Chaitin Ω and halting problems II

中央大学研究開発機構 只木孝太郎 (Kohtaro Tadaki)* Research and Development Initiative, Chuo University

1 Introduction

Algorithmic information theory (AIT, for short) is a framework for applying information-theoretic and probabilistic ideas to recursive function theory. One of the primary concepts of AIT is the program-size complexity (or Kolmogorov complexity) H(s) of a finite binary string s, which is defined as the length of the shortest binary input for a universal decoding algorithm U, called an optimal prefix-free machine, to output s. By the definition, H(s) is thought to represent the amount of randomness of a finite binary string s. In particular, the notion of program-size complexity plays a crucial role in characterizing the randomness of an infinite binary string, or equivalently, a real.

In [2] Chaitin introduced the halting probability Ω_U as a concrete example of random real. His Ω_U is defined as the probability that the optimal prefix-free machine U halts, and is shown to be random, based on the following fact:

Fact 1 (Chaitin [2]). The first n bits of the base-two expansion of Ω_U solve the halting problem of U for inputs of length at most n.

In our former work [7], we investigated the relationship between the base-two expansion of Ω_U and the halting problem of U further. On the one hand, we considered the following converse problem of Fact 1 in a general setting. Let V and W be arbitrary optimal prefix-free machines.

Problem 1. Find a succinct equivalent characterization of a total recursive function $f: \mathbb{N}^+ \to \mathbb{N}$ which satisfies the condition: For all $n \in \mathbb{N}^+$, if n and the list of all halting inputs for V of length at most n are given, then the first n - f(n) - O(1) bits of the base-two expansion of Ω_W can be calculated. \Box

Theorem 3.1 below is one of the main results of the work [7]. It gives to Problem 1 a solution that the total recursive function f must satisfy $\sum_{n=1}^{\infty} 2^{-f(n)} < \infty$, which is the Kraft inequality in essence. Note that the condition $\sum_{n=1}^{\infty} 2^{-f(n)} < \infty$ holds for $f(n) = \lfloor (1+\varepsilon) \log_2 n \rfloor$ with an arbitrary computable real $\varepsilon > 0$, while this condition does not hold for $f(n) = \lfloor \log_2 n \rfloor$. On the other hand, it is also important to consider whether the bound n on the length of halting inputs given in Fact 1 is tight or not. In the work [7], we considered this problem as well in the following form:

Problem 2. Find a succinct equivalent characterization of a total recursive function $f: \mathbb{N}^+ \to \mathbb{N}$ which satisfies the condition: For all $n \in \mathbb{N}^+$, if n and the first n bits of the base-two expansion of Ω_W are given, then the list of all halting inputs for V of length at most n + f(n) - O(1) can be calculated. \Box

Theorem 3.2 below, which is also one of the main results of the work [7], gives to Problem 2 a solution that the total recursive function f must be bounded to the above. Thus, we see that the bound n on the length of halting inputs given in Fact 1 is tight up to an additive constant.

It is well known that the base-two expansion of Ω_U and the halting problem of U are Turing equivalent. The results in the work [7] can be thought of as an elaboration of the Turing equivalence. Namely, in the work [7], we studied the relationship between the base-two expansion of Ω_U and the halting problem of U using a more rigorous and insightful notion than the notion of Turing equivalence. As a result, we revealed computational one-wayness between the base-two expansion of Ω_U and the halting problem of U in the form of Theorems 3.1 and 3.2 together.

In this paper, based on the same setting, we investigate the relationship between the base-two expansion of $Z_U(T)$ and the halting problem of U. Here, $Z_U(T)$ is the partition function at temperature $T \in (0,1]$ [5]. It is one of the thermodynamic quantities in the statistical mechanical interpretation of AIT [6], and results in Ω_U in the case of T = 1, i.e., $Z_U(1) = \Omega_U$. In the case where T is a computable real with 0 < T < 1, we reveal computational equivalence, i.e., computational two-wayness, between

^{*}E-mail: tadaki@kc.chuo-u.ac.jp, Website: http://www2.odn.ne.jp/tadaki/

the base-two expansion of $Z_U(T)$ and the halting problem of U. This contrasts the computational one-wayness between the base-two expansion of Ω_U and the halting problem of U.

2 Preliminaries

We start with some notation about numbers and strings which will be used in this paper. $\mathbb{N} = \{0, 1, 2, 3, ...\}$ is the set of natural numbers, and \mathbb{N}^+ is the set of positive integers. Z is the set of integers, and Q is the set of rationals. \mathbb{R} is the set of reals. Normally, o(n) denotes any function $f: \mathbb{N}^+ \to \mathbb{R}$ such that $\lim_{n\to\infty} f(n)/n = 0$. On the other hand, O(1) denotes any function $g: \mathbb{N}^+ \to \mathbb{R}$ such that there is $C \in \mathbb{R}$ with the property that $|g(n)| \leq C$ for all $n \in \mathbb{N}^+$.

