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ABSTRACT. From a point of view of Nambu-Poisson geometry, we consider
the condition when the associated Lagrange vector field with a given system
of ordinary differential equations becomes a Nambu vector field. As a result,
we know that this condition is deeply related to Jacobi’s last multiplier.

1. INTRODUCTION

Let (R™,n) be the standard Nambu-Poisson manifold. Here 7 is the standard
Nambu-Poisson structure, which is written as n = 6 NNy 8 for the standard
coordinates 1, -+ ,z, of R". Let Q = dx1A- - -Adzx, be the standard volume form on
R"™. Then 7 deﬁnes Nambu bracket {g1, 92, - ,gn} for any g1,92,--- ,gn € C°(R")

by {g91,92," - ,gn} = n(dg1,dg2, - ,dgn).

Since Nambu bracket is nothing but the Jacobian of n functions g1, , gn, we
can define a Nambu vector field X4, n...ng,,_, DY
(1) Xgl/\"'/\gn—1(g) = {gvgla"' agn—l},

for any g € C°(R").
Now let us consider the following system of ordinary differential equations on
R™ :
dxq dxo dxny

@) N f2 fn ’
where each f; is a given function of z1,x2,--- ,z,. If there exist n — 1 functions
H,,Hy,--- ,H, 1 of x1,25,--- ,x, such that

da:l

(3) -fz {xi)H17H27"' aHn——l}a

fori =1,2,---,n, then (2) (or (3)) is called a Nambu system. In this case, it is
easy to see that each H; is time-independent.

Let X =3 1, fia%i be the associated vector field of (2). S.Codriansky et al. [1]
considered the following problem: Under what conditions does X become a Nambu
vector field? P.Morando [5] studied the same problem as ours from the viewpoint
of differential geometry.

If X is a Nambu vector field, the divergence of X is clearly 0 with respect to 2.
And this is a necessary condition for X to be a Nambu vector field. This condition
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is called Liouville condition for X. Later on as one of our main results, we will
show that there exists a function A such that the following system:
d$1 . dLEQ _ dwn

dt
@ Afl T Af T Af. A

becomes a Nambu system even if (2) is not a Nambu system. PutY =5 " | Af; 2'3%‘
Since Y is a Nambu vector field, its divergence vanishes. Hence a function A
becomes a Jacobi’s last multiplier. For details of Jacobi’s last multipliers, and for
related topics, see for example, M. Cragmareanu [2] and M. C. Nucci and P. G. L.
Leach [7].

Another main result is to show that there are no non-trivial Nambu vector fields
for certain autonomous linear differential equations. This is a generalization of the
result of S.Codriansky et al. [1].

The set of Nambu vector fields is contained in the Lie algebra £ of infinitesimal
automorphisms of Nambu-Poisson structure, but it does not become a subspace of

L.

2. NAMBU-POISSON GEOMETRY

Though we should consider the problems stated in the Introduction on a general
Nambu-Poisson manifold, here we will confine ourselves to the standard Nambu-
Poisson manifold by taking into account Theorem 2.1 (the local structure theorem).
The details will be given at the end of this section.

Let us survey Nambu-Poisson geometry quickly. (See, for example, N. Nakanishi
[6].) Let M be a smooth m-dimensional manifold and C*°(M) the algebra of real-
valued C°°-functions on M. We denote by I'(A"T M) the space of sections from
M to A"TM. Each element of I'(A"TM) is simply called n-vector. Then each
n-vector 7 defines a bracket of functions g; € C*°(M) by

{gla e ’gn} = n(dglv e 7dg'n)-
This bracket also defines the vector field Xg, a...ng,_, by

Xginongn1(9) =19:91, -+ ,gn-1}, g€ C™(M).

Let Q=) fi, A---A fi,_, be an element of the space A"~1C°°(M). Then a vector
field X¢ is also defined by the same manner as Xg,a...ng,_,- Such a vector field
Xq is called a Hamiltonian vector field. By abuse of language, we also denote by
‘H the space of Hamiltonian vector fields.

