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New Side Channel Attack Countermeasure
Based on Minimal Hamming Weight Distribution
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To cope with the side channel attack, many works
have been proposed. In this paper, we are inter-
ested in the method of varying the representation
of the scalar. By using this method, we have to in-
crease the hamming weight of the representation.
This makes the computation time of the scalar-
point multiplication of the elliptic curve cryptosys-
tem increases. In this paper, we improve the ham-
ming weight of the randomized binary expansion,
and make the hamming weight fixed for any scalars.
This is done by utilizing the fact that the distri-
butions of the minimal hamming weight are the
standard distributions for any binary expansions.
As a result, our proposed expansion is randomized
expansion as in the work by Ha and Moon [1, 2].
It has a fixed hamming weight as in the work by
Mamiya and Miyaji [3]. And, it improves the av-
erage hamming weight on both papers from 0.50
to 0.43. Our method can be applied to the multi-
scalar point multiplication, and the scalar point
multiplication on the enlarged digit set.

1 .Introduction

Side channel attack [4] is the utilization of the
cryptographic environment to break the cryptosys-
tem. These include the computation time [5], the
power consumption [6], or the EM wave transmit-
ted from the cryptosystem [7]. This method is
shown that it can be used for breaking the scalar
point multiplication in the elliptic curve cryptosys-
tem that utilizes the double-and-add method. This
is because of the fact that the power consumption
using for point additions and point doubles are dif-
ferent. Also, the time used on point additions de-
pends on the hamming weight, the number of non-
zero digit on the expansion of the scalar. Many
works have been proposed to cope with this prob-
lem. These include inserting the dummy point ad-
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ditions [8], making the point additions and point
doubles indistinguishable [9], or group some point
additions and point doubles into indistinguishable
blocks [10]. Each scheme has its own advantages
and disadvantages. For instances, the dummy ad-
ditions are easy to implement, but its efficiency is
poor, and it is weak against the fault analysis at-
tack [11]. The indistinguishable operation and the
indistinguishable block are strong against most of
attacks, but the implementation is hard. It is dif-
ficult to apply the idea to the different type of the
elliptic curve, or the different scalar representation.

In this paper, we are interested in the method
that varying the representation of the scalar. As
representing the number using a redundant digit set
is intensively used for improving the computation
time of the scalar-point multiplication, it is also
able to be used for preventing the side channel at-
tack. Since one scalar can be represented by many
expansions, randomly selected one representation
can make the eavesdropper harder to get any infor-
mation. The first work on this scheme is done by Ha
and Moon (1, 2]. They propose the randomized ex-
pansion on digit set {0, £1}. Although, their works
have been proved to be weak against many attacks
or implementation environments [12, 13, 14], it is
still intensively used. This is because of the fact
that the implementation is not very hard, and in-
dependent to the type of the curve. However, the
binary expansion proposed in (1, 2] has the average
hamming weight equals to % = 0.50. This is much
higher than the minimal average hamming weight
that is equal to % =~ 0.33. We note that this num-
ber affects the number of point additions needed
for the scalar-point multiplication.

Proposed in [3], the fixed-hamming-weight repre-
sentation is important to prevent the timing attack,
especially for the case that the point additions and
the point doubles are indistinguishable. They also
propose the conversion to make the representation
by {0,+1} has the fixed hamming weight. That
fixed hamming weight is % = 0.50. Similar to the
work by Ha and Moon, this makes the operation
slower. Although the minimal average hamming
weight is % =~ 0.33, the worst minimal hamming
weight is 7 = 0.50. Then, it is hard to reduce the
fixed hamming weight.



