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Abstract

We present dynamical mechanisms for conformational transitions of atomic clus-
ters. A method called hyperspherical mode analysis is introduced, which makes it
possible to analyze energy transfer between intramolecular vibrational modes. By
using this method, we identify a small number of reactive modes that essentially
dominate conformational transitions of atomic clusters by acquiring a large amount
of energy. We also identify “trigger modes” that inject energy into the reactive
modes through the mode coupling to initiate the conformational transitions. The
trigger mechanisms for conformational transitions presented here should be widely
applicable to molecular reactions in which a system changes its overall mass dis-
tribution in a significant way. [Joint work with Wang Sang Koon (Caltech) and
Jerrold E. Marsden (Caltech). $]$

1 Introduction
Conformational transitions of complex molecular systems, such as nanoclusters and biopoly-
mers, are typically collective motions that involve a large number of degrees of freedom in
a highly coherent manner. It has been a significant challenge to understand the general
mechanisms for such collective motions. The purpose of the report is to shed light on the
mechanisms for collective motions of complex molecular systems by using a novel method
of mode analysis.

The mode analysis introduced here is based on the framework of geometric mechanics
and the associated gauge theory for the n-body systems with rotational symmetry, which
have been developed for decades by Marsden [1-3], Kummer [4], Guichardet [5], Iwai
[6, 7], Tachibana [8], Littlejohn [9-12], and their coworkers. It is also based on the
framework of hyperspherical coordinates developed by Eckart [13], Chapuisat [14, 15],
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Kuppermann [16-18], Aquilanti [19-22], and their coworkers. By merging the frameworks
of geometric mechanics and the hyperspherical coordinates, we have developed a method
called hyperspherical mode analysis for the study of the dynamics of complex molecular
systems.

In this report, we summarize the framework of the hyperspherical mode analysis and
apply it to the conformational transition dynamics of a six-atom Morse cluster called $M_{6}$ .
This cluster serves as an illustrative model for conformational transitions of molecular
systems. We construct a reaction coordinate for the conformational transitions of the
atomic cluster. We then identify “trigger modes” that inject energy into the reactive
modes through the mode coupling to initiate the conformational transitions. Finally, we
discuss the possibility of controlling conformational transitions of molecular systems based
on the trigger mechanisms presented here.

2 Expression for kinetic energy of an n-atom system
In this section, we summarize the expression for kinetic energy of an n-atom system in
the hyperspherical coordinates. This expression serves as a basis for the hyperspherical
mode analysis. Given a system of $n$ atoms, with masses $m_{i}(i=1, \cdots, n)$ and positions
$r_{i}=(r_{ix}, r_{iy}, r_{iz})^{T}$ , its overall translational degrees of freedom can be eliminated via the
introduction of the $(n-1)$ mass-weighted Jacobi vectors

$\rho_{i}=\sqrt{\mu_{i}}(\frac{\sum_{k--1}^{i}m_{k}r_{k}}{\sum_{k=1}^{i}m_{k}}-r_{i+1})$ $(i=1, \cdots, n-1)$ , (1)

where $\mu_{i}$ are the reduced masses,

$\mu_{i}=\frac{m_{i+1}\sum_{k=1}^{i}m_{k}}{\sum_{k=1}^{i+1}m_{k}}$ $(i=1, \cdots, n-1)$ . (2)

Let $W\equiv(\rho_{1}\cdots\rho_{n-1})$ be a $3\cross(n-1)$ -dimensional matrix whose columns are the $(n-1)$
Jacobi vectors of the system. According to the singular-value decomposition theorem, the
matrix $W$ can be decomposed into the product of three matrices as

$W=$ $RN$ $\cup^{T}$ , (3)

where $R$ is a three-dimensional orthogonal matrix whose three columns represent the
instantaneous principal axes of the whole system. The matrix $N$ is a $3\cross(n-1)$ (diagonal”
matrix of the following structure,

