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1 Introduction

In this paper, we consider a tumor invasion model with constraint, which is the following

systems:

( %Zt—l =V -{Ki(-)Vn -V f}+pun(l—n—-f) in Q(T):=Q2x (0,T),
O - smf Q)
% = Kz()Am + Cl’l'l - sz in Q(T),

) 0<n+f<1,m>0, f>0,n>0 inQT),

n =0, in X(T) :=T x (0,T),
o
a—': =0  in X(T),

\ n(O) = Ny, f(O) = f01 m(O) = my in Qv

where 0 < T < oco; Q is bounded domain in R¥(N = 1,2,3) with a smooth boundary
' = 89Q; K,(-) is a non-negative function on (0,7); A(-) is a non-negative function on
Q(T); K, 1,0, Cy and C; are positive constants. n is the outer unit normal vector on I’
ng, Mg and fo are initial date. In this model, the unknown functions n, f and m describe
the densities of solid tumor cells, the extracellular matrix (denoted by ECM) and the
matrix degrading enzymes (denoted by MDE), respectively.

Remark. K, and K,, are to express that diffusion rate of the tumor cells and MDE,
respectively. Originally, they are determined by the state of the protein that exists there.
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Therefore, the coefficients must be determined to be dependent on time and space. How-
ever, K, is dependent upon only time.

2 Approach by quasi-variational inequality

First of all, we define the operators which satisfy the following propaties:
1. For each t € [0,T] and v € L*(Q(T')), we consider the problem (P),,:

%? = Knth+ Co— Gy in Q(T),

(P)m \ Vi -n =0 on X(T),
m(0) = mo in Q.

Then, we denote by A;(t) is a solution operator on L?(0, T; L2(£?)) which assigns a
unique solution of (P),, to v, namely, T = A;(t)v.

2. For each t € [0,T] and w € L*(Q(T')), we define a function A;(t)w by
[A2(t)w](z, 8) := fo(z) exp (—6 /08 w(z,'r)ds) , V(z,s) € Q(T).

Then, A2(t) is a solution operator which assigins a unique solution f of the problem
(P)s below to w:

of S
(P); { —Aa—t' = —dfw in Q(T),
fO=f g
3. For each t € [0,T] we put A(t) := Aa(t) o A1(t).

Using these operators, we give the diffinition of (P).
Definition 2.1 For each t € [0,T)] a triplet {n, f,m} is called a solution of (P) on
[0, 1] if and only if the following propaties are fulfilled:

(S1) n e W2(0,t; L2(2)) N L*°(0, t; H3(S2)).
(82) m = A1(t)n, f = A(t)n.
(83) 0<n<1-f ae in Q(T),

/Otfn (%(s) — pn(s)(1 —n(s) — f(s))) (n(s) — v(s))dzds
+ /ot/Q ()\(S){n(s)Vf(s)} + Kn(s)Vn(s)> - V(n(s) — v(s))dzds < 0,

for Vv € L?(0,t; Hy(2)) with 0 < v <1 — f a.e. in Q(T).
(84) n(0) =ng a.e. in Q.
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3 An abstract existence result

In this section, we express about the existence of solution in abstract theory. we use
the following notation. Let H be a real Hilbert space equipped with a usual norm | - |g
and an inner product (-, )y, and X be a real reflexive Banach space, and let X* be a dual
space of X. We assume that X is density and compact imbeded in H.

We consider a nonlinear evolution problem the following formulation

(CP): %(t) + 0 (u; u(t)) 2 g(t), 0 <t < T, u(0)=ug, in H,

where 9¢'(u;-) is the subdifferential of covex function ¢'(u;-) on H, u' = ‘f—E“ and ug :
[-60,0) — H and f : (0,T) — H are the initial and forcing functions, respectively. We

define the following functional space and its norm; we put
V(=bo,t) := Wh3(=6p,t; H) N L=(—=dp,t; X), 0<t < T.
[V|V(=d0,t) 1= V] Loo(=80,5;x) + [V L2(<60,6:10)-
This is a sort of functional differential equations generated by subdifferentials of ©*(v;-)
with a nonlocal dependence upon v. The objective of this paper is to specify a class of

convex functions {¢*(v;-)}o<s<: as well as its nonlocal dependence upon v € V(-6 T') in
order that above Cauchy problrm admits at least one local or global in time solution wu.