In this work, we apply the minimal weight dis-
tribution to improve this problem. We prove that
the distribution of the minimal weight is always
a normal distribution, for any binary expansions.
This results is not only limited to a single integer,
but also a pair, a triple, or larger number of inte-
gers. This fact is obtained by analyzing the Markov
chain proposed for automatically finding the aver-
age hamming weight on any expansions on our pre-
vious work [15, 16]. In this analysis, we are also
able to find the expected value and the standard
deviation of the distribution. As a results, we know
that more than 97.73% of the single scalar has the
minimal weight in the digit set {0,+1} less than
0.43 when the length of bit string is 160. Then, we
propose not to use the scalar which has the weight
more than 0.43 as a key, and we randomly increase
the weight of the scalar which has the weight less
than that number. This idea makes us able to pro-
duce the randomized representation which has the
fixed hamming weight equals to 0.43. As this work
is still on-going, our expansion has not been en-
sured whether it is strong against the attacks. But,
we believe that it is stronger than the work by Ha
and Moon.

This paper is organized as follows: On next sec-
tion, we review the concepts about the scalar-point
multiplication. We also describe our method to find
the average weight on any digit sets. In Section 3,
we describe how our model can be used for proving
that the minimal hamming weight distribution is
minimal. Also, we explain how to find the standard
deviation from the model. In Section 4, we discuss
how to apply the minimal weight distribution to
the side channel attack countermeasure. And, we
conclude the paper, and propose some future works
in Section 5.

2 Preliminaries

2.1 Scalar-Point Multiplication

Scalar-point multiplication is the operation to
compute
S =rP,

when 7 is a natural number, and P is a point in the
elliptic curve.

Using the double-and-add method, we can com-
pute the operation efficiently. For example,

S =14P = (1110);P
can be computed by
S =2(2(2P + P) + P).

This needs 3 point doubles and 2 point additions.
The number of point doubles required is constantly
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equal to |log, r|. And, the number of point addi-
tions required is equal to Wy, (r) —1, when Wy, (r)
is the hamming weight of r in the binary represen-
tation.

In some elliptic curves, the point inversions can
be done easily. Then, representing the number us-
ing the digit set {0,+1} can improve the scalar-
point multiplication. For example,

S = 14P = (10010),P,
when T = —1, can be computed by
S = 2(2(2(2P)) — P).

This needs 4 point doubles and 1 point addi-
tion. Although, the number of point doubles some-
times increases by 1, the number of point addi-
tions usually decrease significantly. There is the
work [17, 18] presented the minimal expansion on
this representation. They call the representation as
NAF.

To evaluate the representation E, we use the av-
erage weight

- Welr)

AW(F) = lim ok

k—
o r=0

For examples,
AW (bin) = % = 0.50,

1 ~
3~
The generalized version of NAF representing by the
digit set {0, +1,...,+(2% —1)} is called w — NAF.
It is proved that AW (w — NAF) = 1= [19].

Next, we consider the multi-scalar point multi-
plication

AW (NAF) = = ~ 0.33.

S=riPi+---+r4Pa,

which is used for elliptic curve digital signature al-
gorithm [20]. Instead of computing r P,...,74Py
in separate, Shamir’s trick can make the operation
faster. For example, let d = 2,

r1 = 12 = (10100),,

ro = 21 = (10101)3.

And, we precompute Dy = Py + P, Dy = P, — Ps.
We can compute S = 12P; + 21P; as

S = 2(2(2(2D,) — D2)) + P;.
This requires 4 point doubles and 2 point additions.

Similar to the scalar point multiplication, the num-
ber of point doubles required is

max(|logs (7))



And the number of point addition required is equal
to JWE(T'l, S ,T‘d) - 1. JI/VE(Tl, . ,Td) is the joint
hamming weight of r;,...,74 in the representation
E,

JWg(ry, ...

vrd) = ”{C € ZIEC(Tlv"‘STd) # (0>}H1

when E.(r1,...,7q) is (@)% ,. a; is the ct* bit
when expand r; in the representation E.

We also define the average joint weight AJW (E)
as

JWE Tl,.. .
k2dk

)

AJW(E

= IL‘ECZ Z

ry= rqg=0

It is obvious that AJW(bin) = 0.75. Solinas {21]
propose the minimal weight representation for the
digit set {0,+1}, d = 2, and call the proposal as
JSF. He can prove that AJW(JSF) = 0.50.

