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1. INTRODUCTION

A general problem in the theory of dynamical systems is to describe the
asymptotic behavior of most trajectories of a given system. From a proba-
bilistic point of view, a dynamical system is well understood if the asymptotic
distribution of almost all trajectories is described by finitely many invariant
probability measures, with good geometric and statistical properties. Such
an approach has been popularized by the Russian school since the $1960s$ and
it has been successfully applied to uniformly hyperbolic dynamical systems
by the pioneering work of Sinai, Ruelle, and Bowen [Sin72, Rue76, Bow75].
To generalize these results to non-uniformly hyperbolic dynamical systems
has been, and continues to be, one of the main themes of research on dy-
namical systems.

In this paper, we announce results on existence of physical measures and
their geometric and statistical properties for a large class of real and complex
one-dimensional maps.

Given a continuous map $f$ : $Xarrow X$ acting on a compact metric space $X$ ,
an invariant probability Borcl measure $\nu$ is callcd $rni$.ring, if for all $\varphi,$ $\psi\in$

$L^{2}(\nu)$ , we have

$_{n}( \varphi, \psi);=\int_{X}\varphi\circ f^{n}\psi d\nu-\int_{X}\varphi d\nu\int_{X}\psi d\nuarrow 0$ as $narrow\infty$ .

The sequence
$_{n}= \sup\{_{n}(\varphi, \psi):\Vert\varphi\Vert_{\infty}\leq 1, Lip(\psi)\leq 1\}$,

measures the speed of mixing (decay of correlations) of the system $(X, \nu)$ ,
where Lip $(\cdot)$ denotes the bcst Lipschitz constant. Our main rcsult is that
for a real or complex one-dimensional map satisfying a weak hyperbolicity
assumption, the speed of mixing is faster than any polynomial.

In the following, we use $\mathcal{A}_{\mathbb{R}}$ to denote the collection of all $C^{3}$ interval
maps with non-flat critical points and use $\mathcal{A}_{\mathbb{C}}$ to denote the collection of
all complex rational maps of degree at least 2. For $f\in \mathcal{A}$ $:=\mathcal{A}_{\mathbb{R}}\cup \mathcal{A}_{\mathbb{C}}$ , we
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use $J(f)$ to denote the Julia set, Crit $(f)$ the set of critical points, and denote
Crit $(f)=$ Crit $(f)\cap J(f)$ . Moreover, for $c\in$ Crit $(f)$ we use $\ell_{c}$ to denote the
order of $f$ at the critical point $c$ and let

$\ell_{\max}(f)=\max\{\ell_{c}:c\in$ Crit$’(f)\}$ .

We use $\mathcal{A}(\ell)$ to denote the collection of maps $f\in \mathcal{A}$ with $\ell_{\max}(f)\leq\ell$ .
The main assumption we shall make is the following “backward contrac-

tion” condition, introduced in [RL07] in the case of rational maps, and
in $[BRLSvS08]$ in the case of interval maps. Let $f\in \mathcal{A}$ be given. When
studying $f\in \mathcal{A}_{\mathbb{R}}$ , we use the standard metric on the interval dom $(f)\subset \mathbb{R}$ ,
while when studying $f\in \mathcal{A}_{\mathbb{C}}$ , we shall use the spherical metric on C. In
both cases we use Leb to denote the corresponding Lebesgue measure. For
a critical point $c$ and $\delta>0$ we denote by $\tilde{B}(c, \delta)$ the connected component
of $f^{-1}(B(f(c), \delta))$ containing $c$ .

Definition 1.1. Given a constant $r>1$ we will say a map $f\in \mathcal{A}$ is backward
contracting with constant $r$ if there is $\delta_{0}>0$ such that for every $\delta\in(0, \delta_{0})$ ,
every $c\in$ Crit$’(f)$ , every integer $m\geq 1$ , and every connected component $W$

of $f^{-m}(\tilde{B}(c, r\delta))$ ,

$W\cap\tilde{B}$ (Crit $(f),$ $\delta$ ) $\neq\emptyset$ implies diam $(f(W))<\delta$.