 $\{0,1\}^* = \{\lambda,0,1,00,01,10,11,000,\ldots\}$ is the set of finite binary strings where λ denotes the *empty* string, and $\{0,1\}^*$ is ordered as indicated. We identify any string in $\{0,1\}^*$ with a natural number in this order, i.e., we consider $\varphi: \{0,1\}^* \to \mathbb{N}$ such that $\varphi(s) = 1s - 1$ where the concatenation 1s of strings 1 and s is regarded as a dyadic integer, and then we identify s with $\varphi(s)$. For any $s \in \{0,1\}^*$, |s| is the length of s. For any $n \in \mathbb{N}$, we denote by $\{0,1\}^n$ the set $\{s \mid s \in \{0,1\}^* \& |s| = n\}$. A subset S of $\{0,1\}^*$ is called *prefix-free* if no string in S is a prefix of another string in S. For any subset S of $\{0,1\}^*$ and any $n \in \mathbb{Z}$, we denote by S_n the set $\{s \in S \mid |s| \leq n\}$. Note that $S_{n} = \emptyset$ for every subset S of $\{0,1\}^*$ and every negative integer $n \in \mathbb{Z}$. For any function f, the domain of definition of f is denoted by dom f. We write "r.e." instead of "recursively enumerable."

Let α be an arbitrary real. For any $n \in \mathbb{N}^+$, we denote by $\alpha \upharpoonright_n \in \{0, 1\}^*$ the first n bits of the base-two expansion of $\alpha - \lfloor \alpha \rfloor$ with infinitely many zeros, where $\lfloor \alpha \rfloor$ is the greatest integer less than or equal to α . For example, in the case of $\alpha = 5/8$, $\alpha \upharpoonright_6 = 101000$. On the other hand, for any non-positive integer $n \in \mathbb{Z}$, we set $\alpha \upharpoonright_n = \lambda$.

A real α is called *r.e.* if there exists a computable, increasing sequence of rationals which converges to α . An r.e. real is also called a *left-computable* real. On the other hand, a real α is called *right-computable* if $-\alpha$ is left-computable. We say that a real α is *computable* if there exists a computable sequence $\{a_n\}_{n\in\mathbb{N}}$ of rationals such that $|\alpha - a_n| < 2^{-n}$ for all $n \in \mathbb{N}$. It is then easy to see that, for every $\alpha \in \mathbb{R}$, α is computable if and only if α is both left-computable and right-computable.

2.1 Algorithmic Information Theory

In the following we concisely review some definitions and results of AIT [2, 3]. A prefix-free machine is a partial recursive function $C: \{0,1\}^* \to \{0,1\}^*$ such that dom C is a prefix-free set. For each prefix-free machine C and each $s \in \{0,1\}^*$, $H_C(s)$ is defined by $H_C(s) := \min\{|p| \mid p \in \{0,1\}^* \& C(p) = s\}$ (may be ∞). A prefix-free machine U is said to be optimal if for each prefix-free machine C there exists $d \in \mathbb{N}$ with the following property; if $p \in \text{dom } C$, then there is $q \in \text{dom } U$ for which U(q) = C(p) and $|q| \leq |p| + d$. It is easy to see that there exists an optimal prefix-free machine. We choose a particular optimal prefix-free machine U as the standard one for use, and define H(s) as $H_U(s)$, which is referred to as the program-size complexity of s or the Kolmogorov complexity of s. It follows that for every prefix-free machine C there exists $d \in \mathbb{N}$ such that, for every $s \in \{0,1\}^*$,

$$H(s) \le H_C(s) + d. \tag{1}$$

Based on this we can show that, for every partial recursive function $\Psi: \{0,1\}^* \to \{0,1\}^*$, there exists $d \in \mathbb{N}$ such that, for every $s \in \operatorname{dom} \Psi$,

$$H(\Psi(s)) \le H(s) + d. \tag{2}$$

For any $s, t \in \{0, 1\}^*$, we define H(s, t) as H(b(s, t)), where $b: \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}^*$ is a particular bijective total recursive function.

For any optimal prefix-free machine V, Chaitin's halting probability Ω_V of V is defined as $\sum_{p \in \text{dom } V} 2^{-|p|}$. The real Ω_V is also called Chaitin Ω number. For every optimal prefix-free machine V, since dom V is prefix-free, Ω_V converges and $0 < \Omega_V \leq 1$. For any $\alpha \in \mathbb{R}$, we say that α is weakly Chaitin random if there exists $c \in \mathbb{N}$ such that $n - c \leq H(\alpha|_n)$ for all $n \in \mathbb{N}^+$ [2, 3]. Based on Fact 1, Chaitin [2] showed that Ω_V is weakly Chaitin random for every optimal prefix-free machine V.