2.2 Average Weight on Any Expan-
sions

In [15, 16], we discuss the method for finding
the minimal average joint weight for any binary
expansion. Most of the methods proposed in the
literatures are focusing on finding the mathemati-
cal construction of the representation. Then, they
analyze that the construction and find the minimal
average weight. The advantage of this method is
that they can derive the efficient conversion algo-
rithm from the construction. But, the construction
is hard to be found in some representations. For
instance, there is still no work able to find the av-
erage joint hamming weight of the representation
of the digit set {0,+1, %3} when d > 2. Instead
of finding the mathematical construction, we pro-
pose the conversion algorithm that can be applied
to any digit sets. Then, we construct the analysis
automatically from the conversion algorithm. Algo-
rithm 1 shows the minimal weight conversion from
T1,...,Tq to our representation. We call our min-
imal weight representation as MIN{Ds,d}, when
Ds is the desired digit set, and d is the number of
scalars in the scalar point multiplication. We as-
sume that max, log,(r;) = n. We prove that this
algorithm is the minimal weight conversion in [15].

From Algorithm 1, we propose Algo-
rithm 2 to construct the Markov chain
A = (QA,E,GA,IA,PA), where Q4 is the set

of states, X is the set of alphabet, o4 is the set of
transition, I4 is the initial possibility, and P4 is
the transition possiblity. We consider Algorithm
1 Lines 5-20 as a function which MW outputs
w. The input of the function is bin;(ry,...,74q)
and lw. We note that we do not consider {Q and
@ here, as we are considering only the minimal
weight not the solution. This function is referred
in Line 9 of Algorithm 2.
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Algorithm 1 Minimum joint weight conversion to
any digit sets Ds in the binary expansion
Require: ry,...,1y4
The desired digit set Ds
Ensure: MIN{Ds,d}(r1,...,1q)
1: Let Cs be a carry set such that for all ¢ € Cs
and d € Ds, <£¢, etdtl ¢ Cs.
We discuss the construction of Cs in [15].

2. Let lw be an array of lw, ., for any
Cly...,C4 € CS.
lwc,,...,cd — 0 if <C1, e ,Cd) = (0’ . ’0>
lwcl,...,cd — O OtherWise.

3: Let IQ «— (IQp¢,.....cy) for any 1 < p < d and
c1,...,cqa € Cs. AlllQ, ., .. ., are initiate to a
null string.

4: fori«—n——ltoOdo
5: for all G = (g;)¢, € Cs? do
6: ae «— bin;(r1,...,74) + G
7: for all e = (ei)le € Ds? do
8: if 2|(aep, —ep) forall 1 < p < d then
9: CA — (2ere)d |
10: weg — lweca if e = (0).
weg — lwec 4 + 1 otherwise.
11: else
12: WeE «— o0
13: end if
14: end for
15: Let weg4 is the minimal value among we.
16: WG +— WeEA
17: Let EA = (ea;)2_,.
18: CE « (2&izeaiyd |
19: Qs.c — (IQs.ce,eas) forall 1 <s<d

20: end for

21: lw— w, 1Q — Q
22: end for

23: Let Z — (0).

MIN{Ds,d}(r1,...,rq) — (Qi.z)%,

Let C be a number of states. We number each
state d € Q4 as d; where 1 <7 < C. Let n! = (n})
be a probablistic distribution at time t, i.e. ! is
the possibility that we are on state d; after received
input length t. Next, let P = (P;;) be the transition

matrix such that

Py = Pa(i,G,j).