Furthermore, we say that $f$ is $back\uparrow i$) $ard$ contracting, if for every $r>1$ it is
backward contracting with constant $r$ .

Definition 1.2. We say that a map $f\in \mathcal{A}$ is expanding away from criti-
cal points, if for every neighborhood $V$‘ of $Crit’(f)$ the map $f$ is uniformly
expanding on the set

$\{z\in J(f)|$ for every $n\geq 0,$ $f^{n}(z)\not\in V’\}$ .

It is known that a map $f$ is backward contracting and expanding away
from critical points if one of the following holds:

1. $f\in \mathcal{A}_{\mathbb{R}},$ $f$ has no neutral periodic points, and for all $c\in$ Cri$t’$ $(f)$ ,
we have $|Df^{n}(f(c))|arrow\infty$ as $narrow\infty$ ;

2. $f\in \mathcal{A}_{\mathbb{C}}$ is a polynomial that is at most finitely renormalizable, has
only hyperbolic periodic points, and is such that for all $c\in Crit’(f)$ ,
we have $|Df^{n}(f(c))|arrow\infty$ as $narrow\infty$ ;

2’. $f\in \mathcal{A}_{\mathbb{C}}$ is a rational map without parabolic periodic points, and such
that for all $c\in$ Crit $(f)$ , we have $\sum_{n=0}^{\infty}|Df^{n}(f(c))|^{-1}<+\infty$ .

Main Theorem (restricted version). For each $\ell>1_{f}\gamma>0$ and $p\in$

$(1, \ell/(\ell-1))$ , there exists $r>1$ such that the following holds. Let $f\in \mathcal{A}(\ell)$

be a map with the following properties:
$\bullet$ $f$ is topologically exact on dom$(f)$ (so that $J(f)=$ dom$(f)$ );
$\bullet$ $f$ is expanding away from critical points;
$\bullet$ $f$ is backward contracting with constant $r$ .
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Then $f$ has a unique invariant probability measure $\nu$ that is absolutely con-
tinuous with respect to the Lebesgue measure. Moreover, $d\nu/d$ Leb $\in L^{p}(Leb)$

and the measure $\nu$ is polynomially mixing with exponent $\gamma$ .
The invariant measure $\nu$ is a physical measure. In fact, its basin has full

Lebesgue measure in dom$(f)$ , i. e., for Lebesgue a.e. $x\in$ dom $(f)$ , we have

$\frac{1}{n}\sum_{i=0}^{n-1}\varphi(f^{i}(x))arrow\int\varphi d\nu$ , as $narrow\infty$

for every real-valued continuous map $\varphi$ .
In the real case, the existence of $\nu$ and the estimate of the density func-

tion was proved in $[BRLSvS08]$ and the result on mixing rate significantly
strengthens the prcvious result in $[$ BLVS03$]$ . In thc complex case, the exis-
tence of $\nu$ strengthens results in [GS09], and the other results are new.

We shall also work with maps whose Julia set has a fractal nature. In this
case, under our backward contraction assumption, the Julia set always has
Lebesgue measure zero. We prove an analogous result with the Lebesgue
measure replaced by a conformal measure of exponent HD $(J(f))$ supported
on the Julia set.

For a map $f$ in $\mathcal{A}$ and $\alpha>0$ , a conformal measure of exponent $\alpha$ for $f$

is a Borel probability measure on dom$(f)$ such $that_{\gamma}$ for each Borel set $U$ on
which $f$ is injective we have

$\mu(f(U))=\int_{U}|Df|^{\alpha}d\mu$ .

On the other hand, the conical Julia set $J_{con}(f)$ of $f$ is the set of all those
points $x\in J(f)$ for which there is $\delta>0$ and infinitely many integers $m\geq 1$

satisfying the following property: $f^{m}$ induces a difleomorphism between the
connected component of $f^{-m}(B(f^{m}(x), \delta))$ containing $x$ and $B(f^{m}(x), \delta)$ .