2.2 Partial randomness

In the work [5], we generalized the notion of the randomness of a real so that the degree of the randomness, which is often referred to as the partial randomness recently (e.g. [4]), can be characterized by a real T with $0 < T \leq 1$ as follows.

Definition 2.1 (weak Chaitin T-randomness). Let $T \in (0, 1]$ and let $\alpha \in \mathbb{R}$. We say that α is weakly Chaitin T-random if there exists $d \in \mathbb{N}$ such that $Tn - d \leq H(\alpha \restriction_n)$ for all $n \in \mathbb{N}^+$.

Definition 2.2 (T-compressibility and strict T-compressibility). Let $T \in (0,1]$ and let $\alpha \in \mathbb{R}$. We say that α is T-compressible if $H(\alpha|_n) \leq Tn + o(n)$, namely, if $\limsup_{n \to \infty} H(\alpha|_n)/n \leq T$. We say that α is strictly T-compressible if there exists $d \in \mathbb{N}$ such that $H(\alpha|_n) \leq Tn + d$ for all $n \in \mathbb{N}^+$.

Note that, in the case where T = 1, the weak Chaitin *T*-randomness results in weak Chaitin randomness. If a real α is weakly Chaitin *T*-random and *T*-compressible, then $\lim_{n\to\infty} H(\alpha|_n)/n = T$, i.e., the compression rate of α equals to *T*. Note, however, that the converse does not hold. Thus, the notion of partial randomness is a stronger representation of compression rate.

In the work [5], we generalized Chaitin Ω number to Z(T) as follows.¹ For each optimal prefix-free machine V and each real T > 0, the partition function $Z_V(T)$ of V at temperature T is defined as $\sum_{p \in \text{dom } V} 2^{-|p|/T}$. Thus, $Z_V(1) = \Omega_V$. If $0 < T \le 1$, then $Z_V(T)$ converges and $0 < Z_V(T) < 1$, since $Z_V(T) \le \Omega_V < 1$. The following theorem holds for $Z_V(T)$.

Theorem 2.3 (Tadaki [5]). Let V be an optimal prefix-free machine and let $T \in \mathbb{R}$. If $0 < T \leq 1$ and T is computable, then $Z_V(T)$ is an r.e. real which is weakly Chaitin T-random and T-compressible. \Box

An r.e. real has a special property on partial randomness, as shown in Theorem 2.5 below. For any r.e. reals α and β , we say that α dominates β if there are computable, increasing sequences $\{a_n\}$ and $\{b_n\}$ of rationals and $c \in \mathbb{N}^+$ such that $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} b_n = \beta$, and $c(\alpha - a_n) \ge \beta - b_n$ for all $n \in \mathbb{N}$.

Definition 2.4 (T-convergence and $\Omega(T)$ -likeness, Tadaki [8]). Let $T \in (0, 1]$. An increasing sequence $\{a_n\}$ of reals is called T-convergent if $\sum_{n=0}^{\infty} (a_{n+1} - a_n)^T < \infty$. An r.e. real α is called T-convergent if there exists a T-convergent computable, increasing sequence of rationals which converges to α . An r.e. real α is called $\Omega(T)$ -like if it dominates all T-convergent r.e. reals.

Theorem 2.5 (equivalent characterizations of partial randomness for an r.e. real, Tadaki [8]). Let $T \in (0, 1]$, and let α be an r.e. real. Then the following three conditions are equivalent: (i) The real α is weakly Chaitin T-random. (ii) The real α is $\Omega(T)$ -like. (iii) For every T-convergent r.e. real β there exists $d \in \mathbb{N}$ such that, for all $n \in \mathbb{N}^+$, $H(\beta \restriction_n) \leq H(\alpha \restriction_n) + d$.

3 The Former Result: Computational One-Wayness

Theorem 3.1 (Tadaki [7]). Let V and W be optimal prefix-free machines, and let $f: \mathbb{N}^+ \to \mathbb{N}$ be a total recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic Turing machine M and $c \in \mathbb{N}$ such that, for all $n \in \mathbb{N}^+$, $M^{\operatorname{dom V}[n]}(n) = \Omega_W[_{n-f(n)-c}]$.

(ii)
$$\sum_{n=1}^{\infty} 2^{-f(n)} < \infty$$
.

Theorem 3.2 (Tadaki [7]). Let V and W be optimal prefix-free machines, and let $f: \mathbb{N}^+ \to \mathbb{N}$ be a total recursive function. Then the following two conditions are equivalent:

- (i) There exist an oracle deterministic Turing machine M and $c \in \mathbb{N}$ such that, for all $n \in \mathbb{N}^+$, $M^{\{\Omega_W \mid n\}}(n) = \operatorname{dom} V \mid_{n+f(n)-c}$, where the finite subset $\operatorname{dom} V \mid_{n+f(n)-c}$ of $\{0,1\}^*$ is represented as a finite binary string in a certain format.
- (ii) The function f is bounded to the above.