GeX

Without loss of generality, assume d; = lwl, then
9 = (1,0,...,0)t. From the equation wt*! = rtP,
we find the stationary distribution such that nt+! =
7t by the eigendecomposition.
The next step is to find the average weight from
the stationary distribution 7. Define W K as a func-
tion from o4 to the set of integer by

WK(lwl, G, lw2) = lw20 - l’u)lo

or the change of the hamming weight in the case
that carry pair is (0). We compute the average



Algorithm 2 Construct the Markov chain used for
finding the average minimal weight and the minimal
weight distribution
Require: The digit set Ds
The number of scalars d
Ensure: Markov chain A = (Qa,%,04,14,Pa)
1. X« {0, l}d, Qa— D, 04 —O
2: The carry set Cs is the same as the carry set
in Algorithm 1.
3 lwl — (lwle, . ci)er....caccs, Where
lwlp, .0 < 0 and lwl, .., «+ oo otherwise

4: Qu — {lwl}

5: while Qu # @ do
6: let z € Qu
7
8

lwe—z, Qu«— Qu—lw

for all bin;(ry,...,74) € ¥ do
9: w — MW (bin;(ry,...,74), lw)
10: 04 —oaU{(lw,bin;(ry,...,rq),w)}
11: PA(lw,bin,-('rl,...,rd),w) — l—é-l
12: if wé¢ Qa and w # lw then
13: Qu — QuuU{w}
14: end if

15:  end for

16: QAPQAU{ZU)}

17: end while

18: I4(lw) — 1 if lw = lwl, I 4(lw) < 0 otherwise.

hamming weight by the average value of the change
in the hamming weight when n is increased by 1 in
the stationary distribution formalized as

E WK (z,G,y)

AJW(MIN{Ds,d}) = ]
(z,G.y)€oa

By using this method, we can find the average
joint hamming weight of many digit sets. These
include
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Lemma 3.1. Let X;,X2,..., X, be an indepen-
dent trials process and let S,, = X1+ X2+ - -+ X,,.
Assume that the greatest common divisor of the dif-
ferences of all the values that the X; can take on is
1. Let E(X;) = p and V(X;) = o?. Then,

lim Pr(S, = j) = ‘f’(xiz,
where z; = \/::TZ’ and ¢(x) is the standard normal

density.
Then, we prove the theorem.

Theorem 3.2. The distribution of the joint ham-
ming weight of MIN{Ds, d} produced by Algorithm
1 is the normal distribution.

Proof. Let X be a random variable which is equal
to the joint hamming weight increases by one step
of the Markov chain constructed in Algorithm 2.
Hence, let

WK(z,G,
={eeqa ¥ TEEZOD_y
GeX.yeQA
Pr(X =t) = Z Ty
z€eC,

This means Pr(X = t) is the possibility that the
Markov chain is on the state which will increase the
joint hamming weight by t in the next step. Since
the function WK always returns a finite integer,
the set of the possible values of t is also finite. We
show the probability density function of X when
d = 2 and Ds = {0,%1} in Table 1, and when
d =2 and Ds = {0,%1, £3} in Table 2.

Let X; be the joint hamming weight increases in
step ¢. The joint hamming weight of the bit string
in the binary expansion length n, S,, is Z::ol X;.

AJW(MIN{{0, £1,43},2} = 281 ~ 0.3575, Then, S,, satisfies Lemma. 3.1, and the distribution
786 of S5, the joint hamnming weight, is normal. ]
1496369
AJW(MIN +1, 43, £5},2} = ————— = 0.3100.
JW(MIN{{0, 1,43, £5},2) = 70000 ~ 0
% 1: The probability density function of the

3 Minimal Weight Distribu-
tion
3.1 Proof of Normal Distribution

In this section, we prove that the distribution of
the joint hamming weight is the normal distribu-
tion. This generalizes a proof which shows that
JSF is the normal distribution proposed by Grab-
ner, Heuberger, and Prodinger [22]. Also, our proof
generalizes the proof that the window-JSF is the
normal distribution [23].

Here, we refer to the approximation theorem,
Theorem 9.3 of [24].

joint hamming weight increases in one step in the
Markov chain when Ds = {0,£1}, d = 2

Value Probability
-0.25 0.25
0.25 0.125
0.5 0.125
0.75 0.25
1 0.125
1.25 0.125




# 2. The probability density function of the
joint hamming weight increases in one step in the
Markov chain when Ds = {0, +1,+3}, d =2

Value Probability
-0.75 0.0318
-0.5 0.00191
-0.25 0.130
0 0.130
0.25 0.207
0.5 0.181
0.75 0.219
1 0.0652
1.25 0.0349

3.2 Finding the Standard Deviation

In this subsection, we continue the proof from the
previous subsection to find the standard deviation
of the distribution.