Main Theorem (general version). For every $\ell>1,$ $h>0,$ $\epsilon>0,$ $\gamma>1$

and $p\in(0,$ $\frac{\ell}{\ell-1})$ there is $r>1$ such that the following properties hold. Let
$f\in \mathcal{A}(\ell)$ be backward contracting with constant $r_{f}$ expanding away from
critical points, and such that HD $(J(f))\geq h$ . Suppose furthermore in the
case $f\in atf_{1},atf$ is topologically exact on the Julia set. Th,en the $follo\uparrow i_{1}ing$

hold:

1. There is a conformal measure $\mu$ of exponent HD $(f)$ which is er-
godic, supported on $J_{con}(f)$ and satisfies HD $(\mu)=$ HD$(J(f))=$
$HD_{hyp}(f)$ . Any other conformal measure supported on $J(f)$ is of
exponent strictly larger than HD $(J(f))$ . Furthermore, for every suf-
ficiently small $\delta>0$ we have for every $x\in J(f)$ ,

(1.1) $\mu(B(x, \delta))\leq\delta^{HD(J(f))-}’$ .
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2. There is a unique invariant probability measure $\nu$ that is absolutely
continuous with respect to $\mu$ , and this invariant measure is polynomi-
ally mixing of exponent $\gamma$ . Furthermore, the density of $\nu$ with respect
to $\mu$ belongs to $L^{p}(\mu)$ .

Recall that for $f\in \mathcal{A}_{\mathbb{C}}$ , the map $f$ : $J(f)arrow J(f)$ is always topologically
exact. In the above theorem, if $J(f)$ has positive Lebesgue measure, then
$J(f)=$ dom$(f)$ , and the measure $\mu$ is proportional to the Lebesgue measure.
In fact, this is already the case if $J(f)$ has same Hausdorff dimension as the
domain of $f$ . See part 1 of Corollary $D$ in \S 3.1.

The proof of the Main Theorem is divided into two independent parts. In
the first part we show two properties of backward contracting maps. The
first - and rather surprising–property is that the components of the preim-
ages of a small set shrink at least at a super-polynomial rate, provided the
map is “expanding away from critical points” (Theorem A in \S 2.1). The
second property of backward contracting maps that we show is an upper
bound on a parameter we call “badness exponent”. We show the badness
exponent of a backward contracting map is zero (Theorem $B$ in \S 2.2). In
the second part of the proof of the Main Theorem, we study geometric and
statistical properties of maps which are polynomially shrinking with a suffi-
ciently large exponent, and that have a sufficiently small badness exponent.
We exploit several ideas from [PRL07] and [PRL08] to prove tail estimates
for the canonical induced Markov mappings associated with a “nice couple”,
from which we deduce the existence of a geometric conformal measure and a
polynomially mixing absolutely continuous invariant measure. We shall use
the badness exponent to give an upper bound on the Poincar\’e series through
which we deduce the $L^{p}$ estimate on the density of the absolutely continuous
invariant measure, see \S 3.2. As by-products, we prove equality of various
fractal dimensions of the Julia set and a removability result of Julia set in
the complex case.

2. Two PROPERTIES OF BACKWARD CONTRACTING MAPS

In this section we state two results about backward contracting maps (The-
orem A in \S 2.1 and Theorem $B$ in \S 2.2). We first introduce some notation
and terminology.

We say that a map $f\in \mathcal{A}_{\mathbb{R}}$ is boundary-anchored, if for each $x\in\partial$ dom$(f)$ ,
we have $f(x)\in\partial$ dom$(f)$ and $Df(x)\neq 0$ . Denote by $\mathcal{A}_{\mathbb{R}}^{o}$ the collection of
all boundary-anchored maps in $\mathcal{A}_{\mathbb{R}}$ , and denote $\mathcal{A}^{o}=\mathcal{A}_{\mathbb{R}}^{o}\cup \mathcal{A}_{\mathbb{C}}$ .