¹In [5], Z(T) is denoted by Ω^{T} .

4 T-Convergent R.E. Reals

Let T be an arbitrary computable real with $0 < T \le 1$ throughout the rest of the present paper. The parameter T plays a crucial role in the present paper.² In this section, we investigate the relation of the halting problems to T-convergent r.e. reals. In particular, Theorem 4.6 below is used to show the main result I in the next section. Recently, Calude, Hay, and Stephan [1] showed the existence of an r.e. real which is weakly Chaitin T-random and strictly T-compressible, in the case of T < 1, as follows.

Theorem 4.1 (Calude, Hay, and Stephan [1]). Suppose that T < 1. Then there exist an r.e. real $\alpha \in (0,1)$ and $d \in \mathbb{N}$ such that, for all $n \in \mathbb{N}^+$, $|H(\alpha|_n) - Tn| \leq d$.

We show that the same r.e. real α as in Theorem 4.1 has the following property.

Theorem 4.2. Suppose that T < 1. Let V be an optimal prefix-free machine. Then there exist an r.e. real $\alpha \in (0,1)$, an oracle deterministic Turing machine M, and $c \in \mathbb{N}$ such that α is weakly Chaitin T-random and, for all $n \in \mathbb{N}^+$, $M^{\text{dom V} \upharpoonright [Tn]}(n) = \alpha \upharpoonright_{n-c}$.

Calude, et al. [1] uses Lemma 4.3 below to show Theorem 4.1. We also use it to show Theorem 4.2.

Lemma 4.3 (Reimann and Stephan [4] and Calude, Hay, and Stephan [1]). Let V be an optimal prefixfree machine. Suppose that T < 1. Then there exists $c \in \mathbb{N}^+$ such that, for every $s \in \{0,1\}^*$, there exists $t \in \{0,1\}^c$ for which $H_V(st) \ge H_V(s) + Tc$.

Proof of Theorem 4.2. Suppose that T < 1. Let V be an optimal prefix-free machine. Then it follows from Lemma 4.3 that there exists $c \in \mathbb{N}^+$ such that, for every $s \in \{0,1\}^*$, there exists $t \in \{0,1\}^c$ for which

$$H_V(st) \ge H_V(s) + Tc. \tag{3}$$

For each prefix-free machine D and each $s \in \{0,1\}^*$, we denote by S(D;s) the set $\{u \in \{0,1\}^{|s|+c} | s \text{ is a prefix of } u \& H_D(u) > T |u| \}$.

Now, we define a sequence $\{a_k\}_{k\in\mathbb{N}}$ of finite binary strings recursively on $k \in \mathbb{N}$ by $a_k := \lambda$ if k = 0 and $a_k := \min S(V; a_{k-1})$ otherwise. First note that a_0 is properly defined as λ and therefore satisfies $H_V(a_0) > T |a_0|$. For each $k \ge 1$, assume that $a_0, a_1, a_2, \ldots, a_{k-1}$ are properly defined. Then $H_V(a_{k-1}) > T |a_{k-1}|$ holds. It follow from (3) that there exists $t \in \{0,1\}^c$ for which $H_V(a_{k-1}t) \ge H_V(a_{k-1}) + Tc$, and therefore $a_{k-1}t \in \{0,1\}^{|a_{k-1}|+c}$ and $H_V(a_{k-1}t) \ge T |a_{k-1}t|$. Thus $S(V; a_{k-1}) \ne \emptyset$, and therefore a_k is properly defined. Hence, a_k is properly defined for every $k \in \mathbb{N}$. We thus see that, for every $k \in \mathbb{N}$, $a_k \in \{0,1\}^{ck}$, $H_V(a_k) > T |a_k|$, and a_k is a prefix of a_{k+1} . Therefore, it is easy to see that, for every $m \in \mathbb{N}^+$, there exists $k \in \mathbb{N}$ such that a_k contains m zeros. Thus, we can uniquely define a real $\alpha \in [0, 1)$ by the condition that $\alpha_{\uparrow ck} = a_k$ for all $k \in \mathbb{N}^+$. It follows that $H_V(\alpha_{\uparrow ck}) > T |\alpha_{\uparrow ck}|$ for all $k \in \mathbb{N}^+$. Note that there exists $d_0 \in \mathbb{N}$ such that, for every $n \in \mathbb{N}^+$, $H_V(\alpha_{\uparrow n}) > Tn - d_1$, which implies that α is weakly Chaitin T-random and therefore $\alpha \in (0, 1)$.

