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1 Intorduction
This is an informal note on singular diffusion equations whose diffusion

effect is so strong that the speed of evolution becomes a nonlocal quantity.
Typical examples include the total variation flow as well as crystalline flow.
Our goal in this paper shows current status of fields including open problems.
There is already a review article [Gl] on a similar topic so we mainly focus
development after 2004.

2 Well-posedness
We begin with two examples. The first example is a total variation flow

equation for $u=u(t, x),$ $x=(x_{1}, \cdots, x_{n})$ of the form

(1) $u_{t}=div(\nabla u/|\nabla u|)+\lambda(f-u)$ ,

where $f$ is a given function and $\lambda\in R$ . The second example is an anisotropic
mean curvature flow equation for the graph of a function $u$ of the form

(2) $u_{t}=\sqrt{1+|\nabla u|^{2}}\Lambda I(\vec{n})(div((Dl\eta’(\nabla u))+\sigma(x, u))$ ,

where Il“ is a given convex function in $R^{n}$ which may not be $C^{1}$ and $\Lambda I(>0)$ is
a given positive function; $\sigma$ is also a given function; $\vec{n}$ denotes the upward nor-
mal of $y=u(t, x)$ , i.e., $\vec{n}=(-\nabla u/\sqrt{(1+|\nabla u|^{2})}, 1/\sqrt{1+|\nabla u|^{2}})$ . Of course,
(1) is a particular example of (2) by taking $M(\vec{n})=1/\sqrt{1+|\nabla u|^{2}},$ $\dagger\nu^{\vee}(p)=$

$|p|$ and $\sigma(x, u)=\lambda(f(x)-u)$ .
The total variation flow can be formally viewed as an $L^{2}$-gradient flow of

$E(u)= \int_{fl}(|\nabla u|+\frac{\lambda}{2}(u-f)^{2})dx,$ ( $\Omega$ : $r\iota$ –dimensional manifold)

i.e., $u_{t}\in-\partial E(n)$ , where $\partial E$ denotes the $L^{2}$-subdifferential of $E$ . There
is a nice abstract theory for the existence of solutions for the initial value
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problem $\partial_{t}u\in-\partial E(u)$ when $E$ is a lower semicontinuous function defined
in a Hilbert space initiated by Y. Komura [Ko] and developed by H. Brezis
and others in $1960s$ ; see e.g. [B]. For our problem (1) it guarantees the
unique solvability of the initial value problem for (1) with $\lambda\geq 0$ under, for
example, periodic boundary condition (by taking $\Omega=T^{n}$ , a flat torus) with
$f\in L^{2}(\Omega)$ . Surprisingly, the speed (the right time derivative) is determined
uniqeuly although the evolution law $u_{t}\in-\partial E(u)$ looks ambiguous.

Let us give a simple example to see that the speed is a nonlocal quantity.
We take $\lambda=0$ in (1) and consider one-dimensional problem to get

$u_{t}=(sgnu_{x})_{x}$ .

If one considers $u_{0}(x)=\cos x$ as an initial data, it is expected that a flat
part instanteneously develops from maximum points and minimum points.
The other part is not expected to move. Heuristically, the place where slope
equals zero feels very strong diffusion while other part stops. In fact, the
solution is of the form

$u(x, t)=\{\begin{array}{l}\cos x,\cos d(t),\end{array}$

and $d(t)$ is determined by

$d(t)\leq x|\leq\pi/2$ ,
$|x|\leq d(t)$

$u_{t}(x, t)=2/$ ($length$ of flat part) $(=2/2d(t)),$ $|x|<d(t)$

with $d(O)=0$ . This fact is observed for example by T. Fukui and Y. Giga
[FG] and R. Hardt and X. Zhou [HZ] a long time ago. It is clear that the
speed is determined bv a nonlocal quantity..