We say that $f\in \mathcal{A}_{\mathbb{R}}$ is essentially topologically exact on $J(f)$ if there
exists a forward invariant compact interval $X_{0}$ containing all critical points
of $f$ such that $f$ : $J(f|X_{0})arrow J(f|X_{0})$ is topologically exact and such that
the interior of the compact interval dom$(f)$ is contained in $\bigcup_{n=0}^{\infty}f^{-n}(X_{0})$ .
When considering $f_{0}$ : $X_{0}arrow X_{0}$ in $\mathcal{A}_{\mathbb{R}}$ , it is often more convenient to extend
it to a boundary-anchored map $f$ : $Xarrow X$ . By choosing the extension
carefully, we can assume that
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$\bullet$ Crit $(f)=$ Crit $(f_{0})$ , and $|Df(x)|>1$ for $x\in\partial X$ ;
$\bullet X\backslash \partial X=\bigcup_{n=0}^{\infty}f^{-n}(X_{0})$ ;
$\bullet$ if $c\in\partial X_{0}$ is a critical point of $f_{0}$ , then it is a turning point of $f$ ,

and $f(c+\epsilon)=f(c-\epsilon)$ for $\epsilon>0$ small enough.
In particular, if $f_{0}$ is backward contracting with constant $r$ , or if $f_{0}$ is expand-
ing away from $(:ritical$ points, then so is $f$ . Furthermorc, if $f_{0}$ is topologically
exact on $J(f_{0})$ , then $f$ is essentially topologically exact on $J(f)$ .

2.1. Polynomial shrinking of components. To state the first property
of the maps appearing in the Main Theorem, we first give the following
definition.

Definition 2.1. Given a sequence $\Theta=\{\theta_{n}\}_{n=1}^{\infty}$ of positive numbers, we
say that a map $f\in \mathcal{A}$ satisfies the $\Theta$ -Shrinking Condition, if there exists
constants $\rho>0$ and $C>0$ such that for every $x\in J(f)$ , and every inte-
ger $m\geq 1$ , the connected component $W$ of $f^{-m}(B(f^{m}(x), \rho))$ containing $x$

satisfies
diam $(W)\leq C\theta_{m}$ .

Given $\beta>0$ we say that $f$ satisfics the Polynomial Shrinking Condition
with exponent $\beta$ , if $f$ satisfies the $\Theta$-shrinking condition with $\Theta$ $:=\{n^{-\beta}\}_{n=1}^{\infty}$ .

Theorem A. For every $\ell>1$ and $\beta>0$ there is $r>1$ such that each
map in $\mathcal{A}(\ell)$ that is expanding away from critical points and that is backward
contmcting ivith constant $r$ satisfies the Polynornial Shrinking Condition with
exponent $\beta$ .

To prove this theorem, we use the backward contracting property to con-
trol the size of a pull back of a small ball when it comes close to critical points
and use the ttexpanding away from critical points” property otherwise. In the
real case, we introduce a technique called “preferred quasi-chain” to deal with
the situation that a critical value lies close to the boundary of an interval.

The following result is a direct consequence of Theorem $A$ , of [Mih08,
Theorem 2], and of $|RL07$ , Corollary 8.3].

Corollary 2.2 (Local connectivity). For every integer $\ell\geq 2$ there is $r>1$
such that for any $f\in \mathcal{A}_{\mathbb{C}}$ with $\ell_{\max}(f)\leq\ell$ that is backward contracting with
constant $r$ and has no parabolic periodic points, the Julia set of $f$ is locally
connected when it is connected.

2.2. Bounding the badness exponent. The second property of the maps
appearing in the Main Theorem that we show is a bound on a parameter we
call “badness exponent” (Definition 2.5). In order to define it, let us start
introducing (tnicc sets”. For $f\in \mathcal{A}$ , a set $V$ , and an integer $m\geq 1$ , each
connected component $W$ of $f^{-m}(V)$ is called a pull-back of $V$ by $f^{m}$ .

Definition 2.3. For a map $f\in \mathcal{A}_{\mathbb{R}^{O}}$ (resp. $f\in \mathcal{A}_{\mathbb{C}}$ ), we will say that
$V\subset$ dom$(f)$ is a nice set if the following hold:
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$\bullet$

$\overline{V}$ is disjoint from the forward orbits of critical points not in $J(f)$

and periodic orbits not in $J(f)$ ;
$\bullet$ each connected component of $V$ is an open interval (resp. topological

disk) and contains precisely one critical point of $f$ in $J(f)$ ;
$\bullet$ for every integer $n\geq 1$ we have $f^{n}(\partial V)\cap V=\emptyset$ .