Next, we show that there exists an oracle deterministic Turing machine M such that, for all $n \in \mathbb{N}^+$, $M^{\operatorname{dom V}_{\lceil T_n \rceil}}(n) = \alpha_{\lceil n-c}$. For each $k \in \mathbb{N}$, we denote by F_k the set $\{s \in \{0,1\}^* \mid H_V(s) \leq \lfloor Tck \rfloor\}$. It follows that

$$a_k = \min\{ u \in \{0,1\}^{ck} \mid a_{k-1} \text{ is a prefix of } u \& u \notin F_k \}$$

$$\tag{4}$$

for every $k \in \mathbb{N}^+$. By the following procedure, we see that such an oracle deterministic Turing machine M exists.

Given n and dom V[[Tn]] with $n \ge c$, one first calculates the k_0 finite sets $F_1, F_2, \ldots, F_{k_0}$, where $k_0 = \lfloor n/c \rfloor$. This can be possible because dom V[[Tn]] is available and $\lfloor Tck_0 \rfloor \le \lceil Tn \rceil$. One then calculates $a_1, a_2, \ldots, a_{k_0}$ in this order one by one from $a_0 = \lambda$ based on the relation (4) and $F_1, F_2, \ldots, F_{k_0}$. Finally, one calculates $\alpha[_{n-c}$ from a_{k_0} and outputs it. This is possible since $\alpha[_{ck_0} = a_{k_0}$ and $n - c < ck_0$.

Finally, we show that α is an r.e. real. Let p_1, p_2, p_3, \ldots be a particular recursive enumeration of the infinite r.e. set dom V. For each $l \in \mathbb{N}^+$, we define a prefix-free machine $V^{(l)}$ by the following two conditions (i) and (ii): (i) dom $V^{(l)} = \{p_1, p_2, \ldots, p_l\}$. (ii) $V^{(l)}(p) = V(p)$ for every $p \in \text{dom } V^{(l)}$. It is easy to see that such prefix-free machines $V^{(1)}, V^{(2)}, V^{(3)}, \ldots$ exist. For each $l \in \mathbb{N}^+$ and each $s \in \{0, 1\}^*$, note

²The parameter T corresponds to the notion of "temperature" in the statistical mechanical interpretation of AIT introduced by Tadaki [6].

that $H_{V^{(l)}}(s) \ge H_V(s)$ holds, where $H_{V^{(l)}}(s)$ may be ∞ . For each $l \in \mathbb{N}$, we define a sequence $\{a_k^{(l)}\}_{k \in \mathbb{N}}$ of finite binary strings recursively on $k \in \mathbb{N}$ by $a_k^{(l)} := \lambda$ if k = 0 and $a_k^{(l)} := \min(S(V^{(l)}; a_{k-1}^{(l)}) \cup \{a_{k-1}^{(l)}1^c\})$ otherwise. It follows that $a_k^{(l)}$ is properly defined for every $k \in \mathbb{N}$. Note, in particular, that $a_k^{(l)} \in \{0, 1\}^{ck}$ and $a_k^{(l)}$ is a prefix of $a_{k+1}^{(l)}$ for every $k \in \mathbb{N}$.

and $a_k^{(l)}$ is a prefix of $a_{k+1}^{(l)}$ for every $k \in \mathbb{N}$. Let $l \in \mathbb{N}^+$. We show that $a_k^{(l)} \leq a_k$ for every $k \in \mathbb{N}^+$. To see this, assume that $a_{k-1}^{(l)} = a_{k-1}$. Then, since $H_{V^{(l)}}(s) \geq H_V(s)$ holds for every $s \in \{0, 1\}^*$, based on the constructions of $a_k^{(l)}$ and a_k from $a_{k-1}^{(l)}$ and a_{k-1} , respectively, we see that $a_k^{(l)} \leq a_k$. Thus, based on the constructions of $\{a_k^{(l)}\}_{k\in\mathbb{N}}$ and $\{a_k\}_{k\in\mathbb{N}}$ we see that $a_k^{(l)} \leq a_k$ for every $k \in \mathbb{N}^+$.

We define a sequence $\{r_k\}_{k\in\mathbb{N}}$ of rationals by $r_k = 0.a_k^{(k)}$. Obviously, $\{r_k\}_{k\in\mathbb{N}}$ is a computable sequence of rationals. Based on the result in the previous paragraph, we see that $r_k \leq \alpha$ for every $k \in \mathbb{N}^+$. Based on the constructions of prefix-free machines $V^{(1)}, V^{(2)}, V^{(3)}, \ldots$ from V, it is also easy to see that $\lim_{k\to\infty} r_k = \alpha$. Thus we see that α is an r.e. real.

Note that, using Theorem 4.2 and Theorem 5.4 below, we can give to Theorem 4.1 a different proof from Calude, et al. [1].

Theorem 4.4. Suppose that T < 1. For every r.e. real β , if β is T-convergent then β is strictly T-compressible.