If we consider (2), it cannot be viewed as a gradient flow so general theory
for $u_{t}\in-\partial E(u)$ does not apply. The notion of a solution itself should be
studied. A viscosity like theory [CIL] developed by M.-H. Giga and Y. Giga
$[GG98Ar]$ , [GG99], [GGOlAr] during 1998-2001 covers the case that the space
dimension is one and $\sigma$ equals a constant with some technical assumptions
on $\dagger\dagger l$ (which applies a piecewise linear convex function $\dagger f’\vee$ ). The underlining
structure of their theory is that flat position (with slope corresponding to a
jump of IV) stays as flat so that the speed is constant. This hypotheses (which
is verifyed by the subdifferential theory if it applies) is also fundamental to
construct admissible crystalline flows by J. Taylor [Tl], and independently
by S. B. Angenent and M. E. Gurtin [AG]. Actually, the speed is determied
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by solving an obstacle problem [KS] which may not be a constant when $\sigma$ is
not spatially constant (as observed in the work of $[GG98DS]$ ) or the space
dimension $n\geq 3$ (as observed by G. Bellettini M. Novaga and M. Paolini
[BNP] $)$ .

In fact, G. Bellettini and M. Novaga [BN] consider a surface evolution by
singular energy of the form

$V=\wedge\prime div_{\Gamma}(\nabla_{p}\gamma)(\vec{n})$ ,

where $\gamma$ is an interfacial energy and $V$ is the normal velocity. Here $\gamma$ is
extended in $R^{n}$ as a positively l-homogemeous function and $\nabla_{p}\gamma$ is its gra-
dient. the quantity $\nabla_{p}\gamma(\vec{n})$ is often called the Cahn-Hoffman vector field. G.
Bellettini and M. Novaga introduced a notion of solution and established a
uniqueness result [BN]. However, the existence of solution is known only for
convex initial data [BCCN]. Flat portion such that the speed is constant is
called a calibrable set for $E$ or a Cheeger set studied by people including B.
Kawohl [KSch], [KL]. Its relation of the Rayleigh quotient of l-Laplacian i.e.,
$\int|\nabla u|dx/\int|u|dx$ is well-studied [KSch], [KL]. It is interesting to charaterize
calibrable sets in a general setting [BNPl](cf. [BNP2]).

The case when $\sigma$ is not constant is handled recently by M.-H. Giga and
Y. Giga [GG09], where they study dependence of solutions of the obstacle
problems with respect to the domain (flat portion) we consider. However, the
theory is still for one-dimensional problem. However, this is a fundamental
key to develop a level set theory [CGG], [ES], [G2] for all planer singular
curvature flow including crystalline flow with nonuniform driving force term.
There is another approach to construct an explicit solution by solving a free
boundary problem ([GGR], [GR4], [GR5]). We also note that the speed
agrees with the speed proposed by A. R. Roosen [R].

Well-posedness problem is widely open for l-harmonic map flow:

$u_{t}= div(\frac{\nabla u}{|\nabla u|})+|\nabla u|u$ ,

where $u$ is a mapping to a unit sphere in $R^{n}$ . A global existence of weak so-
lution is recently established by J. W. Barrett, X. Feng and A. Prohl [BFP].
However, its uniqueness is not known even locally (except one dimensional
case see Y. Giga and R. Kobayashi [GK] $)$ . For surface diffusion like type
problems unless problem is formulated like $u_{t}\in-\partial E(u)$ where subdifferen-
tial is taken in $H^{-1}$ norm, the well-posedness is widely open (cf. Y. Kashima
[Ka] $)$ .
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3 Applications
Although there are several applications we just give here a rather unusual

applications. It is summarized as a application of vertical singular diffusion
to have solutions with shocks.

$V^{7}e$ consider the graph $\Gamma_{t}$ of solution $u$ of the Burgers equation

(3) $u_{t}+uu_{x}=0$ .

If we use upward normal velocity $\iota/$ of $\Gamma_{t}$ in $R^{2}=\{(x, y)|x, y\in R\}$ it is
formally of the form.