Definition 2.1. An element n of I'(A"TM),n > 3, is called a Nambu -Poisson
structure of order n if  satisfies

=0,

X91/\'~'/\gn—1 n

for any Hamiltonian vector field Xg, n...ng,_,. And a pair (M,n) is called a Nambu-
Poisson manifold. The space of infinitesimal automorphisms of n is written as L.
1t is clear that H is an ideal of L.

This definition was proposed by L. Takhtajan [9] in 1994. If n = 2, this is nothing
but the definition of usual Poisson structure. (See, for example, [10]).
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Definition 2.2. If Q is a monomial, say, Q@ = g1 A - - A gn_1, then Xg =
XginAgn_, 18 called a Nambu vector field, and each function g; is called a Hamil-
tonian. The set of Nambu vector fields is a subset of H, but it is not a subspace of

H.

In studying the geometry of Nambu-Poisson manifolds, the following theorem,
which is called "local structure theorem” is fundamental. (See [3], [6].) Let n(z) #
0,z € M. Then 7 is said to be regular at x, and z is called a regular point.

Theorem 2.1. If n is a Nambu-Poisson structure of order n > 3, then for any
regular point x, there exists a coordinate neighbourhood U with local coordinates

(1, , Tny Tnt1, ", Tm) around x such that
0 A A 0
" ox1 oz,

on U, and vice versa.

The most typical example of a Nambu-Poisson structure is

defined on R™, and it is called the standard Nambu-Poisson structure. The above
theorem means that a Nambu-Poisson manifold is locally considered to be the
standard Nambu-Poisson manifold (R™, 77 = ‘9 AN

If m > n, a vector field X = Y"" . h %ax w1th hi #0 for somen+1<k<m
does not become a Nambu vector field. In fact suppose that X would be a Nambu
vector field: X = X a..ng,_,- Then for k > n + 1,

o(x 191, s Gn— )
X(xk):{xkaglv"'7gn—l}= (8k($11 T )1

On the other hand, X (zx) = hx # 0. Hence this is the contradiction.
Therefore from now on we mainly consider the case (R",n = 62 Ao A a 32 )s

because this is the only meaningful case, when we study whether a given vector
field is a Nambu vector field or not.

= 0.

3. REsuULTS

Now we give a generalization of the results of S.Codriansky et al. [1]. Let us
consider an n-th order autonomous differential equation:

(5) ™ = F(z, o, 2", z(™ D),
Put zx = z(*~1). Then (5) is rewritten as follows:
(6) $,1:$2,x12=$3,"',CC,In:F(.’L'l,.TQ,"',xn),
or
dx, dxo dx,,
( ) o I3 F

The associated vector field X is given by

0 0
+x3=—+ -+ F—.

0
(8) X = ro— 9z o 8.’En

0x1
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If X satifies the Liouville condition, F' must depend only on xy,--- ,x,_1. Moreover
we assume here that F is a non-zero linear function, so F' is of the following form:
(9) F =ajx)y +ax2+- -+ an-1Tn-1, ai, - ,an—1 €R.
So from now on we study the following equation:

dx dx dx
(10) oM 22— n )

i) T3 a1+ -+ ap_1Tp-1

Then the characteristic equation of (5) is written as
(11) P = byt — o —bor — by =0.

Let r;(1 < i < I) be the distinct roots of the characteristic equation (11). Then
the general solution of the differential equation (10) is given by the linear combina-
tion of n linearly independent solutions a1, as,- - - , a,. Each of them has the form
thiemt (0 < k; < s;). Here s; + 1 is the multiplicity of r;. Another expression of x
is as follows:

l
(12) T = =cCl01 + Cl202 + -+ Clpan = Z P;(t)e™t,
i=1

where ¢, are constants and each P;(t) is a polynomial of degree s; and n = s; +
so+ - +s + 1L

Once z, is given by (12), we can calculate z3,: - ,z, one after another. Each
x; is given by

(13) Tj = Cj10 + cjoae + -+ CinQn.

