of the i-th argument $x_{t}$

for $1\leq i\leq n$ . In this case we write $\varphi^{(n)}=(\varphi_{1}, \ldots, \varphi_{n})\in S_{q}^{n}$ . The case $ofq=2$ is nothing other than
the equivalence ofBoolean functions.

Another definition will be possible; An additional permutation ofstates $\varphi’\in S_{q}$ is applied to the funcuon
value.

$(f_{B}, \nu_{B})=(\varphi’f_{A}^{\pi}\varphi^{(n)}, \nu_{A}^{\pi})$ . (14)

Ifeverypermutation of the states is equal, $i.e$. $\varphi_{t}=\varphi,$ $1\leq i\leq n$ , for some $\varphi\in S_{q}$ , the automorphism
is same as the original automorphism.

This generalized automorphism is an equivalence relation and induces a classification of CA like the
original one. Any two local functions in a class have the same global behavior up to permutations. The
classification is considered to be a group action of $G^{n}$ on the set of polynomials $\varphi_{n_{J}q}$ over $GF(q)$ in
n-variables, where the action of a larger group generally gives a smaller number of classes, see [3].
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5 Concluding remarks and acknowledgements
In this paper we discussed a generalization of the automorphism classification of CA following the past
studies on the symmetry classes of Boolean functions. A motivation for that is to extract the symmetric
structure of local functions by disregarding the effects of neIghborhoods. The number of the generalized
automorphism classes will be obtained using the orbit counting lemma andlor P\’olya’s enumeration the-
orem as was done for classifying Boolean functions. The computation itself, however, has been left for
future work.

The author thanks to Thomas Worsch from the UniversIty of Karlsruhe for valuable discussions, partic-
ularly for establIshing Lemma 5 and to Mitsuhiko Fujio from the Kyushu Institute of Technology for
commenting on the r\’esume presented at the RIMS workshop (LA Symposium) held in Kyoto University
on February 2, 2010.
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