Definition 3.1(Mosco convergence) Let {¢,} be a sequence of proper, lower semi-
continuous(l.s.c.), convex functions on X. Then {p} converges to a proper, l.s.c., convex
function ¢ on X in the sense of Mosco, if the following two conditons (M1) and (M2) are
- satisfied:

(M1) Let {nx} be any subsequence of {n}. If {vx} is a sequence in X and v € X such
that vy — v weakly in X as k — oo, then

lim inf ¢, (vk) > @(v).

(M2) For each v € D(y), there is a sequence {v,} in X such that

Un = vin X, ¢n(vn) — @(v) as n — oo.

For Yv € V(—6o,t) we are given a family {¢*(v;-)}o<s<t such that

(®1) ¢*(v; 2) is proper, ls.c., non-negative, convex in z € H;¢*(v; z) is determined by
the value of v on (—do, 5), namely ¢*(v;; z) = @*(vo; 2) wherever vy, v2 € V(—06,t),
v; = vz on (—do, ).

(®2) p*(v;2) > Col|z|5%, 0 < Vs < t, Vv € V(—bo,t), where 2 < p < 0o and Cp > 0 are
constants.

(®3) If 0 < s, <t < T, v, € V(—0p,t), Sn — s and v, — v weakly in W2(—6y,t; H) and
weakly* in L%°(—dp,t; X ), then ¢**(vy,;-) — ¢°(v;-) on H in the sense of Mosco.
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Definition 3.2 up € C([—0o,0]; H) and f € L?(0,T; H). Then we say that u is a solution
of the Cauchy problem

cp u'(t) + 0t (u; u(t)) > f(t), 0 <t < T, in H,
(CP) u(t) = up(t), —0p <t <0, in H,

if u satisfies that u € C([~do, T]; H), u = ug on [—6o, 0], u € W,2((0, T]; H), O (u; u(-)) €
L'(0,T) and f(t) — uw'(t) € Op'(u; u(t)) for a.e. t € (0,T).

Theorem 3.1 Let 0 < T' < +00, 0 < §g < +o00, f € L?(0,T; H) and up € V(—6y, 0) with
©°(u0; uo(0)) < +o0. Assume that for all M > 0 and M < M* := M*(f, uo, ©°(uo; u0(0))),
there are two bounded families A := {a;v € V(—6o,T), |v|v(~s0,1) < M} of non-negative
functions in L?(0,T) and By := {b;v € V(—0o,T), |v|y(—sor) < M} of non-negative
functions in L!(0,T) such that

(H1) for each v € V(—=8,,T), |v|v(=sory < M, v = ug on [—&, 0], there exist a € Ay,
and b € By with the following property: for each s,t € [0,T) with s < ¢ and
z € D(p*(v;+)), there exists Z € D(p!(v;-)) such that

t
2= 2ln < [ aln)ar(1 + o' 2)h),
t
A0 = ¢'() < [ b1+ o' 2)),
(H2) for all € > 0, there exists . > 0 such that
t+0,
/ (a(s)? + b(s))ds < e, Vt € [0,T — 6], Ya € Ans, Vb € By,
t

Then, problem (CP) has at least one solution u on an interval [0,7'] with 0 < T < T
such that u € V(—do, T") and supy<, v ¢*(u; u(t)) < +oo.

The detail of of proof is referred to the paper [5].

4 Main result

4.1 Awuxiliary equation

In this paper, we give some propositions which is the existence of solutions of auxiliary
problem and its estimate. We can directly apply the theory established in [2] to derive
Proposition 4.1. So, we omit its proof in this paper.
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Proposition 4.1. (c¢f. [7]) For eacht € [0,T}], v € V(—do,t) and n € L*(0, T ; H3(S2))
the problem

n'(s) + 0p*(v;n(s)) 3 G(s,n(s), [A(®)R](s)) in L*(2), a.e. s € (0,t),

(Ap)t,v,ﬁ { n(s) =ng in L%(Q), Vse€[—6,0].

has a unique solution n = ny, 5 € W12(0,¢;L3(Q)) N L>(0,t; H}()).
Moreover, there exists a constant Ry > 0, which depends on ||k, |lciom and || &) || L1 0,1,
such that

12’22y + Sup ©*(v;n(s)) < R (1 + Inoll3 ) + ”G(ﬁa/\(t)ﬁ)”iz(Q(T))) :
S8

vt € [0,T], Yv € V(—bo,t).

Lemma 4.1. There exist a constant R; > 0 and a non-negative, continuous and strictly
increasing function R3(-) on [0,T] with R3(0) = O such that

1A w0t sy < Ba (14 1 follbiney)

2
+R3(t) (1 + lmoll 3y + ”ﬁ”%N(O,T;H(}(Q))) , Vte[0,T].