Hence by solving these equations with respect to «;, we know that each «; should
be expressed as a homogeneous linear function L; of variables =, 2, -+ ,z,. Using
the relations among a1,--- ,a,, we can eliminate time-variable { and we obtain
(n — 1) time-independent integrals. Then we use them to define (n — 1) Hamil-
tonians H,, Hs,--- ,H,_;. Note that each H;(zi,---,z,) is a function of these
combinations of L's.

The following lemma was first proved for the case of a linear vector field (8) sat-
isfying the condition (9), and after that H.Suzuki proved for a general homogeneous
linear vector field. The proof of the following lemma is due to H.Suzuki [8].

Lemma 3.1. Let X be a homogeneous linear vector field. If X is a Nambu vector

field with Hamiltonians Hy, Ho,--- , H,_1, and if we write it by
(14) X = XH\AHyAAHp 1>
then there exist n — 2 homogeneous linear functions I:Il, ﬁg, - ,I:In_z and a homo-

geneous quadratic function ﬁn_l such that X = th/\l?z/\---/\ﬁn_l'

Proof. Put w = i(X)2. Then w is a homogeneous linear (n — 1) form by our
assumption, where  is the standard volume form of R". Decompose each H; as
follows:
Hi=H® +H"V +...
[ i i )

where H,L-(k) denotes a homogeneous polynomial of degree k. The constant term of
w, which is denoted by w(?, is given by
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and since w(®) = 0, we know that dHfl), dHél), - dH(l)1 are linearly dependent.

Thus without loss of generality, we can write dHn_) , as follows:

dHWY ., = ¢;dHWY + codHY + -+ + cpodHY,,

where ¢1,¢a, - -+ , ¢_o are constants. Put:fI = H_n_l—clHl—czHg-—- ce—Cp—oH,_o,
then w = dH; AdHa N\ --- NdH,,_o AN dH and H has no homogeneous linear part.
Hence if we put Hy = Hfl),ﬁg = él),--- JHy_o H( )2, and H,_, = H?,

then dﬁl A dﬁg Ao A dﬁ _1 is equal to the linear part of w = dH; A de Ao A
dH,_oNdH. Recall that w itself is a homogeneous linear n — 1 form. Thus we have
w = dH1 A ng FANRERIVAN dHn 1, and this means that X = Xy 200N N - T O

Recall that X satisfies div(X) = 0. Our first problem is: Under what conditions
can we find Hamiltonians Hy,- -, H,_1 so that X satisfies X = Xg,an..nm,_,7

First in the case of n = 2,3, we will try to find Nambu vector fields. If n = 2,
the differential equation is given by

d d
(15) e _ 9Tz _ g,
1) ai1xi

Since X = xQFS'CZT -+ all‘lgi—z, we can easily find a Hamiltonian H = (23 — a173),
and it holds that X = Xg.

The case of n = 3 was investigated in [1]. The differential equation and the
associated vector field are given by

d d d
(16) T1 _ T2 _ I3 _ dt,

To xs a171 + asx2
(17) X = xgi + 23— + (a121 + agz2) =—

oxq Oxo Oxs’

Suppose that X = Xy, an,. By Lemma 3.1, we can assume
(18) H;, = c1171 + c1272 + c13%3,
(19) Hs = clsc% + cax1X9 + c3x1T3 + C4x§ + c5xox3 + cﬁ-mg.

Since Q—C%L = 0, we have

(20) c11 +ciz3a2 =0, c12 =0, ci3a; =0.
If 13 = 0, we would have H; = 0. But this is not the case, so we must have ¢33 # 0,

and we have a; = 0. If we take ¢;; = 1, then we obtain H; = x; — ;’21
Similarly, since Hs is also time-independent, we have

(21) 2ci +c3a2 =0, co =0, ¢c3 +csaz =0,

(22) c3 + 2¢c4 + 2cgags =0, ¢5 = 0.

So if we take ¢; = 0 and ¢4 = %, we obtain Hy = 3(a2x3 —x3). (Ha is also obtained
directly from (16) since we already know that a; = 0.) As the result, in the case of
n = 3, we must have a; =0 and X = Xy, rmH,-

Next as a generalization of the results of S.Codriansky et al. [1], we show that
there does not exist a Nambu vector field if n > 4.
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Theorem 3.2. For the system of autonomous ordinary differential equations

d d d

(23) an _ 9Tz _ In — dt,
T2 z3 a1y + -+ ap-_1Tp—1

let X = :cga%l + -+ (a1, + -+ + an_lxn_l)% be the associated vector field.