$N=(\begin{array}{llllll}a_{1} 0 0 0 \cdots 00 a_{2} 0 0 \cdots 00 0 a_{3} 0 \cdots 0\end{array})$ , (4)

where the singular values $a_{1},$ $a_{2}$ , and $a_{3}$ are the gyration mdii of the system. Physically,
the gyration radii represent the mass distribution of the system with respect to the three
principal axes and are related to the three principal moments of inertia $M_{1}\leq M_{2}\leq M_{3}$

as
$M_{3}=a_{1}^{2}+a_{2}^{2},$ $M_{2}=a_{1}^{2}+a_{3}^{2},$ $M_{1}=a_{2}^{2}+a_{3}^{2}$ . (5)
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Tliat is,

$a_{1}^{2}= \frac{1}{2}(\Lambda I_{2}+\Lambda I_{3}-lII_{1})$ . $a_{2}^{2}= \frac{1}{2}(M_{1}+\lrcorner l\prime I_{3}-ilI_{2})$ . $a_{3\backslash }^{2}= \frac{1}{2}(A/I_{1}+M_{2}-\Lambda I_{3})$ . (6)

The inatrix $U$ in Eq. (3) is an $(n-1)\cross(n-1)$ orthogonal matrix of the form $\cup\equiv$

$(u_{1}\cdots u_{n-1})$ , where the $(n-1)$-diinensional vectors $\{u_{i}\}$ are orthogonal to each other
and noriitalized. In the framework of hyperspherical coordinates [14], the matrix $U$ can
be parametrized by tbe $(3n-9)$ hyperangles by restricting the inatrix $\cup$ to a subgroup
of $O(n-1)$ . Together with $a_{1},$ $a_{2}$ , and $a_{3}$ , these $(3n-6)$ variables in the matrices $N$ and
$\cup$ are the internal coordinates that characterize the shape of the system uniquely, while
the principal-axis frame $R$ specifies the orientation of the whole system. The use of the
$(3n-9)$ hyperangles generally makes the expression of kinetic energy highly involved.
Iiistead. the use of $(3n-9)$ quasivelocities makes the expression of kinetic energy concise
as summarized below.

Based on the singular-value decomposition in Eq. (3), the translation-reduced kinetic
energy of the n-atom system can be generally expressed as

$K= \frac{1}{2}\sum_{i=1}^{n-1}\dot{\rho}_{i}\cdot\dot{\rho}_{i}=K_{rot}+K_{int}$ . (7)

Here, $K_{rot}$ is the rotational kinetic energy given by

$K_{rot}= \frac{1}{2}L^{T}M^{-1}L$ , (8)

where $L$ is a three dimensional vector of the angular momentum with respect to the
principal-axis frame, and $M$ is its corresponding $3\cross 3$ moment of inertia tensor. $K_{int}$ is
the internal kinetic energy and can be given explicitly as

$K_{int}$ $=$ $\frac{1}{2}(\dot{a}_{1}^{2}+\dot{a}_{2}^{2}+\dot{a}_{3}^{2})+\frac{(a_{1}^{2}-a_{2}^{2})^{2}}{2(a_{1}^{2}+a_{2}^{2})}\omega_{12}^{2}+\frac{(a_{2}^{2}-a_{3}^{2})^{2}}{2(a_{2}^{2}+a_{3}^{2})}\omega_{23}^{2}+\frac{(a_{3}^{2}-a_{1}^{2})^{2}}{2(a_{3}^{2}+a_{1}^{2})}\omega_{31}^{2}$

