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Abstract

This paper describes a joint work with L. Caffarelli and O. Savin. We intro-
duce a new notion of minimal surfaces, replacing the BV norm by the H®

. 1 . .. .
one, with a < =. The resulting sets are called a-minimal sets. The main

result is a de Giorgi type theorem: if an a-minimal set is flat enough, then it
is smooth.

1 Introduction

In this work with L. Caffarelli and O. Savin [1], our goal is to understand the
regularity properties of sets whose indicator function is a local minimiser of the H*
1

norm, & < —.

To make sense of this, let us do a brief review of the de Giorgi theory of minimal
surfaces. We say that X is a minimal surface in B, if any perturbation of ¥ within
B, increases its area. The question that arises first is the regularity, and a large
effort was devoted to it in the 1930’s and the 1960’s (Bernstein, Rado, Almgren,
Federer...) but the definite blow came from de Giorgi, and we explain his result
now. In the de Giorgi theory [4] we see the surface  as the boundary of a set E.
Ask that 1g be in BV (B,).

Definition. FE minimal in By iff for all F such that

e 1p is in BV (B,)

e F' = F on 0B; we have

|/ |D1E|§/ |D1pg|.
B, B,

This coincides with classical definition if OF is smooth.
Theorem. (de Giorgi) [i]. E minimal in B,, then if By N OF is flat enough (i.e.
can be trapped in a very flat boz) then By, NOE is a CY7 (hence analytic) graph.
[ii]. The dimension of the singular set is < N — 8.
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Let us then see what happens when we replace BV by H®, a > 0. We consider
sets £ such that 1g is in H*(R") (forget problems at infinity for the moment), we

have (15(z) = 15(y))?
1g(z) —1g(y
1151y = [ )220 diay
_ |2// | dzdy
o~ RN\E |x—y|N+2"
= L(E,RY\FE

Note 1. We MUST have a < % Indeed, NO indicator function is in H*, a > %

Note 2. The quantity ||1g||g=(r~) makes sense if E is smooth and bounded.
Let us then proceed to the definition of «-minimal sets.

Definition 1. F is a-minimal in B, iff for all F such that

e lpr€ H® (RN) ,

o F'=FE outside B, we have

Hellze < ||17] e

This looks like the definition of a local minimum, but still does not treat un-
bounded sets. To take into account and unbounded E: remove the nonconvergent
part |1 ge, ie.

Definition 2. E is a-minimal in B, iff for all A C B, such that
lpua, 1@m\eyua € H (RY)

if ACE, then L(A,RN\E) < L(A, E\A)
if AC RN\E, then L(A,E) < L(A,RN\(E U A))

we have

Interpretation. We may remember this barbarian looking condition by saying that
the interaction of A with the rest of the world through OFE is less than that through
OA.

2 Motivation and main result

Definitions 1 or 2 should certainly imply some sort of Euler-Lagrange equation,
and this is our next task. What follows, although philosophically correct, has no
mathematical rigour of any kind.

Let A be a ’small’ set containing the point z € OF, where we are going to write
the optimality condition. Linearise

M1elz- < I1rl%-

oo Jesoon = S Jone ™ L™ 2= L,

with
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This is, as already said technically wrong, because the kernel |z — y|V+2* does not
leave the integrals of interest any chance to converge. Let us however proceed, and
the result is

ka(z) = / IRII;EEy;;:?i(y) dy
= 0
_ /+°° dr area(SY7!(z) N (RY\E)) — area(S;"!(z) N E)
= | oy

The last amount may be seen as the (algebraic) excess area of OF over its tangent
plane at x (provided it exists). Moreover we see that some regularity is needed for
the last integral to exist: it diverges if, for instance, OF has a corner at z.

Remark 1. We have al_l*rlnﬂ(% — a)ka(T) = K(z) (the mean curvature at x) if OF is
C2.
Remark 2. We have a!i}}]/z(% — a)||1g||g= = ll1ellpv if OF is bounded and C?.

A further justification of our minimisation problem is the study of Allen-Cahn
functionals. Consider indeed the classical Allen-Cahn energy:

Je(u) = /(-;—IDulr" + %G(u)) dz, G: standard double-well potential.