Then if n > 4, X does not become a Nambu vector field.

Proof. Suppose that n > 4 and that there exist n — 1 Hamiltonians H;,--- H,_1
such that X = Xy A..an, ,. By Lemma 3.1, H;,(1 < i < n — 2) can be denoted
by

(24) H;, = c;171 + cioxo + -+ + Cin—1Tn—1 + CinZn.-

Since dH;/dt = 0, we must have

(25) O0=ciuTo+ -+ Cin-1Tn +Cin(@a121+ -+ Gn_1Tpn_1).
This is equivalent to

(26) aicin =0, ciy +axcin =0, -+ ,Cin_2+an_1Cin =0, ¢in_1 =0.

If ¢;,, = 0, we would have ¢;; = c¢jo = -+ = ¢;, = 0 and H; = 0. Hence it must hold
that c;, # 0, and that a; = 0. This means that H; has the following form:

(27) H; =cinzi+ - Cin—2Tn_2+ CinTpn, (1<i<n-—2).

Since (X ) contains the term z,_2dz; A -+ AdTp_4 A dTp_o A dxp_1 A dx,, SO
does i(X g, A--- A H,_1)Q. Recalling that Hy,--- , H,_o are linear functions which
do not contain the term z,_; by (27) and that H,,_; is a quadratic function, we
know that H,_; must contain the term x,,_>x,_1. On the other hand, the condition
dH,_,/dt = 0 implies that the coefficient of 2 is 0 and hence also implies that the
coefficient of z2_, is 0 in the expression of dH,_,/dt. This means that the term
Tpn—2Tn—1 1s not contained in the expression of H,,_;. This is the contradiction. O

Let us show another differential equation which becomes a Nambu system only
for special cases.

Proposition 3.3. Let F be a homogeneous polynomial of degree k, k > 2, which
is defined on R3. Then the differential equation
d:Cl d:L‘z d.’E3

2 = =
( 8) o I3 F

becomes a Nambu system if and only if F = ax’f"lxg, (a € R). In this case, the

following Hy and H, are the desired Hamiltonians:

— k

Hy, =umzz3— 3123 - ﬁw’f“
And the associated Nambu vector field is given by
0 o k1 0
(29) T2 92, + 3 524 +axry "z P HyAH,

Proof. We give here outline of proof. Let the associated vector field X be a Nambu
vector field: X = Xpg am,. Then X satisfies the Liouville condition, we have
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OF /8z3 = 0. Put F = a;2% +a2x1 lzg +a3:1:’1“ 2:6% + - +akm1x2 +ak+1x2 Let

Q) = dzy; Adzxs A dzxs be the standard volume form on R3 Since it holds:

Z(X)Q = ?:(XHI/\Hz)Q =dH; NdH>
= Todxo AN dx3 + x3dx3 N dr1 + Fdxi N dxa,

the coefficients of dH; A dHy are linear with respect to x3. Hence we can put

Hy = fo+z3f1, Ha = go+ 391 + x3g2, where fo, f1, 90,91 and g2 are polynomial
functions of z; and x5. H; is time-independent, so we have

dH,  ,0f; dfo 0f1 Afo
7 —.’Egaxz D20, +x T2 )+Ff1+ x2.

(30) 0= o

+ z3(=—
By comparing the coefficients of 2 and x3, we obtain that F = ax’f le,. (Here we

put @ = ay). Substituting this F' into the given differential equation, we can easily
determine H; and Hs. 4

Let us show that we can find a function A such that AX becomes a Nambu
vector field for a non Nambu vector field X. The following theorem is essentially
due to C.G.J.Jacobi (See for example [7]).