$+ \frac{1}{2}a_{1}^{2}\sum_{k=4}^{n-1}\gamma_{1k}^{2}+\frac{1}{2}a_{2}^{2}\sum_{k=4}^{n-1}\gamma_{2k}^{2}+\frac{1}{2}a_{3}^{2}\sum_{k=4}^{n-1}\gamma_{3k}^{2}$ , (9)

where $\{\omega_{ij}\}$ and $\{\gamma_{ik}\}$ are the quasivelocities defined by

$\dot{u}_{i}\cdot u_{j}$ $=$ $-u_{i}\cdot\dot{u}_{j}\equiv\omega_{ij}$ $(i,j=1,2,3, i\neq j)$ , (10)
$\dot{u}_{i}\cdot u_{k}$ $=$ $-u_{i}\cdot\dot{u}_{k}\equiv\gamma_{ik}$ $(i=1,2,3, k=4, \ldots, n-1)$ . (11)

The vectors $\{u_{i}\}$ are the $(n-1)$-dimensional vectors defined in the matrix $\cup$ in Eq.
(3). The quasivelocities $\{\omega_{ij}\}$ are anti-symmetric with respect to the exchange of the
suffixes as $\omega_{ij}=-\omega_{ji}$ . Both $\{\omega_{ij}\}$ and $\{\gamma_{ik}\}$ are the parts of the components of the
$(n-1)\cross(n-1)$ anti-symmetric matrix $\cup^{T}\cup$ , which is essentially an internal angular
velocity associated with the shape changes of the system. We clarify the physical meanings
of these quasivelocities in Section 4. Note that the expression Eq. (9) is valid for general
n-atom $(n\geq 5)$ systems. If $n\leq 4$ , the quasivelocities $\{\gamma_{ik}\}$ do not exist, and all the terms
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involving $\{\gamma_{ik}\}$ disappear from Eq. (9). Hereafter, we assuine the general case of $n\geq 5$

unless otherwise noted.
An advantage of the expression Eq. (7) is that there is $IlO$ Coriolis coupling term, and

the partitioning of $K$ into $K_{rot}$ and $K_{int}$ is independent of the choice of body frame. (It
should be noted however that the terms on the right hand side of Eq. (9) have physical
meanings specifically with respect to the principal-axis fraine as will be clarified in Section
4. $)$ When the total angular momentum of the system is zero, $L=0$ , the rotational kinetic
energy $K_{rot}$ disappears and $K_{int}$ is essentially the total kinetic energy of the system.

3 Hyperspherical modes

The internal kinetic energy Eq. (9) is remarkably simple in the sense that there is no cross
term among the velocities of gyration radii $\{ai\}$ and the quasivelocities $\{\omega_{ij}\}$ and $\{\gamma_{ik}\}$ .

Moreover, the number of terms on the right-hand side of Eq. (9) is $(3n-6)$ in total,
which is exactly the same as the number of internal degrees of freedom of the n-atom
system. Therefore, it is tempting to consider the terms of Eq. (9) as the kinetic energies
of respective $(3n-6)$ internal degrees of freedom. The first three terms proportional to $\dot{a}_{1}^{2}$ ,
$\dot{a}_{2}^{2}$ , and $\dot{a}_{3}^{2}$ are clearly the kinetic energies of the three gyration radii. But for the rest of
the terms involving $\{\omega_{ij}\}$ and $\{\gamma_{ik}\}$ , it is not as simple because one cannot attribute them
to any coordinates since these quasivelocities are not derivatives of coordinates. Instead,
these kinetic energies are the energies of respective internal modes characterized by the
quasivelocities $\{\omega_{ij}\}$ and $\{\gamma_{ik}\}$ themselves.

