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Abstract

This paper describes a joint work with L. Caffarelli and O. Savin. We intro-
duce a new notion of minimal surfaces, replacing the $BV$ norm by the $H^{\alpha}$

one, with $\alpha<\frac{1}{2}$ . The resulting sets are called $\alpha$-minimal sets. The main
result is a de Giorgi type theorem: if an $\alpha$-minimal set is flat enough, then it
is smooth.

1 Introduction
In this work with L. Caffarelli and O. Savin [1], our goal is to understand the
regularity $P_{1}^{roperties}$ of sets whose indicator fumction is a local minimiser of the $H^{\alpha}$

norm,
$\alpha<\overline{2}$ .

To make sense of this, let $11S$ do a brief review of the de Giorgi theory of minimal
surfaces. We say that $\Sigma$ is a minimal surface in $B_{1}$ if any perturbation of $\Sigma$ within
$B_{1}$ increases its area. The question that arises first is the regularity, and a large
effort was devoted to it in the $1930$ ’s and the $1960$’s (Bernstein, Rad\‘o, Almgren,
Federer...) but the definite blow came from de Giorgi, and we explain his result
now. In the de Giorgi theory [4] we see the surface $\Sigma$ as the boundary of a set $E$ .
Ask that $1_{E}$ be in $BV(B_{1})$ .
Definition. $E$ minimal in $B_{1}$ iff for all $F$ such that

$\bullet$ $1_{F}$ is in $BV(B_{1})$

$\bullet$ $F=E$ on $\partial B_{1}$ we have

$| \int_{D_{1}}|D1_{E}|\leq\int_{B_{1}}|D1_{F}|$ .

This coincides with classical definition if $\partial E$ is smooth.
Theorem. (de Giorgi) $[iJ$. $E$ minimal in $B_{1}$ , then if $B_{1}\cap\partial E$ is flat enough $(i.e$ .
can be trapped in a very flat box) then $B_{1’ 2}\cap\partial E$ is a $C^{1_{r}\gamma}$ (hence analytic) graph.
$[iiJ$. The dimen sion of the singular set $is\leq N-8$ .
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Let us then see what happens when we replace $BV$ by $H^{\alpha},$ $\alpha>0$ . We consider
sets $E$ such that $1_{E}$ is in $H^{\alpha}(\mathbb{R}^{N})$ (forget problems at infinity for the moment), we
have

$\Vert 1_{E}\Vert_{H^{\alpha}(\mathbb{R}^{N})}^{2}=$ $\int\frac{(1_{E}(x)-1_{E}(y))^{2}}{|x-y|^{N+2\alpha}}dxdy$

$=$ $|2 \int_{E}\int_{\mathbb{R}^{N}\backslash E}\frac{dxdy}{|x-y|^{N+2\alpha}}$

$:=L(E, \mathbb{R}^{N}\backslash E)$

Note 1. We MUST have $\alpha<\frac{1}{2}$ . Indeed, NO indicator function is in $H^{\alpha},$ $\alpha\geq\frac{1}{2}$ .
Note 2. The quantity $\Vert 1_{E}\Vert_{H^{\alpha}(\mathbb{R}^{N})}$ makes sense if $E$ is smooth and bounded.

Let us then proceed to the definition of $\alpha$ -minimal sets.
Definition 1. $E$ is $\alpha$ -minimal in $B_{1}$ iff for all $F$ such that
$\bullet 1_{F}\in H^{\alpha}(\mathbb{R}^{N})_{f}$

$\bullet$ $F=E$ outside $B_{1}$ we have

$|\Vert 1_{E}\Vert_{H^{\alpha}}\leq\Vert 1_{F}\Vert_{H^{\alpha}}$ .

This looks like the definition of a local minimum, but still does not treat un-
bounded sets. To take into account and unbounded $E$ : remove the nonconvergent
part $||1_{E}\Vert_{H^{\alpha}}$ , i.e.
Definition 2. $E$ is $\alpha$ -minimal in $B_{1}$ iff for all $A\subset B_{1}$ such that

$1_{E\cup A},$ $1_{(\mathbb{R}^{N}\backslash E)\cup A}\in H_{loc}^{\alpha}(\mathbb{R}^{N})$

we have
if $A\subset E$ , then $L(A,\mathbb{R}^{N}\backslash E)\leq L(A, E\backslash A)$

if $A\subset \mathbb{R}^{N}\backslash E$ , then $L(A, E)\leq L(A, \mathbb{R}^{N}\backslash (E\cup A))$

Interpretation. We may remember this barbarian looking condition by saying that
the interaction of $A$ with the rest of the world through $\partial E$ is less than that through
$\partial A$ .

2 Motivation and main result
Definitions 1 or 2 should certainly imply some sort of Euler-Lagrange equation,
and this is our next task. What follows, although philosophically correct, has no
mathematical rigour of any kind.