Theorem 3.4. Let (R™",n = 5% ARERIVAY %) be the standard Nambu-Poisson
manifold, and let

(31) %2@:...:@”_’1:0&

fi f2 I
be the system of ordinary differential equation (ODE for short) on (R™,n), where
fi = fi(z1, -+ ,xn), (1 <i<n) aregiven functions on R™. Suppose that the system
(81) has n — 1 time independent integrals Hy,--- ,H,_1 which are functionally

independent one another. Then there exists a function A such that the following
ODE:
dz, dzs dz, dt

(32) AL AR~ T AL~ A

becomes a Nambu system. PutY = Z;’:l Af; 5%. Then'Y becomes a Nambu vector
field and Y is expressed asY = Yy, n..nH,_,-

Proof. Since H; is time-independent, we have

Z 8H dx] ‘n 8H7,

(33) = . f;
83:] dt =1 8$j
Put a;; = 0H;/0x;, and moreover put
aij
a; =
an_l,]
Since H,,:--,H,_1 are functionally independent, we can assume without loss of

generality that rank T'=n — 1, where T' = (@1, ,@n-1)-



Since (33) is equivalent to the following:

N1
fa
(dl"'&n——l)' = _fn&n’
fn—l
we get the following relation:

fn
detT

Define a function A by A = (—1)"’1%, where A = detT. Then we have

(34 f= ()"

detT 1

(35) det(ay -+ @j—18541- - a@n) = fj - = (=1)7tAf;.

fo (D)

Using the relation (35), the following holds:
dHy NdHa A --- NdHp
=det(az - an)dra N - NdTpn_1
+det(ajas---an)dxy Ndxz A\ --- Ndz,
+---+det(ay---an—1)dx1 A--- ANdTp—1
=Af,-dxo AN---Ndxy — Afo-dxy Ndxg A --- ANdxy,
4o+ (=) YAf dTy A AdTp.

-det(dl ---&j_1&j+1 ~--&n), 1 Sj S n—1.
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Put YV = Z?=1 Afjg—,‘?g—j. Let Q = dxq A --- A dx,, be the standard volume form of

R™. Then
(36) (Y)Q=dH1N---NdHp_1 =1(YH, A onH,,_, )S2

Thus we get ¥ = Yy, A-.cnH, -

O

Corollary 3.5. Let X = Z?:l fj% be the associated vector field with the ODE

system (31). Then X becomes a Nambu vector field 1.e., X = Xy n..nH

with

respect to the new Nambu-Poisson structure n = % -n. In particular, X is a Nambu
vector field if and only if we can find (n — 1) Hamiltonians Hy,--- , H,_1 such that

A=1.

Remark 3.1. In the given system of ODE (31) of Theorem 3.4, assume that each
fi = fi(z1,--+ ,x,) is a function of C!-class. Then it is well-known that (31) has n
general solutions with n arbitrary constants Cy,--- ,Cy:

Iy = ¢1(t,Cl,"' 1Cn)a
Tn = ¢n(t,01,"' ,Cn)'

By eliminating a variable t from the above relations (37), n—1 functions Hy, - - -

’ Hn—l

are obtained, which are time-independent and functionally independent one an-

other.
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4. EXAMPLES

1. Let us consider a 6-dimensional ODE system:

dxq dxo dxs dxy dxs dzg
38 = = = = = = dt.
(38) T4 T Te 0 0 0

This is an ODE system of motion of free particles. The associated vector field

0
X =x4— — —
$48.’El + s 81’2 +m63333

satisfies the Liouville condition, but X is not a Nambu vector field.
Five integrals of (38) are easily obtained:

(39) Hy = x125 — z2x4, Hz = xoxe — 325, Hs=1z4, Hy=125, Hs=x.