Motivated by the concise expression of kinetic energy in Eq. (9), we clarify the physical
meanings of the velocities $\{ai\}$ and quasivelocities $\{\omega_{ij}\}$ and $\{\gamma_{ik}\}$ and give the definitions
for the corresponding hyperspherical modes. While the variables $\{ai\},$ $\{\omega_{ij}\}$ and $\{\gamma_{ik}\}$

in Eq. (9) are the components of a given velocity vector in the tangent space of the
configuration space, the hyperspherical modes themselves are defined as the basis vectors
conjugate to these components. Suppose that $\dot{W}$ is a velocity vector of the system that
satisfies the conditions of zero total angular momentum. Note that this $3\cross(n-1)$ matrix
$\dot{W}$ can be regarded as a vector in the tangent space of the $(3n-3)$-dimensional translation-
reduced configuration space by aligning all the columns of $W$ to a single column. As long as
the vector $\dot{W}$ satisfies the conditions of zero total angular momentum, $\dot{W}$ can be expanded
into $(3n-6)$ terms as

$\dot{w}=\sum_{i=1}^{3}\dot{a}_{i^{_{a_{i}}+\sum_{ij=12,23,31}\omega_{ij^{_{\omega_{ij}}+\sum_{i=1}^{3}\sum_{k=4}^{n-1}\gamma_{ik}V_{\gamma_{ik}}}}}}$ , (12)

where $\{V_{a_{i}}\},$ $\{V_{\omega_{ij}}\}$ and $\{V_{\gamma_{ik}}\}$ are $3\cross(n-1)$ matrices, which constitute the $(3n-6)$ basis
vectors of this expansion. Each of these basis vectors corresponds to a hyperspherical
mode. In what follows, we deduce the expressions for these basis vectors in a rather
heuristic way.

We begin with the following expression for $\dot{W}$ ,

$\dot{W}=R\dot{N}\cup^{T}+R(\Omega N+N\omega^{T})\cup^{T}$ , (13)

which is obtained from the time derivative of Eq. (3). In Eq. (13), the matrix $\Omega\equiv R^{T}\dot{R}$

is a 3 $\cross 3$ antisymmetric matrix corresponding to the angular velocity of the principal-
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axis frame with respect to the principal-axis fraine itself. The matrix $\omega\equiv\cup^{T}\cup$ is an
$(n-1)\cross(n-1)$ anti-symmetric matrix that can be expanded as

$\omega=\sum_{ij=12,23,31}\omega_{ij}X_{ij}+\sum_{i=1}^{3}\sum_{k=4}^{n-1}\gamma_{ik}X_{ik}+\sum_{k=4}^{n-2}\sum_{l=k+1}^{n-1}\gamma_{kl}X_{kl}$ , (14)

where $X_{ij}$ are defined as the $(n-1)\cross(n-1)$-dimensional antisymmetric matrix whose $ij$

component is $-1,$ $ji$ component is $+1$ , and all other components are zero. The matrices
$X_{ik}$ and $X_{kl}$ have the similar structure, whose $ik$ or $kl$ component is $-1$ and $ki$ or $lk$

component is $+1$ . In the first two terms on the right-hand side of Eq. (14), $\{\omega_{ij}\}$ and
$\{\gamma_{ik}\}$ are the quasivelocities introduced in Eq. (10) and Eq. (11). In the third term of
Eq. (14), we have introduced additional quasivelocities defined by

$\dot{u}_{k}\cdot u_{l}=-u_{k}\cdot\dot{u}_{l}\equiv\gamma_{kl}$ $(k, l=4, \cdots, n-1, k<l)$ . (15)

The quasivelocities in Eq. (15) vanish after the matrix multiplication $N\omega^{T}$ in Eq. (13).
Our strategy here is to express Eq. (13) in the form of Eq. (12) and compare these

two equations to deduce the basis vectors $\{V_{a}.\},$ $\{_{\omega_{\iota g}}\}$ and $\{_{\gamma_{zk}}\}$ . So far, Eq. (13) is
more general than Eq. (12) because Eq. (13) includes the situation that $\dot{W}$ gives non-
zero total angular momentum. Therefore, we need to assign the conditions of vanishing
total angular momentum to Eq. (13). If the $ve$ locity vector $\dot{W}$ in Eq. (13) satisfies the
conditions of vanishing total angular momentum, one can eliminate the angular velocity
of the principal-axis frame $\Omega$ by expressing it in terms of the internal variables only as is
known from the gauge theory [10]. This can be done as follows.