Proof. Suppose that T < 1. Let β be a *T*-convergent r.e. real. Using Theorem 4.1 we see that there exists an r.e. real α such that α is weakly Chaitin *T*-random and strictly *T*-compressible. Since α is weakly Chaitin *T*-random, using the implication (i) \Rightarrow (iii) of Theorem 2.5 we see that, for every *T*-convergent r.e. real γ , there exists $d \in \mathbb{N}$ such that, for all $n \in \mathbb{N}^+$, $H(\gamma|_n) \leq H(\alpha|_n) + d$. Since β is a *T*-convergent r.e. real, it follows that $H(\beta|_n) \leq H(\alpha|_n) + O(1)$ for all $n \in \mathbb{N}^+$. Thus, since α is strictly *T*-compressible, β is also strictly *T*-compressible.

Calude, et al. [1], in essence, showed the following result.

Theorem 4.5 (Calude, Hay, and Stephan [1]). If a real β is weakly Chaitin T-random and strictly T-compressible, then there exists $d \geq 2$ such that a base-two expansion of β has neither a run of d consecutive zeros nor a run of d consecutive ones.

Theorem 4.6. Suppose that T < 1. Let V be an optimal prefix-free machine. For every r.e. real β , if β is T-convergent and weakly Chaitin T-random, then there exist an oracle deterministic Turing machine M and $d \in \mathbb{N}$ such that, for all $n \in \mathbb{N}^+$, $M^{\text{dom V}(r_n)}(n) = \beta|_{n-d}$.

Proof. Suppose that T < 1. Let V be an optimal prefix-free machine. Then, by Theorem 4.2, there exist an r.e. real α , an oracle deterministic Turing machine M_0 , and $d_0 \in \mathbb{N}$ such that α is weakly Chaitin T-random and, for all $n \in \mathbb{N}^+$, $M^{\text{dom V}|_{[Tn]}}(n) = \alpha|_{n-d_0}$. Since α is an r.e. real which is weakly Chaitin T-random, it follow from the implication (i) \Rightarrow (ii) of Theorem 2.5 that α is $\Omega(T)$ -like.

Now, for an arbitrary r.e. real β , assume that β is *T*-convergent and weakly Chaitin *T*-random. Then, by Theorem 4.4, β is strictly *T*-compressible. It follows from Theorem 4.5 that there exists $c \geq 2$ such that the base-two expansion of β has neither a run of *c* consecutive zeros nor a run of *c* consecutive ones. On the other hand, since the r.e. real α is weakly Chaitin *T*-random, from the definition of $\Omega(T)$ likeness we see that α dominates β . Therefore, there are computable, increasing sequences $\{a_k\}_{k\in\mathbb{N}}$ and $\{b_k\}_{k\in\mathbb{N}}$ of rationals and $d_1 \in \mathbb{N}$ such that $\lim_{k\to\infty} a_k = \alpha$ and $\lim_{k\to\infty} b_k = \beta$ and, for all $k \in \mathbb{N}$, $\alpha - a_k \geq 2^{-d_1}(\beta - b_k)$ and $[\beta] = [b_k]$. Then, by the following procedure, we see that there exists an oracle deterministic Turing machine *M* such that, for all $n \in \mathbb{N}^+$, $M^{\text{dom V}\restriction [Tn]}(n) = \beta \restriction_{n-(d_0+d_1+c+2)}$.

Given n and dom $V \upharpoonright_{\lceil Tn \rceil}$ with $n > d_0 + d_1 + c + 2$, one first calculates $\alpha \upharpoonright_{n-d_0}$ by simulating the computation of M_0 with the input n and the oracle dom $V \upharpoonright_{\lceil Tn \rceil}$. One then find $k_0 \in \mathbb{N}$ such that $0.(\alpha \upharpoonright_{n-d_0}) < a_{k_0}$. This is possible since $0.(\alpha \upharpoonright_{n-d_0}) < \alpha$ and $\lim_{k\to\infty} a_k = \alpha$. It follows that $2^{-(n-d_0)} > \alpha - 0.(\alpha \upharpoonright_{n-d_0}) > \alpha - a_{k_0} \ge 2^{-d_1}(\beta - b_{k_0})$. Thus, $0 < \beta - b_{k_0} < 2^{-(n-d_0-d_1)}$. Let t_n be the first n bits of the base-two expansion of the rational number $b_{k_0} - \lfloor b_{k_0} \rfloor$ with infinitely many zeros. Then, $|b_{k_0} - \lfloor b_{k_0} \rfloor - 0.t_n| \le 2^{-n}$. It follows from $|\beta - \lfloor \beta \rfloor - 0.(\beta \upharpoonright_n)| < 2^{-n}$ that $|0.(\beta \upharpoonright_n) - 0.t_n| < (2^{d_0+d_1}+2)2^{-n} < 2^{d_0+d_1+2}2^{-n}$. Hence, $|\beta \upharpoonright_n - t_n| < 2^{d_0+d_1+2}$, where $\beta \upharpoonright_n$ and t_n in $\{0,1\}^n$ are regarded as a dyadic integer. Thus, t_n is obtained by adding to $\beta \upharpoonright_n$ or subtracting from $\beta \upharpoonright_n a d_0 + d_1 + 2$ bits dyadic integer. Since the base-two expansion of β has neither a run of c consecutive zeros nor a

5 Main Results

 $n - (d_0 + d_1 + c + 2)$ bits of t_n .