As is well-known (Modica-Mortola), a converging sequence of minimisers con-
verges, as € — 0, to the indicator of a minimal set. Consider the nonlocal Allen-Cahn

energy:
_1 [ (u@)—u@)® 1
Je(u) = '2'/ | _ y|N+2a + E‘/G(u)

x

A converging sequence of minimisers will converge, as € — 0, to the indicator of an
a-minimal set.

PROOF. An H® indicator is an admissible test function. This bounds the e~ terms,
and a classical semiconinuity argument concludes. e

Note that, for @ > 1/2, we have (and this is much less trivial) convergence to
classical minimal sets (Gonzalez [3]).

Our main result reads as follows.
Theorem. ([1]) [i]. If E minimal in By; if OE N B, s flat enough then OE N By 2
is a CY7 graph.
[it]. The dimension of the singular set is < N — 2.
Definition. 1.The flatness of the cylinder ¥ = {2’ € B, |zn| < h} is
h
largest diameter of a ball C B

flatness(X) =

2. E is §-flat at x if, in a system of coordinates (say, (z',xN)) we have
{.’I}N _<_ 0} N BI(IE) CEnN Bl(.’L‘) C {.’DN S (5}
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3 Proof of regularity: the main steps

To prove the theorem we do an improvement of flatness. More precisely, if we prove
a statement of the type
Theorem. E a-minimal in B;, and

{I| <1, zy < —e} CENB  C{|7'| L1, zn <€}
There are €9 > 0, g € (2¢€9,1) and 7y € (0, 1) universal such that, if € < gq:
{l.’L‘l < 1 Iy < -60’706} CEN B&g C {l.’l)" < 1 ry < 60’)’08}

in a possibly different system of coordinates (Z/, Zn).
then we are done. An alternative formulation is: if F is e-flat in B,, then OF
is yoe-flat in Bs,. This classically implies (see [4]) C17 regularity.

The strategy is by contradiction (Savin [5]). We assume the existence of a sequence
of a-minimal sets (E,) such that

ewehave {|z/| <1, zy<—-€e}CENB C{|lz'|<1, zny<e¢}

e and improvement of flatness does not hold.

Our goal is the following: consider the dilations OF. = {(z
OF}. We wish to prove:

e (OFE!). converges to a graph {z’, ¢(z')} in 31 12

e and ¢ satisfies a nice equation (e.g. (— Az:) “¢ = 0).

This will imply the contradiction. We proceed in two steps.

xr
’7_1\1)’ ('Tl7mN) €

Step 1: Convergence to a graph

The tool here is a Harnack type inequality which says that, roughly, that if OF is
well localised in By, it is even better localised in a smaller ball.

Theorem. Consider E a-minimal, and 0 € OF, such that we have

{I'| £1, zyn<—-e}CENB C{lz'|<1, =zy<E¢€}
Then there is €9 > 0, 0 € (0,1) universal such that, if e < €q:

1
{Iz'| < 2, oy < ~8e} CENByp C{l| < 5, o < &e}
Corollary. (OF]). converges to a graph {z’, $(z’)} in Bys2. Moreover, ¢ is Hélder
|Logdo|

Log2
PROOF. Apply the Harnack k times such that (20g)*e < &,.

with exponent

Step 2: A viscosity inequality
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Similarly to the theorem of Caffarelli-Cordoba (a minimal surfaces satisfies the
curvature equation in the viscosity sense) we prove the following
Theorem. E a-minimal, and x € OE. Assume a ball touches OF from below at x.

e 1ams(y) = 15(v)
o RM\E\Y) = 1Y
|Ka(z) .—/ Iz — y[N+2a dy >0

Using the fact that we have a graph at the scale €, we plug this into the viscosity
relation... and to our profound discontent we obtain

8(—A)l_+22_°¢ = Lipschitz + h.o.t.

The nonlocality of the problem has struck!

To remedy this, we take an intermediate scale ensuring that
e the zero-order part disappears, -
e at the limit, ¢ does not grow too fast so that (—A)‘iz_qb is well-defined.

To put this programme to work, we replace the initial improvement of flatness
statement by the more sophisticated one:
Theorem. E a-minimal, 0 € OE. Pick 0 < 2a. There exists kg integer such that:
if there is a sequence (Xi)o<k<k, such that, for k < ky:

OFE N By« trapped in 3,

with ¥ cylinder such that
flatness(Xg41)

1
flatness(Tz) 27
Then OF N By-(xy+1) s trapped in a cylinder of flatness 2~ (ko+1)o
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