Lemma 4.2. There exist a constnat R4 > 0 and a continuous, non-negative and strictly
increasing function Rg(-) on [0,T] with Rs(0) = 0 such that

IG(7, A@t)R) |22 @iy < RallballZzoemy)

3
+Rs(2) (I follsacay + 1) (1+ Imolifizgey + 142w o, mpca) - V2 € (0,T).

For each t € [0,T) and v € V(—dy, t), we define the solution operator S(t,v) which assigns
a unique solution S(¢,v)# := n of (AP),,, to each & € L>(—4,t; H;). We can apply
Schauder fixed point theorem, we see that the operator S(¢,v) has at least one fixed
point. Then, we give the existence theorem as follows:

Proposition 4.2. There exist a positive constant M, and a time Ty := Ty(M,) € (0,T]
such that for each v € V(—68o,Ty) the problem

(AP) n'(t) + 0pt(v;n(t)) 3 G(t,n(t), [A(To)n](t)) in L3(S2), a.e. te€ (0,Tp),
’ n(t) =no in L%}(N), Vte[—b,0].
has a unigque solution n,, € W12(0, Ty ; L*(R2)) N L>=(0, Ty ; H3(2)) satisfying

n! |2 + sup ' (v;n,(t)) < M. 4.1
l v”m(QTo) OStS?To‘p( v(£)) < M (4.1)
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Moreover, there exists a positive constant My, which is independent of v € V(—dy, To),
such that ,

|[A1(To)n0) ||L2(o,Tn;H1(n)) + ”Al(To)nv”Loo(o,To;H?(n)) (4.2)

4.2

HI A1 (To)nw |l 220,10 ; H3(0)) + 1A (To)nw | Loo (0,10 HA(@)) < Ma.
Proof We fix Tg, which is the same number as in Lemma 4.1, and v € V(—dq, Tp) through-
out this argument. Let {#,} C Wy, and & € W)y, so that Ay, — 7 in C([0,T]; L?(Q))
as k — co. Then, we see that G(Ax, A(Tp)Pw) — G (A, A(Tp)R) weakly in L*(Q(Tp)) as
k — oo. By using the results, we derive S(Tp,v)fix — S(Tp,v)7 in C([0,To]; L2(R)),
s0, S(Tp, v)7u, — S(Tp,v)7n in C([0,T]; L%(2)) as k — oo.

By applying Schauder fixed point theorem, we see that S(7Tp, v) has at least one fixed
point @, i.e., S(Tp,v)7t = @1, in Why,. It is clear from the definition of S(Tp,v) that 72 is a
solution of (AP), on [0, T ].

In the rest of this proof, we show the uniqueness of solutions of (AP), on [0,Tp]. Let
n; (¢ = 1,2) be solutions of (AP), on [0,7y]. For simplicity, we put 6; := A(Tp)n; and
Ci = A](To)’ni.

First of all, we note that ¢; (i = 1, 2) satisfies the following system:

(&1 — G) — EmA(G — ¢2) + C3(¢1 — (2) = Ca(ny —n2)  a.e. in Q(Tp), (4.3)

V(i —¢§)-Vn=0 a.e. onXqg, (4.4)
(¢1 —¢2)(0) =0 a.e. in Q. (4.5)

We multiply (4.3) by {; — {2 and V(4.3) by V({; — {2). By integrating these resultants
over Q(Ty), it is easily seen that there exists a constant K22 > 0 such that

t
sup 162(5) — Gy + | 16(8) = Glo)lids
oSt ° (4.6)

t
< Kl/ lIni(s) — n2(3)||f,&(mds, vVt € [0,Tp].
0
In order to show the uniqueness of solutions of (AP), on [0, Tp], we have to estimate
the term (G(n1,6:) — G(nz,02),n1 — nz)12(q) by the following ways.