The total angular momentum of the system (with respect to the space-fixed frame) for
$asagiven$

velocity vector $\dot{W}$ can be expressed in the form of a $3\cross 3$ antisymmetric matrix

$L_{s}=$ WW$\tau_{-}$ WWT. (16)

By inserting Eq. (13) into Eq. (16), we obtain

$L_{s}=R(\Omega NN^{T}+N\omega^{T}N^{T}-NN^{T}\Omega^{T}-N\omega N^{T})R^{T}$ . (17)

Using this equation, the condition of vanishing total angular momentum, $L_{s}=0$ , can be
solved for $\Omega$ to give

$\Omega=$ $( \frac{}{a}\omega_{12}0$ $- \frac{2a_{1}a_{2}}{a_{1}^{2}+a_{2}^{2}}\omega_{12}\frac{2a_{2}a_{3}}{a_{2}^{2}+a_{3}^{2}}\omega_{23}0$ $- \frac{}{a0}\frac{2a_{3}a_{1}3^{+a_{1}^{2}}22a_{2}a_{3}}{a_{2}^{2}+a_{3}^{2}}\omega_{31}\omega_{23})\equiv A_{12}\omega_{12}+A_{23}\omega_{23}+A_{31}\omega_{31}$ (18)

where, in the final equality, $A_{ij}(ij=12,23,31)$ are the 3 $\cross 3$ antisymmetric matrices
whose $ij$ components are $-2a_{i}a_{j}/(a_{i}^{2}+a_{j}^{2})$ , and $ji$ components are $+2a_{i}a_{j}/(a_{i}^{2}+a_{j}^{2})$ and
all other components are zero. Physically, Eq. (18) is the angular velocity of the principal-
axis frame that compensates for the angular momentum induced by the quasivelocities
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$\omega_{12},$ $\omega_{23}$ and $\omega_{31}$ to keep the total angular momentum to zero. After inserting Eq. (18)
into Eq. (13) and using Eq. (14) for $\omega$ , we obtain a general expression for the velocity
vector $W$ under the conditions of vanishing total angular momentum as

$\dot{W}=\sum_{i=1}^{3}$ a$i R\frac{\partial N}{\partial a_{i}}\cup^{T}+\sum_{ij=12,23,31}\omega_{ij}R(A_{ij}N+NX_{ij}^{T})\cup^{T}+\sum_{i=1}^{3}\sum_{k=4}^{n-1}\gamma_{ik}RNX_{ik}^{T}\cup^{T}$ . (19)

By comparing Eq. (19) with Eq. (12), we see that the three gyration-radius modes can
be defined as

$_{a_{i}} \equiv R\frac{\partial N}{\partial a_{i}}\cup^{T}(i=1,2,3)$ . (20)

Similarly, the first three hyperangular modes corresponding to $\omega_{12},$ $\omega_{23}$ , and $\omega_{31}$ can be
defined as,

$_{\omega_{ij}}\equiv R(A_{ij}N+NX_{ij}^{T})\cup^{T}(ij=12,23,31)$ , (21)

and other hyperangular modes corresponding to $\gamma_{ik}(i=1,2,3, k=4, \cdots, n-1)$ can be
defined as

$_{\gamma_{ik}}\equiv RNX_{ik}^{T}\cup^{T}$ $(i=1,2,3, k=4, \cdots, n-1)$ . (22)

Thus, Eqs. (20)-(22) give the definitions of the $(3n-6)$ internal modes. Note that
the hyperspherical modes in Eqs. (20)$-(22)$ are now expressed solely by the quantities
that are obtained through the singular value decomposition in Eq. (3). Therefore, one
can immediately compute all the hyperspherical modes through Eqs. (20)-(22) once the
singular value decomposition Eq. (3) is obtained.