For $c\in Crit’(f)$ we denote by $V^{c}$ the connected component of $V$ containing $c$ .
A nice set $V$ is called symmetric if for each $c\in Crit’(f)$ we have $f(\partial V^{c})\subset$

$\partial f(V^{c})$ . Moreover, a nice couple for $f$ is a pair of nice sets $(\hat{V}, V)$ such that
$\overline{V}\subset\hat{V}$ , and such that each pull-back of $\hat{V}$ intersecting $V$ is contained in $V$ .

The following fact is proved for maps in $\mathcal{A}_{\mathbb{C}}$ in [RL07, Proposition 6.6].

Fact 2.4. For each $\ell>1$ there is a constant $r>1$ such that each $f\in$

$\mathcal{A}^{o}(\ell)$ that is backward contracting with constant $r$ possesses arbitrarily small
(symmetric) nice couples.

Fix $f\in \mathcal{A}^{o}$ and a set $V$ . For a component $W$ of $V$ , we define $d_{V}(W)=1$ .
If $W$ is a pull-back of $V$ by $f^{m}$ , we define an integer $d_{V}(W)\geq 1$ in the
following way:

$\bullet$ If $f$ is a rational map, then $d_{V}(W)$ is the degree of $f^{m}$ : $Warrow f^{m}(W)$ ,
i. e., the maximal cardinality of $f^{-m}(x)\cap W$ for $x\in V$ .

$\bullet$ If $f$ is an interval map, then $d_{V}(W)$ $:=2^{N}$ , where $N$ is the num-
ber of those $j\in\{0, \ldots, m-1\}$ such that the connected component
of $f^{-(m-j)}(V)$ containing $f^{j}(W)$ intersects Crit $(f)$ .

Let $V$ be an open set and let $W$ be a pull-back of $V$ by $f^{m}$ . If $f^{m}$ is a
diffeomorphism between $W$ and a component of $V$ , then we say that $W$ is a
diffeomorphic pull-back of $V$ .

Definition 2.5. Given $f\in \mathcal{A}$ and an open set $V$ , we will say that a pull-
back $W$ of $V$ by $f^{m},$ $m\geq 1$ , is bad, if for every integer $m’\in\{1, \ldots, m\}$

such that $f^{m’}(W)\subset$ $V$ the pull-back of $V$ by $f^{m’}$ containing $W$ is not
diffeomorphic. Furthermore we denote by $\mathfrak{B}_{m}(V)$ the collection of all bad
pull-backs of $V$ by $f^{m}$ and put

$\delta_{bad}(V)$ $:= \inf\{t>0$ : $\sum_{m=1}^{\infty}\sum_{W\in \mathfrak{B}_{m}(V)}d_{V}(W)$ diam$(W)^{t}<\infty\}$ .

The badness exponent of $f$ is defined as
(2.1) $\delta_{bad}(f)$ $:= \inf$ { $\delta_{bad}(V)$ : $V$ is a nice set of $f$ }.

We prove that $\delta_{bad}(V)\leq\delta_{bad}(V’)$ for any nice sets $V\subset V’$ . Thus if
we have a sequence of nice sets $V_{1}\supset V_{2}\supset\cdots\searrow Crit’(f)$ , then $\delta_{bad}(f)=$

$\lim_{narrow\infty}\delta_{bad}(V_{n})$ .

Theorem B. For every $\ell>1$ and $t>0$ there is a constant $r\geq 2$ such that
for each map $f\in \mathcal{A}(\ell)$ that is backward contracting with constant $r$ , we have
$\delta_{bad}(f)<t$ .
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To prove this theorem, we estimate the total size of “relatively bad pull-
backs” of a sequence of nice sets with respect to a fixed one. The following
estimate is important in transfering estimates from a larger nice set to a
smaller one.
Definition 2.6. For a map $f\in \mathcal{A}$ and an integer $m\geq 1$ we will say
that a pull-back $W$ of an open set $V$ by $f^{m}$ is a child of $V$ if it contains
precisely one critical point of $f$ , and if $f^{m-1}$ maps a neighborhood of $f(W)$

diffeomorphically onto a component of of $V$ .
In the case of interval maps the following lemma is a variant of $[BRLSvS08$ ,

Lemma 4].