Let V and W be optimal prefix-free machines. The following two theorems together show computational equivalence, i.e., computational two-wayness, between the base-two expansion of $Z_W(T)$ and the halting problem of V in the case of T < 1.

Theorem 5.1 (main result I). Suppose that T < 1. Let V and W be optimal prefix-free machines, and let $f: \mathbb{N}^+ \to \mathbb{N}$ be a total recursive function. Then the following two conditions are equivalent:

- (i) There exist an oracle deterministic Turing machine M and $c \in \mathbb{N}$ such that, for all $n \in \mathbb{N}^+$, $M^{\text{dom } V \restriction [Tn]}(n) = Z_W(T) \restriction_{n+f(n)-c}$.
- (ii) The function f is bounded to the above.

Theorem 5.2 (main result II). Let V and W be optimal prefix-free machines, and let $f: \mathbb{N}^+ \to \mathbb{N}$ be a total recursive function. Then the following two conditions are equivalent:

- (i) There exist an oracle deterministic Turing machine M and $c \in \mathbb{N}$ such that, for all $n \in \mathbb{N}^+$, $M^{\{Z_W(T)\restriction n\}}(n) = \operatorname{dom} V \restriction_{[Tn]+f(n)-c}$, where the finite subset $\operatorname{dom} V \restriction_{[Tn]+f(n)-c}$ of $\{0,1\}^*$ is represented as a finite binary string in a certain format.
- (ii) The function f is bounded to the above.

Due to the 7-page limit, we only prove Theorem 5.1 in what follows. Let W be an optimal prefix-free machine. By Theorem 7 of Tadaki [8], $Z_W(T)$ is a *T*-convergent r.e. real. Moreover, by Theorem 2.3, $Z_W(T)$ is weakly Chaitin *T*-random. Thus, the implication (ii) \Rightarrow (i) of Theorem 5.1 follows immediately from Theorem 4.6.

On the other hand, the implication (i) \Rightarrow (ii) of Theorem 5.1 follows immediately from Theorem 5.3 below and Theorem 2.3. In order to prove Theorem 5.3, we need Theorem 5.4 below.

Theorem 5.3. Let β be a real which is weakly Chaitin T-random, and let V be an optimal prefix-free machine. For every function $f: \mathbb{N}^+ \to \mathbb{Z}$, if there exists an oracle deterministic Turing machine M such that, for all $n \in \mathbb{N}^+$, $M^{\operatorname{dom V}}(n) = \beta_{n+f(n)}(n)$, then the function f is bounded to the above.

Let M be a deterministic Turing machine with the input and output alphabet $\{0, 1\}$, and let C be a prefix-free machine. We say that M computes C if the following holds: for every $p \in \{0, 1\}^*$, when M starts with the input p, (i) M halts and outputs C(p) if $p \in \text{dom } C$; (ii) M does not halt forever otherwise. We use this convention on the computation of a prefix-free machine by a deterministic Turing machine throughout the rest of this paper. Thus, we exclude the possibility that there is $p \in \{0, 1\}^*$ such that, when M starts with the input p, M halts but $p \notin \text{dom } C$. For any $p \in \{0, 1\}^*$, we denote the running time of M on the input p by $T_M(p)$ (may be ∞). Thus, $T_M(p) \in \mathbb{N}$ for every $p \in \text{dom } C$ if Mcomputes C.

We define $L_M = \min\{|p| \mid p \in \{0,1\}^* \& M$ halts on input $p\}$ (may be ∞). For any $n \ge L_M$, we define I_M^n as the set of all halting inputs p for M with $|p| \le n$ which take longest to halt in the computation of M, i.e., as the set $\{p \in \{0,1\}^* \mid |p| \le n \& T_M(p) = T_M^n\}$ where T_M^n is the maximum running time of M on all halting inputs of length at most n. In the work [7], we slightly strengthened the result presented in Chaitin [3] to obtain the following (see Note in Section 8.1 of Chaitin [3]).

Theorem 5.4 (Chaitin [3] and Tadaki [7]). Let V be an optimal prefix-free machine, and let M be a deterministic Turing machine which computes V. Then n = H(n, p) + O(1) = H(p) + O(1) for all (n, p) with $n \ge L_M$ and $p \in I_M^n$.