It can be shown that the hyperangular modes defined above are orthogonal to each
other; in fact, we have

Tr $[V_{\alpha}^{T}V_{\beta}]=0$ $($ for $\alpha\neq\beta)$ , (23)

where $\alpha$ and $\beta$ represent any of $\{a_{i}\},$ $\{\omega_{ij}\}$ , and $\{\gamma_{ik}\}$ . These orthogonal properties
indicate that the hyperspherical modes form a set of orthogonal basis vectors that span
the tangent space of the configuration space under the conditions of zero total angular
momentum, which is a property similar to ordinary normal modes [23]. Furthermore, the
hyperspherical modes are normalized to the coefficients of the kinetic energy in Eq. (9):

Tr $[_{a_{i}}^{T}_{a_{i}}]=1(i=1,2,3)$ , (24)

Tr $[_{\omega_{ij}}^{T}_{\omega_{ij}}]=(a_{i}^{2}-a_{j}^{2})^{2}$ $(a_{i}^{2}+a_{j}^{2})$ $(ij=12,23,31)$ , (25)

Tr $[_{\gamma_{ik}}^{T}_{\gamma_{ik}}]=a_{i}^{2}(i=1,2,3, k=4, \ldots, n-1)$ . (26)

Note that the kinetic energy of the system given in Eq. (7) can also be expressed as
$2K=$ Tk $[\dot{W}^{T}\dot{W}]$ . By inserting Eq. (12) into this kinetic energy expression, we can see
that the orthonormal conditions, Eqs. (23)-(26), are vital to the concise expression of
kinetic energy in Eq. (9) without any cross terms. Note finally that the hyperspherical
modes are determined only by the quantities associated with kinetic energy, i.e., the
atomic masses and the shape of the system, and are totally independent of the potential
function of the system.

Equations (20)-(22) give the exact definitions of the $(3n-6)$ hyperspherical modes for
an n-stom system. Kinetic energy in each hyperspherical mode is given as each term of
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Eq. (9). We tliiis propose to use tlte concise expre,$b_{\backslash }^{i}s^{}io11$ of the $ki_{11}eti\mathfrak{c}$ . energy Eq. (9) as
a fundaiiiental tool to investigate the $ill\uparrow ralll(1\supset\cdot$ energy transfer in tbe (lyIiaiiii $(\taub^{1}$ of
$n$-atoiii syst $(^{)}111_{\iota}b$ .

4 Representation of hyperspherical modes
We clarify here tlie pliysical meanings of respective hyperspherical modes defined in Eqs.
(20) $-(22)$ by taking an illustrative example of a six-atom Morse cluster. III this cluster,
each pair of atoms interact through the pairwise Morse potential. This cluster possesses
two local stable conforiiiations (isomers) called OCT aiid CTBP, around which the 12
hyperspherical modes are shown in Fig. 1. Note that. in the hyperspherical mode analysis,
tlie $(3n-6)$ internal modes of an n-atoin molecule are generally classified into three
($/yration$-radius modes, three $t\uparrow i$ )$isting$ modes. and $(3n-12)$ shearing modes as was defined
in Eqs. (20)-(22),

(a)

$d_{{}_{V}P}^{\backslash }\backslash$

$a_{1}$ -mode

(d) (e)

$arrow 4^{\prime\wedge}\varphi_{\gammaarrow}^{\backslash }$ $f\backslash *\oint$

$\omega_{12}$ -mode co23-$m$ode $\omega_{31}$ -mode

$Y_{15}$ -mode

$\gamma_{24}$ -mode

(m)

PA3
$k_{PA1}^{PA2}$

$\gamma_{35}$ -mode

$\omega_{31}$ -mode

$\gamma_{14}$ -mode $\gamma_{15}$ -mode

(z)

PA3

$k_{\sim}^{PA2}PA1$

Figure 1: The twelve hypersphencal modes of the six-atom cluster, $M_{6}$ , around the OCT $((a)-(1))$ and
the CTBP isoniers $((n)-(y))$ . The cluster is aligned so that the first, second, and third principal axes
(PAl, PA2, and PA3 respectively) are parallel to the axes indicated in (m) for OCT and in (z) for CTBP.
(The OCT isomer shown here is slightly deformed from the potential energy minimum.)