Corollary 3.3. Refer to the random wvariable X
defined in the proof of Theorem 3.2, let

V(X) =Y _*Pr(X =t) - AJIW(MIN{Ds,d})*.

The variance of the joint hamming weight distribu-
tion is nV(X)

Proof. Let the expectation value is i and the stan-
dard deviation is 0. The probability density func-
tion of the normal distribution is

(x — p)?

Pr(X =d) = 552

" exp(— )
a\/ﬂexp .

And, the probability density function of the stan-
dard normal distribution is

_ 1 —z;
¢(z;) = o exp( 5 )
By Lemma 3.1,
lim Pr(S, = j) = 282
n—oc no?

Then, by z; = ﬁ%,

(G —np)?

lim Pr(S, =3 T’

1
= ———ex
n—oc 7) V2nno?

Hence, the distribution of the joint hamming weight
is the normal distribution where the expectation
value is nE(X) and the variance is nV(X). O

V(X) is the constant value for the specific rep-
resentation. Then, the variance of the joint ham-
ming weight representation depends on n. Hence,

the standard deviation, /nV(X), depends on /n.
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# 3: The standard deviation of the joint hamming

weight distribution in some representations when

n = 160.
Representation

Standard Deviation

MINT{0, £1}, 1} 0.0493n
MIN{{0,£1},2} 0.0400n
MIN{{0, %1, +3},2} 0.0370n

As the bit length increases, the standard devia-
tion becomes smaller compared to n. For example,
in MIN{{0,+£1},2}, the standard deviation when
n = 100 is 5.05 = 0.0505n, and when n = 160 the
standard deviation is 6.40 = 0.0400n. We show the
standard deviation of some representations when
n = 160 in Table 3.

4 Application to Side Channel
Attack

The result that the hamming weight distribution
is the normal representation on the previous section
can be used for presenting the countermeasure of
the side channel attack. In this section, we present
how to make the random representation which the
hamming weight is fixed from that fact.

Here, we present Algorithm 3 to improve the pro-
posals by Ha, Moon, Mamiya, and Miyaji. The
algorithm is described as follows:

e We select the random number k in Line 2,
and convert this number to the expansion
MIN{Ds,d}(k) at Line 3. If its weight is more
than u + ao, we reject the random number £,
and pick a new random number. As the ham-
ming weight distribution is a normal distribu-
tion, the positive real number « determine the
proportion of an integer k that can be used
in our algorithm. If & = 2, 97.73% of the set
Z N (0,2™) can be used. If a = 2.5, 99.38%
can be used. The fact that we cannot use all
k in the domain is the main drawback of our
algorithm. Selecting appropriate a can trade
off between the proportion of the usable scalar
and the efficiency of the algorithm.

e For example, using MIN{{0, £1},1}(k) when
n = 160, the average hamming weight is p =

% x 160 =~ 53.3, and the standard deviation is

15 x 160 =~ 7.89. If a = 2, the fixed

weight is 53.3+2 x 7.89 = 69.1. If a = 2.5, the
fixed weight is 53.3 + 2.5 x 7.89 = 73.0. Both
numbers improve the efficiency of the existing
proposal by Mamiya and Miyaji that the fixed
weight is 80. Also, it improves the work by Ha
and Moon that the average weight is 80.

o =



e The function CONV ERT in Line 5 is defined
in Algorithm 4. It is the algorithm to find the
random representation with a fixed weight. We
note that the function CONV ERT defined in
Algorithm 4 is specified for MIN{{0, £1},1}
representation, but the algorithm for other
representations can be referred easily.