(1) It is easily seen from (4.2) that for any £; > 0 there exists a constant K2(¢) > 0 such
that the following inequality holds for a.e. ¢t € (0, Tp):

/Q |Vni(z,t) — Vna(z, t)|| Vi (2, t)||ni(z, t) — na(z, t)|dx

< erllna(t) = n2(B)l1 ) + Ka(en)llna(t) — na(t)|122q)-

(2) By using (4.1), (4.2) and (4.6), we see that for any e, > 0 there exists a constant
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K3(e2) > 0 such that the following inequality holds for a.e. t € (0, Tp):
L |Vng(z, )|V, (z,t) — VO (z,t)||ny(z,t) — ny(z, t)|dz
< G [ 1Ym0l @ lm(e0) - mla 0 ([ 165) - o, s)ds ) do
+CfL|Vn2(x, t)||ni(z, t) — na(z,t)]

<(/ 6 5) - Gl sias) ([ Ve, s)lds) dz

+Ch -/n |Vny(z, t)||ni(z, t) — na(z,t)| (/Ot |IV¢i(z, s) — Va(z, s)lds) dz

t
< C'l||Vfo||C(ﬁ)||n2(t)||H,§(n)||n1(t)—nz(t)"u(n)/o 1< (2) — Ca(t) | Loy ds
t
+C2lIna(®)ll 3oy / IV () llomds

t
x |1 (8) — n2(t)llocey / 162(8) — Ca(®)llzsyds
t 3
+C1v/ Tollna(t) | gz ey 1 () = n2(t)l ooy (/0 IVCi(s) — VCz(S)ll?ﬁ(n)dS)

t
< eallma(t) = na(®) By + Ka(ea) | Ima() = ma(o)liy s

(3) It is easily seen that for any €3 > O there exists a constant Ky(¢3) > 0 such that the
following inequality holds for a.e. t € (0, Tp):

/ |AGy (z, t)||n1(z, t) — na(z, t)|2dx
Q

< 1A ()l Le@yllna(t) — n2(t) ||l Laylina () — na(t)|l L2y
< esllm(t) — n2()llf @) + Kales)lin(t) — na(t)l22(q)-

(4) It is easily seen that for any €4 > O there exists a constant Ks(e4) > 0 such that the
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following inequality holds for a.e. ¢t € (0, Tp):
/Q Ina(, £)]| A0 (x, £) — ABs(, 1) ||na(x, £) — na(z, £)|de
t
< 0 [ 1an@lin(e 0~ na(e 0] [ 166 - a0l ) do
Q 0
t
+261 | 1V o(a)lims(z,0) = nala 0] ([ 1¥6:(2,5)1ds )

< ([ 1a@s) - s)lds ) dz

+2C, /(; IV fo(z)||n1 (z,t) — na(z, t)| (/t |V¢i(z, ) — Va(z, s)lds) dz

+03 [ m(a,1) = ma(a,0) ( [vae slds) ([ 165 -t o)lds ) da

+07 [ m(a,t) = naa,t)| /0 V(e 5)ds + / Via(s,5)lds

X (/Ot IV(i(z, s) — Va(z, s)|ds) dx

+C? /Q In1(z, t) — na(z, t)| (/Ot |AG (=, s)[ds) (/Ot |Gz, s) — Cg(:c,s)|ds) dz

+0y [ Im(a,t) = @) ([ 186(@,9) - AGlz, 5)lds) do

IA

C1l|Afoll ey lIna () —nz(t)llu(sz)/o 1€1(s) — Ca(8)l| 2y ds
t
+2C3IV folloy [ 16:(5)lnords
0
t
X|[ny(t) — nz(t)llm(n)/o 1<1(8) — Ca(8)|| 2y ds
t
+2C1 IV follog Ima() — na(®)l 2y / 161(5) = Ca(3) larscanyds
t t
+C5 (/ ||VC1(~9)||0(ﬁ)ds) lna(t) — nz(t)||L2(sz)/ 1<1(s) — C2(s)l L2y ds
0 0
t t
2 ( 196 logds + / uvc2<s>nc«—,)ds)

X I () — na(t)ll 2oy / 162(8) = Ca(8) lracayds
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+C? (/0 ||C1(s)||m(n)ds) In1(t) — nz(t)||L2(n)/0 162(5) = ()l ey ds
+Ch||n1(t) — n2(t) | L2(e) /0 ¢ (s) = C(s) |l azyds

t
< eallma(t) = na() 3y + K5(€4)/0 lI71(5) = na(s) |32 ey ds-

(5) It is easily seen that there exists a constant Kg > 0 such that the following inequality
holds for a.e. t € (0,T):

/Q,un(a:, t) [n1(z,t) {1 — ni(z, t) — O1(z,t)} — na(z,t) {1 — na(z,t) — O2(x, 1)}

x{n1(z,t) — nz(z,t)}dx
< Npn@®llLe@) (4||"1(t) — n2(t) |20y + /Q 161(t) — 02(¢)||n1(t) — "2(t)|d93)

< Kgllpn ()l o) (Hnl(t) — ()1 220y +/0 <2 (s) — Cz(s)”%ﬂ(n)ds> .