Proof of Theorem 5.3. Let β be a real which is weakly Chaitin T-random. Let V be an optimal prefix-free machine, and let M be a deterministic Turing machine which computes V. For each n with $[Tn] \geq L_M$, we choose a particular p_n from $I_M^{[Tn]}$. For an arbitrary function $f: \mathbb{N}^+ \to \mathbb{Z}$, assume that there exists an

125

oracle deterministic Turing machine M_0 such that, for all $n \in \mathbb{N}^+$, $M_0^{\dim V \upharpoonright [Tn]}(n) = \beta \upharpoonright_{n+f(n)}$. Then, by the following procedure, we see that there exists a partial recursive function $\Psi \colon \mathbb{N} \times \{0,1\}^* \to \{0,1\}^*$ such that, for all n with $[Tn] \ge L_M$,

$$\Psi(n, p_n) = \beta \uparrow_{n+f(n)} .$$
⁽⁵⁾

Given (n, p_n) with $[Tn] \ge L_M$, one first calculates the finite set dom $V \upharpoonright_{[Tn]}$ by simulating the computation of M with the input q until at most the time step $T_M(p_n)$, for each $q \in \{0, 1\}^*$ with $|q| \le [Tn]$. This can be possible because $T_M(p_n) = T_M^{[Tn]}$ for every n with $[Tn] \ge L_M$. One then calculates $\beta \upharpoonright_{n+f(n)}$ by simulating the computation of M_0 with the input n and the oracle dom $V \upharpoonright_{[Tn]}$.

It follows from (5) and (2) that

$$H(\beta|_{n+f(n)}) \le H(n, p_n) + O(1) \tag{6}$$

for all n with $[Tn] \geq L_M$.

On the other hand, given [Tn] with $n \in \mathbb{N}^+$, one only need to specify one of [1/T] possibilities of n in order to calculate n, since T is a computable real and $T \neq 0$. Thus, there exists a partial recursive function $\Phi: \mathbb{N}^+ \times \{0, 1\}^* \times \mathbb{N}^+ \to \mathbb{N}^+ \times \{0, 1\}^*$ such that, for every $n \in \mathbb{N}^+$ and every $p \in \{0, 1\}^*$, there exists $k \in \mathbb{N}^+$ with the properties that $1 \leq k \leq [1/T]$ and $\Phi([Tn], p, k) = (n, p)$. It follows from (2) and (1) that $H(n, p) \leq H([Tn], p) + \max\{H(k) \mid k \in \mathbb{N}^+ \& 1 \leq k \leq [1/T]\} + O(1)$ for all $n \in \mathbb{N}^+$ and all $p \in \{0, 1\}^*$. Hence, using (6) and Theorem 5.4 we have

$$H(\beta_{n+f(n)}) \le H([Tn], p_n) + O(1) \le [Tn] + O(1) \le Tn + O(1)$$
(7)

for all n with $[Tn] \geq L_M$.

On the other hand, since β is weakly Chaitin *T*-random, we have $Tn + Tf(n) \leq H(\beta|_{n+f(n)}) + O(1)$ for all $n \in \mathbb{N}^+$. Combining this with (7), we see that f is bounded to the above.

Acknowledgments

The author is grateful to Prof. Marius Zimand for the valuable discussions. This work was supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (20540134), by SCOPE from the Ministry of Internal Affairs and Communications of Japan, and by CREST from Japan Science and Technology Agency.

References

- C. S. Calude, N. J. Hay, and F. C. Stephan, "Representation of left-computable ε-random reals," Research Report of CDMTCS, 365, May 2009. Available at: http://www.cs.auckland.ac.nz/ CDMTCS/researchreports/365cris.pdf
- [2] G. J. Chaitin, "A theory of program size formally identical to information theory," J. Assoc. Comput. Mach., vol. 22, pp. 329-340, 1975.
- [3] G. J. Chaitin, Algorithmic Information Theory. Cambridge University Press, Cambridge, 1987.
- [4] J. Reimann and F. Stephan, On hierarchies of randomness tests. Proceedings of the 9th Asian Logic Conference, World Scientific Publishing, August 16-19, 2005, Novosibirsk, Russia.
- [5] K. Tadaki, "A generalization of Chaitin's halting probability Ω and halting self-similar sets," *Hokkaido Math. J.*, vol. 31, pp. 219-253, 2002.
- [6] K. Tadaki, A statistical mechanical interpretation of algorithmic information theory. Local Proceedings of Computability in Europe 2008 (CiE 2008), pp. 425-434, June 15-20, 2008, University of Athens, Greece. Electronic Version Available: http://www.cs.swan.ac.uk/cie08/ cie2008-local.pdf
- [7] K. Tadaki, Chaitin Ω numbers and halting problems. Proc. CiE 2009, Lecture Notes in Computer Science, Springer-Verlag, Vol.5635, pp.447-456, 2009.
- [8] K. Tadaki, Partial randomness and dimension of recursively enumerable reals. Proc. MFCS 2009, Lecture Notes in Computer Science, Springer-Verlag, Vol.5734, pp.687-699, 2009.