From Fig. 1, we see the following properties for the respective hyperspherical modes.
The three gyration-radius modes, $a_{1}-,a_{2^{-}}$ , and $a_{3}$-modes, shown in $(a)-(c)$ and $(n)-(p)$ for
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the two isomers respectively, are related to the elongation and the contraction of the
system along the three principal axes. For the three twisting modes, shown in $(d)-(f)$ and
$(q)-(s)$ , the arrows in each $\omega_{ij}$ -mode are perpendicular to the k-th $(k\neq i, j)$ principal axis;
one part of the system tends to rotate around the k-th principal axis in one direction,

and the other part of the system tends to rotate in the opposite direction, giving rise
to a twist around the k-th principal axis. The remaining six modes associated with
$\gamma_{ik}(i=1,2,3, k=4,5)$ , shown in $(g)-(1)$ and $(t)-(y)$ , are the shearing modes; while all
the atoms in each $\gamma_{ik}$-mode tend to move parallel to the i-th principal axis, some move in
the positive direction and others move in the negative direction, giving rise to a shear in
the system.

5 Trigger mechanisms for conformational transitions

By using the hyperspherical mode analysis summarized above, one can scrutinize the flow
of kinetic energy among the hyperspherical modes in the conformational dynamics of com-
plex molecular systems. Such information on the kinetic energy flow can in turn provide
crucial information for understanding the mechanisms for large-amplitude collective mo-
tions. In the following, we summarize this procedure for the conformational transitions
of the $M_{6}$ cluster between the OCT and CTCP isomers.

First, we have found that the gyration-radius modes acquire a large amount of energy
in the course of the conformational transitions between the two isomers. Based on this
fact, we have constructed a reaction coordinate $a_{1}$ , which is defined as a proper linear
combination of the gyration-radius modes. The procedure for constructing the reaction
coordinate $a_{1}’$ is detailed in Ref. [25]. In all of the figures in Fig. 2 $(a)-(d)$ , the left region,
where $a_{1}’$ is smaller than about 2.5, corresponds to the OCT isomer region, while the right
region, where $a_{1}’$ is larger than about 2.5, corresponds to the CTBP isomer region. The
coordinate $a_{2}’$ in Fig. 2(a) and (c) is a “bath” mode, which does not contribute to the
conformational transition significantly, as opposed to the reaction coordinate $a_{1}’$ .

Equations of motion for the gyration-radius modes have revealed that there are two
kinds of forces acting on the coordinates $a_{1}’$ and $a_{2}’$ : One is the potential force and the other
is a kinematic force called internal centrifugal force (see Refs. [24, 25] for details). The
internal centrifugal force originates from the kinematic couplings between the gyration-
radius modes and other hyperspherical modes, i.e., the twisting modes and the shearing
modes. The internal centrifugal force has an interesting property to distort a spherical
mass distribution of a system into an elongated one, which is a symmetry breaking effect.
As a result, the internal centrifugal force can be the driving force for the conformational
transitions between a spherical isomer and an elongated isomer such as the transitions
between OCT and CTBP of the $M_{6}$ cluster as we see in the following.