Let $A$ be a ‘small’ set containing the point $x\in\partial E$ , where we are going to write
the optimality condition. Linearise

$|||1_{E}\Vert_{H^{\alpha}}^{2}\leq\Vert 1_{F}\Vert_{H^{\alpha}}^{2}$

with
$\int_{E\cup A}\int_{\mathbb{R}^{N}\backslash (E\cup A)}=\int_{E}\int_{\mathbb{R}^{N}\backslash E}+\int_{A}(\int_{\mathbb{R}^{N}\backslash E}-\int_{E})-\int_{A}\int_{A}$ .
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This is, as already said technically wrong, because the kernel $|x-y|^{N+2\alpha}$ does not
leave the integrals of interest any chance to converge. Let $11S$ however proceed, and
the result is

$\kappa_{\alpha}(x):=$ $\int\frac{1_{\mathbb{R}^{N}\backslash E}(y)-1_{E}(y)}{|x-y|^{N+2\alpha}}dy$

$=$ $0$

$=$ $\int_{0}^{+\infty}\frac{dr}{r^{1+2\alpha}}\frac{area(S_{r}^{N-1}(x)\cap(\mathbb{R}^{N}\backslash E))-area(S_{r}^{N-1}(x)\cap E)}{r^{N-1}}$

The last amount may be seen as the (algebraic) excess area of $\partial E$ over its tangent
plane at $x$ (provided it exists). Moreover we see that some regularity is needed for
the last integral to exist: it diverges if, for instance, $\partial E$ has a comer at $x$ .

Remark 1. We have $\lim_{\alphaarrow 1’ 2}(\frac{1}{2}-\alpha)\kappa_{\alpha}(x)=\kappa(x)$ (the mean curvature at x) if $\partial E$ is

$C^{2}$ .
Remark 2. We have $\lim_{\alphaarrow 1/2}(\frac{1}{2}-\alpha)||1_{E}\Vert_{H^{\alpha}}=\Vert 1_{E}\Vert_{BV}$ if $\partial E$ is boumded and $C^{2}$ .

A further justification of our minimisation problem is the study of Allen-Cahn
fiinctionals. Consider indeed the classical Allen-Cahn energy:

$J_{\epsilon}(u)= \int(\frac{1}{2}|Du|^{2}+\frac{1}{\epsilon}G(u))dx$ , $G$ : standard double.well potential.

As is well-known (Modica-Mortola), a converging sequence of minimisers con-
verges, as $\epsilonarrow 0$ , to the indicator of a minimal set. Consider the nonlocal Allen-Cahn
enera:

$J_{\epsilon}(u)= \frac{1}{2}\int\frac{(u(x)-u(y))^{2}}{|x-y|^{N+2\alpha}}+\frac{1}{\epsilon}\int G(u)$

A converging sequence of minimisers will converge, as $\epsilonarrow 0$ , to the indicator of an
$\alpha$-minimal set.
PROOF. An $H^{\alpha}$ indicator is an admissible test function. This boumds the $\epsilon^{-2}$ terms,
and a classical semiconinuity argument concludes. $\bullet$

Note that, for $\alpha>1/2$ , we have (and this is much less trivial) convergence to
classical minimal sets (Gonzalez [3]).

Our main result reads as follows.
Theorem. ([1]) $[iJ$. If $E$ minimal in $B_{1}$ ; if $\partial E\cap B_{1}$ is fiat enough then $\partial E\cap B_{1’ 2}$

$i9$ a $C^{1,\gamma}$ graph.
$[iiJ$. The dimension of the singular set $is\leq N-2$ .
Definition. 1. The flatness of the cylinder $\Sigma=\{x’\in B, |x_{N}|\leq h\}$ is

flatness$( \Sigma)=\frac{h}{1arge_{\iota}stdiameterof}$
a $bal1\subset B^{\cdot}$

2. $E$ is $\delta$-fiat at $x$ if, in a system of coordinates (say, $(x’,$ $x_{N})$ ) we have

$\{x_{N}\leq 0\}\cap B_{1}(x)\subset E\cap B_{1}(x)\subset\{x_{N}\leq\delta\}$ .
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3Proof of regularity: the main steps
To prove the theorem we do an improvement of flatness. More precisely, if we prove
a statement of the type
Theorem. $E\alpha$-minimal in $B_{1}$ , and

$\{|x’|\leq 1, x_{N}\leq-\epsilon\}\subset E\cap B_{1}\subset\{|x’|\leq 1, x_{N}\leq\epsilon\}$ .