Algorithm 3 Our proposed countermeasure of the
side channel attack using the random and fixed-
hamming weight representation

Require: a point on the elliptic curve P,
a bit length n,
/¢ is the average hamming weight of a specific
representation (3n when d =1, Ds = {0, £1}),
o is the standard deviation of a specific repre-

151 when d = 1, Ds = {0, +1}),

aisa posmve real number

Ensure: A random number k& € Z N (0, 2"),
a random expansion RAN{Ds, d}(k)
a point on the elliptic curve kP.
repeat

Generate a random number &

Convert k to MIN{Ds, d}(k)
until JWI\IIN{Ds d}(k) <p+ao
RAN{Ds,d}(k) — CONVERT(k U+ ao)
Compute kP using the double-and-add method
and RAN{Ds,d}(k).

sentation (

ST W

Last, we give some explanations of Algorithm 4.

e In Line 2, we divide the bit string
MIN{{0,+£1},1}(k), into m bit strings
(P{i})*,'. For example, (0,1,0,—1), which
is MIN{{0,%£1},1}(3), is divided into
P{0} = (0,1) and P{1} = (0, —1).

¢ Since our task is to increase the hamming
weight of the expansion, we need to change
some zero bits of each P{:} into 1 or -1. In
the algorithm proposed by Ha and Moon, some
{0,1) or {0, —1) is changed to (1, —1) or (—1,1)
randomly. We propose that (0,0,1) can be
changed to (1,-1, —1), and (0,0, —1) can be
changed to (—1,1,1). Moreover,

(0,0,...,¢) =

In Lines 6-10, we changed the bit string P{i} to
the bit string R{:} which the hamming weight
is u; + 1 by the idea stated above.

(e, —c,...,—c).

e As the hamming weight of the bit string R{:}
is u; + 1, the hamming weight of the output
RAN{{0,£1},1}(k) is

m—1
ZWR{'I})— Y (w+)=f-mim=4

=0 1=0
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Algorithm 4 The conversion to the random rep-

resentation with a fixed hamming weight

Require: A key k € (0,27),
an expected hamming weight 3

Ensure: a fixed hamming weight random expan-
sion RAN{{0, £1},1}(k)

1. m— Warn({o,+1}.13 (k)

: Let P{i} be a bit string such that

MIN{{0, £1},1}(k) = (P{i})75",

where P{i }J if j # O and P{ }o € {—1,1}.

[

3 V= (u)p! (|P{ o
4: Let U= ()75 bea random tuple of integers
such that 0 < u; <v;and Y u; =8 —m
5 fori=0tom—1do
6: if u; =0 then
7: R{'I,} — P{Z}
8: else
9: Let R{i} = (R{i};); Yol be a bit string
such that
R{i}o == R{i}ue—l A —P{i}Uv
R{i}ui - P{Z}O!
R{i}ui+1 == R{i}vi—l —0.
10:  end if
11: end for
12: RAN{{0,£1},1}(k) — (R{E})"
5 Conclusion and Future

Works

Our result proposed in this paper is the sub-
sequence of [15, 16]. We use the Markov chain
automatically generated for finding the expected
value of the minimal joint hamming weight of
MIN{Ds,d} to find its distribution. As a result,
we show that the distribution is the normal distri-
bution. Then, 97.73% of the scalars used as a key
has the minimal joint hamming weight less than
4+ 20, when p is the average joint weight, and o
is the standard deviation. We propose to reject the
scalars that have more weight than that value, and
propose the random and fixed-hamming-weight ex-
pansion. In MIN{{0, £1},1}, we can improve the
result by Mamiya, Miyaji, Ha, and Moon from 0.50
to 0.43.

This result is still on-going because of many rea-
sons. First, Algorithm 3 and Algorithm 4 scan the
input left-to-right and right-to-left many times. Al-
though, it is negligible if the point double and the
point addition are much slower, it should be im-
proved. Second, the random tuple generated in
Line 3 of Algorithm 4 is very important for securing
the scheme against the side-channel attacks. Uni-
form random might make the scheme weak against
them. And, we need to decide the most suitable
randomization method to cope with the problem.
Last, we need to show that using this scheme is
stronger than the other randomized expansion, in



the case that the eavesdropper iteratively uses the
same scalar k to get some information.
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