We see from (1)—(5) that there exist constants K; > 0 (¢ = 7, 8) such that

L) < K (1+ [an(®) ) ¥(0), ae. te (0,Tb), (4.7)

where .
U(t) = [Ina(t) = ma(t)13aey + Ka / lIna(s) — na(s) 12y ds-

By applying Gronwall lemma, we derive ny(t) = nq(t) in L2(Q2) for all t € [0,Tp], i.e., the
uniqueness of solution of (AP), on [0,Tp). |

4.2 Local existence of solutions

In this section, we state our main theorem of the present paper, which gives the existence
of time-local solutions of (P), and show its proof.

Theorem 4.1. (P) has at least one solution [n, f,m] on [0,Ty]), where Ty is the same
time as in Proposition 4.2.

Throughout this section, let M; and Ty be the same constants as in Proposition 4.1.
In order to show Theorem 4.1, we define a non-empty, closed and convex subset Wy, (Tp)
of C([0,T5);L*(%)), and an operator L from Wy, (Tp) into itself by

Wy, (Tp) := {v € V;n:,

V'l 2@z + sUP_ wo(v(2)) SMI}
0<t<Th

and
Lv:=n,, YveE Wy (T),
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respectively. Actually, it is easily seen from Proposition 4.1 that the operator L is well-
defined on Wiy, (To).
Now, we give the proof of Theorem 4.1 below.

Proof of Theorem 4.1. Let {vx} C W)y, (Tp) and v € W)y, (Tb) so that
in C([0,To]; L*(R)),
vy — v weakly in W12(0, T, ; L%(£2)),
*-weakly in L>(0, Ty ; H3(Q2)) N L=°(Q(Ty)).
For simplicity, for each k € N we put 7y := Lug, my = A1(To)nw and fi := A(Tp)n.
Then, it is easily seen from the definition of Wi, (To) that there exist a subsequence of

{k}, which is denoted by the same notation {k}, and 7 € Wi, (To) such that the following
convergences hold:

in C([0,To]; L*(92)),
g — 71 weakly in W12(0, T, ; L2(2)), (4.8)
*-weakly in L*(0, Ty ; H}(Q2)) N L=(Q(Ty)).
By using the continuity property of A;(Tp), we see that the following convergences hold:
in C([0,Tp]; H'(2)) N L*(0, Ty ; H*(2)),
my — Aq1(To)7 weakly in W12(0, Tp ; H(2)) N L2(0, Ty ; H3(2)), (4.9)
*-weakly in L*°(0, Ty ; H%(£2)).
By repeating the similar argument, we see that the following convergence holds:
G(Rk, fr) — G(f, A(To)n) weakly in L%(Q(Tp)). (4.10)

In the rest of this proof, we show that n is a solution of (AP)_ on [0, Tp].

For this, we let 2z any function in L?(0, T ; H}(R2)) satisfying 0 < 2z < 1 — A(Tp)v a.e.
in Q(Tp) and put 2x := min {2,1 — A(Tp)vr}. Since z satisfies 0 < 2z, < 1 — A(To)vx a.e.
in Q(To), it is easily seen that the following inequality holds:

To To
/ (AL (), An(t) — z6(t))dt + / / k() Vit (@, £) - V(Tin(z, t) — z4(z, £))dzdt
° 0 e (4.11)

To
< A (G(nk(t), f(t)), nk(t) — 2k(t))dt.

By taking lim_.oo in (4.11) and using (4.8)-(4.10) with 2z — z in L?(0,Tp; H}(S2)), we
see that the following inequaity holds:

To To
/ (7(2), A(t) — 2(t))dt + / / k() V(2 £) - V((a, £) — 2(z, t))dzdt
0 0 Q

o (4.12)

< | (G, @), A0 - ),
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which implies that 7 is a solution of (AP), on [0,Tp], i.e., 7 = Lv. Hence, we see that
the operator £ : Wy, (To) — Whr, (To) is continuous with respect to the strong topology
of C([0,To]; L*(2)).

By applying Schauder fixed point theorem, we see that £ has at least one fixed point,
namely, there exists n € Wy, (Tp) such that Ln = n. It is clear from the definition of
A(Tp) and Ay(Tp) that a triplet [n, A(To)n, A1(To)n] is a solution of (P) on [0,Tp). W
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