There are $\epsilon_{0}>0,$ $\delta_{0}\in(2\epsilon_{0},1)$ and $\gamma_{0}\in(0,1)$ universal such that, if $\epsilon\leq\epsilon_{0}$ :

$\{|\tilde{x}’|\leq 1,\tilde{x}_{N}\leq-\delta_{0}\gamma_{0}\epsilon\}\subset E\cap B_{\delta_{(\}}}\subset\{|\tilde{x}’|\leq 1,\tilde{x}_{N}\leq\delta_{0}\gamma_{0}\epsilon\}$ .

in a possibly different system of coordinates $(”, \tilde{x}_{N})$ .
then we are done. An alternative formulation is: if $\partial E$ is $\epsilon- flat$ in $B_{1}$ , then $\partial E$

is $\gamma_{0}\epsilon- flat$ in $B_{\delta_{O}}$ . This classically implies (see [4]) $C^{1,\gamma}$ regularity.

The strategy is by contradiction (Savin [5]). We assume the existence of a sequence
of $\alpha$-minimal sets $(E_{\epsilon})$ such that
$\bullet$ we have $\{|x’|\leq 1, x_{N}\leq-\epsilon\}\subset E_{\epsilon}\cap B_{1}\subset\{|x’|\leq 1, x_{N}\leq\epsilon\}$

$\bullet$ and improvement of flatness does not hold.
Our goal is the following: consider the dilations $\partial E_{\epsilon}’=\{(x’)\frac{x_{N}}{\epsilon})$ , $(x’, x_{N})\in$

$\partial E\}$ . We wish to prove:
$\bullet$ $(\partial E_{\epsilon}’)_{\epsilon}$ converges to a graph $\{x’, \phi(x’)\}$ in $B_{1’ 2}$

$\bullet$ and $\phi$ satisfies a nice equation $(e.g. (-\Delta_{x’})^{\frac{1+2\alpha}{2}\emptyset}=0)$ .
This will imply the contradiction. We proceed in two steps.

Step 1: Convergence to a graph

The tool here is a Harnack type inequality which says that, roughly, that if $\partial E$ is
well localised in $B_{1}$ , it is even better localised in a smaller ball.
Theorem. Consider $E\alpha$ -minimal, and $0\in\partial E$, such that we have

$\{|x’|\leq 1, x_{N}\leq-\epsilon\}\subset E\cap B_{1}\subset\{|x’|\leq 1, x_{N}\leq\epsilon\}$

Then there is $\epsilon_{0}>0,$ $\delta_{0}\in(0,1)$ universal such that, if $\epsilon\leq\epsilon_{0}$ :

$\{|x’|\leq\frac{1}{2}, x_{N}\leq-\delta_{0}\epsilon\}\subset E\cap B_{1’ 2}\subset\{|x’|\leq\frac{1}{2}, x_{N}\leq\delta_{0}\epsilon\}$

Corollary. $(\partial E_{\epsilon})_{\epsilon}$ converges to a graph $\{x’, \phi(x’)\}$ in $B_{1’ 2}$ . Moreover, $\phi$ is Holder

with exponent $\frac{|{\rm Log}\delta_{0}|}{{\rm Log} 2}$

PROOF. Apply the Harnack $k$ times such that $(2\delta_{0})^{k}\epsilon\leq\epsilon_{0}$ .

Step 2: A viscosity inequality
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Similarly to the theorem of Caffarelli-Cordoba (a minimal surfaces satisfies the
curvature eqiiation in the viscosity sense) we prove the following
Theorem. $E\alpha$ -minimal, and $x\in\partial E$ . Assume a ball touches $\partial E$ from below at $x$ .

Then
$| \kappa_{\alpha}(x):=\int\frac{1_{R^{N}\backslash E}(y)-1_{E}(y)}{|x-y|^{N+2\alpha}}dy\geq 0$

Using the fact that we have a graph at the scale $\epsilon$ , we plug this into the viscosity
relation... and to our profound discontent we obtain

$\epsilon(-\Delta)^{\frac{1+2\alpha}{2}\phi}=$ Lipschitz $+h.0.t$ .

The nonlocality of the problem has struck!
To remedy this, we take an intermediate scale ensuring that
$\bullet$ the zero-order part disappears,
$\bullet$ at the limit, $\phi$ does not grow too fast so that $(-\Delta)^{\frac{1+2\alpha}{2}\phi}$ is well-defined.
To put this programme to work, we replace the initial improvement of flatness

statement by the more sophisticated one:
Theorem. $E\alpha$ -minimal, $0\in\partial E$ . Pick $\sigma<2\alpha$ . There exists $k_{0}$ integer such that:
if there is a sequence $(\Sigma_{k})_{0\leq k\leq k_{0}}$ such that, for $k\leq k_{0}$ :

$\partial E\cap B_{2^{-k}}$ trapped in $\Sigma_{k}$ ,

with $\Sigma_{k}$ cylinder such that
$f_{latness(\Sigma_{k})}^{fatness(\Sigma_{k+1})}=\frac{1}{2^{\sigma}}$ .

Then $\partial E\cap B_{2^{-(k_{O}+1)}}$ is trapped in a cylinder of flatness $2^{-(k_{(}+1)\sigma}$ .
Acknowledgement. The author is grateful to Prof. I. Ishii for inviting him to
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