Using the above five integrals, we have

—T4 0 —I2 I 0 Is Is
Te —Xs5 0 —xT3 T2 Te 0
0 0 1 0 0 0O | =—x4-1]10
0 0 0 1 0 0 0
0 0 0 0 1 0 0
Put
— X4 0 —I2 T 0
Te —Is5 0 —I3 o
T= 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
Since A = det T = z4z5, we have A = fl/fi = z5. Hence by Theorem 3.4, Y = AX

becomes a Nambu vector field on (R%,n = 8;21 ARERWA -8—2;), and Y =Yy, a..nH,- Or
equivalently, X becomes a Nambu vector field on (RS, ;31;77)

2. S.Codriansky et al.[1] studied the following 3-dimensional ODE system:

d d
(40) doy _ drz _ it M Y
To T3 a1T1 + a2

The associated vector field is

X=z —I—x—a—-k(ax + age) =—

and they found that X becomes a Nambu vector field if and only if a; = 0.
Here we consider the case: a; = 1 and as = 0. So the given system is not a
Nambu system, and is given by

(41) doy _ dzy _ dzs _ 4
To I3 3

Then the solutions of (41) are given by

2
ry = clet + Cgewt + 036“’ t,
2
To = ciet + cowe®? + czw?ev’t,
2
z3 = cret + cow?e¥t + cawe? t,

where w is a cube root of 1 which is not 1.
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Using z1,z2 and x3, we get the following two integrals:

{Hl — wil {zi+z2tx3)

wri+Totw2cy’
Hy, — L. (it

w—1 wri+w?zo4zx3"

Since
T — 8H1/6:c1 6H1/8.’I32
~ \0H/0z; OH3/0x,
we have
- 1 —w? I
A=detT = . .
¢ w (3 + 23 + 23 — 3z17273)2
Thus _
4 A 1 —w?

z1  w- (23 + 23 + 23 — 3x11023)2

Then by Theorem 3.4, Y = AX becomes a Nambu vector field: Y = Yy, Ap, on a
manifold (R3,7n = 621 A 6;22 A 8%3.)' Equivalently X becomes a Nambu vector field:
X = X i, nH, on a manifold (R?, 7).

Remark 4.1. The differential system (41) is not a Nambu system, and the associated
vector field X = xza%l +1x3 3%2 +x 5—‘2—3— is not a Nambu vector field with div(X) = 0.
But X is a Hamiltonian vector field in our sense:

(42) X = XG AGo+HiAHo+ K AK, € H,

1.2 _ _ 1,2 _ _ a3 .2 —
where G1 = 523, G2 =z, H, = 3T3, He =x3, K1 = %x{+ar 122, Ko = 2.

This fact is guaranteed by the following proposition. (See [6].)

Proposition 4.1. Let (M,n) be an m-dimensional Nambu-Poisson manifold with
non-vanishing n of order m. Then L/H is isomorphic to Hjy ' (M).

3. Let us consider the 2D isotropic harmonic oscillator. It is defined by

d d
(43) dz, _ T2 _ dzs _ T4 — dt
—X3 —Tg I T

It is easy to find 3 Hamiltonians:

H, =z114— x273,
1
H2 = §($1$2+$3.’B4),
__1/.2 2 2 2
H; = 3(z{ + x5 — x5 — 7)
. _ .8 ) ) a_ .
The associated vector field X = —z3 9z; — Tap,; T Ti155; + T25,; isnot a Nambu

vector field. The matrix expression corresponding to (33) in Theorem 3.4 is:

T4 —T3 —IT2 —I3 1
1 1 1 1
T2 35%1 3T4 )| —T4 ] = —T2- | 5T3
Iy —I2 I3 T1 —Z4
Hence we have A = —1(2? + 2% + 2% + 2%). Thus we obtain the Nambu vector field

Y = AX = Yy, at,nH, o0 (R*, 1 = dz1 Adza Adxs Adzys). Or equivalently we have
X = )(1-11/\}12/\H3 on (R4, j—}{n)
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4. The differential equation
dx 1 d:l,‘z d.’Eg

2 T I3
is not a Nambu system. In fact, the associated vector field X = z, =% Bm + x4 322 +
T35— Bac does not satisfy the Liouville condition. We can easily find two Hamiltonians:
Hy = 3(z? —z%), and Hy = wﬂ . Following the necessary procedures of Theorem
3.4, we have the last multlpher A= ﬂi;ﬂ Then Y = AX = Yy, ag, is a Nambu
vector field on (R3,n = dz; A dzo A dx3) and div (Y) = 0.
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