We have found that the internal centrifugal force changes very sensitively depending
on the activity of the three twisting modes: Fig. 2(a) shows an averaged force field, which
is the superposition of the averaged potential force and the averaged internal centrifugal
force, under the condition that the three twisting modes are highly active having a large
amount of kinetic energy. It is clearly seen from this figure that the force field has the
strong tendency to accelerate (drive) the system from the OCT region into the CTBP
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Figure 2: (a) Averaged force field in the space of tlie reaction coordinate $a_{1}’$ and a “bath” mode $a_{2}’$

when the three twisting modes are highly activ$fe$ . $(b)$ Line integral (mean force potential) of the average
force field in (a) aloiig the $reac\cdot tion$ coordinate $a_{1}’$ . (c) Average force field in the space of the reaction
coordinate $a_{1}’$ and $a_{2}’$ when the three twisting modes are highly inactive. (d) Line integral (mean force
poteiitial) of tlie average force field in (c) along the reaction coordinate $a_{1}’$ .

region along the reaction coordinate $a_{1}$ . This effect can also be characterized by the
corresponding mean force potential. which is shown in Fig. 2(b). The results of Fig.
2(a) and (b) clearly show that the activation of the three twisting modes can be the
principal factor to trigger the conformational transition from OCT to CTBP by making
the OCT less favorable and CTBP more favorable. Indeed, we have confirmed that the
three twisting modes of the cluster become highly active right before the onset of the
conformational transition from OCT to CTBP [25].

In a similar way, we can understand the driving mechanism for the conformational
transition from CTBP to OCT: Fig. 2(c) shows the average force field under the condi-
tion that the three twisting modes are highly inactive. This force field makes the OCT
more favorable than CTBP, as can be more clearly seen from the corresponding mean
force potential in Fig. 2(d). Thus, the results of Fig. 2(c) and (d) clearly show that
the inactivation of the three twisting modes can be the principal factor to trigger the
conformational transition from CTBP to OCT by making the CTBP less favorable and
OCT more favorable. Indeed, we have confirmed that the three twisting modes of the
cluster become highly inactive right before the onset of the conformational transition from
CTBP to OCT [25].

Thus, the activation and inactivation of the twisting modes switch the effective force
field in the reaction coordinate and control the onset of large amplitude collective motions.
In this way, we have elucidated the trigger mechanisms for conformational transitions of
the cluster by using the hyperspherical mode analysis.
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6 Summary and concluding remarks
In this report, we have summarized the framework of hyperspherical mode analysis. This
method has elucidated the novel trigger mechanisms for the onset of large-amplitude
collective motions of atomic clusters.

In the hyperspherical mode analysis, the $(3n-6)$ internal (vibrational) modes of an
n-atom system are classified generally into three gyration-radius modes, three twisting
modes, and $(3n-12)$ shearing modes. Based on the fact that a large amount of kinetic
energy flows into the gyration-radius modes when the conformational transitions take
place, we have constructed a reaction coordinate as a linear combination of the three
gyration-radius modes. It was then found that activation or inactivation of the three
twisting modes, depending on the isomer of the cluster, play crucial roles right before
the onset of conformational transition. In the symmetric isomer called OCT, which has a
spherical mass distribution, activation of the twisting modes initiates the conformational
transition into the other elongated isomer called CTBP by inducing a strong internal
centrifugal force, which has an effect of elongating the mass distribution of the system.
On the other hand, in the CTBP isomer, inactivation of the twisting modes initiates the
conformational transition into the OCT isomer by suppressing the elongation effect of the
internal centrifugal force and making the effects of the potential force dominant.

The roles of the twisting modes presented here is interesting from the viewpoint of
control of conformational dynamics of molecules. As we have seen in Section 5, the elon-
gation effect (symmetry breaking effect) of the internal centrifugal force depends critically
on the activity of the twisting modes. Therefore, if one would like to synthesize or main-
tain molecular conformations with a spherical mass distribution, it would be important
to keep the twisting modes inactive. On the other hand, if one would like to elongate and
destroy molecular conformations with a spherical mass distribution, the twisting modes
of the system should be activated. From this respect, it is interesting to study the roles
of the twisting modes in the formation and dissociation of fullerenes and viral capsids,
which generally have highly symmetric and spherical mass distributions. Study in this
direction is under way.
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