(4) $V=y$ $on$ $\Gamma_{t}$

However, solution of (4) may overturn and may not be the graph of a func-
tion. For (3) we often consider an entropy solution with jump discontinuities
instead of a multivalued (overturned) solution. What is a good equation in-
stead of (4) to track an entropy solution? Singular diffusion equation gives
an answer as rigorously discussed by M.-H. Giga-Y. Giga [GG03]. The main
idea is to consider.

(5) $t^{r}=y+Adiv(\nabla\wedge/(\vec{n}))$ ,

where $\gamma(p_{1},p_{2})=|p_{2}|$ and $A>0$ instead of (4). It is useful to calculate
numerically (cf. T.-H. R. Tsai, Y. Giga and S. Osher [TGO]). The last term
of (5) is called a vertical singular diffusion term. If $A>0$ is taken sufficiently
large with respect to size of jumps (but still finite), then the solution of (5) is
the graph of entropy solutions. It is curious whether such singular diffusion
can be used for sand pile problems studied by L. C. Evans, M. Feldman and
R. F. Gariepy [EFG]. If the slope bound is 1 i.e., $|\nabla u|\leq 1$ , a suggestive
equation is

$u_{t}=f(x)+A \int_{|\omega|=1}(sgn(1-\nabla u\cdot\omega))_{x}d\omega,$ $A>0$ ,

when the original equation is $u_{t}=f(x)$ .

4 Approximation
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It is important to develop several ways of approximation of solutions not
only for construction of a solution but also to study properties of a solution.
In fact, Bellettini and et al [BCCN] constructed crystalline surface evolution
flow by using Almgren-Taylor-Wang [ATW] scheme for convex initial data.

General tendency is that various approximation is uniform with respect
to mollification way of singular interfacial energy. This is actually proved for
the anistoropic Allen-Cahn equation by Y. Giga, T. Ohtsuka and R. Sch\"atzle
[GOS] when the driving force term is spatially homogeneous but for arbitrary
dimension. It is interesting to study recent differential game approximation
by R. V. Kohn and S. Serfaty [KSl], [KS2] of a solution although approxima-
tion scheme for singular interfacial energy is not yet given. For example it is
interesting to give a differential game interpretation for crystalline curvature
flow.

5 Anisotropic version of constant mena curvature sur-
face

It is well-known that a constant mean curvature embedded hypersurface
in $R^{n}$ must be a sphere and is known as Alexandrov’s theorem [A]. This
result is recently extended for anisotropic case for smooth strictly convex
interfacial energy by Y. He, H. Li, H. Ma, and J. Ge [HLMG] and by J. Zhai
[Z]. The problem is that if the anisotropic curvature $div_{\Gamma}\nabla_{p^{\wedge}}/(\vec{n})$ is constant
everywhere on an embedded hypersurface, it is the boundary a Wulff shape

$\mathfrak{s}r_{\gamma}^{r}’=$ { $x\in R^{n}|x\cdot m\leq\gamma(m)$ for all $m$ such that $|m|=1$ }

up to dilation and translation. This problem (which is solved by [HLMG]
for smooth strictly convex energy) was posed in the preprint version of [G2]
and later by R. Morgan [M]. For singular interfacial energy it is known only
for $n=2$ , the case of curves by P. Mucha and P. Rybka [MR]. For $n\geq 2$ it
is widely open. For development of this subject for strictly convex smooth
energy the reader is referred to [HLMG], [KPl], [KP2] and references cited
there.

Even if the surface in $R^{3}$ is immersed, if it is defeomorphic to the sphere
$S^{2}$ , the constant anisotropic curvature surface is the boundary of the Wulff
shape up to dilation and translation. This is first proved by Y. Giga and J.
Zhai [GZ] where interfacial energy in close to isotropic. A general result is
proved by Y. He and H. Li [HL] recently for strictly convex smooth interfacial
energy. However, it is an open problem for singular energy.
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