Lemma 2.7. For each $s>0$ and $\ell>1$ there is a constant $r>4$ such that for
every $f\in \mathcal{A}(\ell)$ that is backward contracting with constant $r$ , the following
property holds. For each $\delta>0$ small there is a nice set $V= \bigcup_{c\in Crit’(f)}V^{c}$

such that for each $c\in$ Crit $(f)$ we have,
$\tilde{B}(c, \delta)\subset V^{c}\subset\tilde{B}(c, 2\delta)$ ,

and such that,

$Y: \sum_{chi\downarrow dofv^{diam(f(Y))^{s}}}\leq\delta^{s}$
.

3. GEOMETRIC AND STATISTIC PROPERTIES

Through an inducing scheme, we convert Theorems A and $B$ into statisti-
cal properties of maps $f\in \mathcal{A}$ which are backward contracting. After briefly
describing the induced mappings we statc in \S 3.1 a result giving a tail es-
timate (Theorem C), as well as a corollary of this result on conformal and
invariant measures (Corollary D). In \S 3.2 we state the main ingredient in
the proof of the part of the Main Theorem related to the regularity of the
invariant density (Proposition 3.3). We first introduce some notation and
terminology.

Let $\mathcal{A}^{*}$ be the set of $f\in \mathcal{A}$ which satisfies the following:
(Al) $f$ is expanding away from critical points;
(A2) $Crit’(f)\neq\emptyset$ and $fI_{1}as$ arbitrarily small syrnmetric nice couples;
(A3) if $f\in \mathcal{A}_{\mathbb{R}}$ , then $f$ is boundary-anchored and essentially topologically

exact on the Julia set.
Let $\beta_{\max}(f)$ denote the best polynomial shrinking exponent of $f$ , i. e., the

supremum of

{ $\beta>0:f$ satisfies the polynomial shrinking condition with exponent $\beta$ } $\cup\{0\}$ ,

and define
(3.1) $\gamma(f)$ $:=\beta_{\max}(f)$ $(HD(J(f))-\delta_{bad}(f))$ .
We use the following convention: the product of $+\infty$ with a real number $a$ is
$+\infty$ (resp. $0,$ $-$ oo) if $a>0$ $($ resp. $a=0,$ $a<0)$ . So $\gamma(f)>0$ is equivalent
to $\delta_{bad}(f)<$ HD$(J(f))$ and $\beta_{\max}(f)>0$ .
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Since for $f\in \mathcal{A}^{*}$ we have HD $(J(f))\geq HD_{hyp}(f)>0$ , Theorems A and $B$

imply that when $f$ is backward contracting we have $\gamma(f)=\infty$ .

3.1. Canonical inducing Markov mapping. The following definitions
appeared first in [PRL07]. Given a nice couple $(\hat{V}, V)$ of $f$ , we say that an
integer $m\geq 1$ is a good time for a point $x$ if $f^{m}(x)\in V$ and if the pull-back
of $\hat{V}$ containing $x$ is diffeomorphic. We denote by $D$ the set of all those
points in $V$ having a good time, and for each $x\in D$ we denote by $m(x)$

the least good time of $x$ . Note that $m(x)$ is constant in any component $W$

of $D$ , so $m(W)$ makes sense. The canonical induced map associated to the
nice couple $(\hat{V}, V)$ is by definition the map $F:Darrow V$ defined by $F(x)=$
$f^{m(x)}(x)$ . We denote by $J(F)$ the maximal invariant set of $F$ , which is equal
to the set of all those points in $V$ having infinitely many good times.

We say that a sequence $\{\theta_{n}\}_{n=1}^{\infty}$ of positive numbers is slowly varying
if $\theta_{n}/\theta_{n+1}arrow 1$ as $narrow\infty$ . For instance, $\{n^{-\beta}\}_{n=1}^{\infty}$ and $\{\exp(-\sigma n^{\alpha})\}_{n=1}^{\infty}$

are slowly varying for any $\beta,$
$\sigma,$ $\alpha>0$ , but for each $\theta\in(0,1)$ the sequence

$\{\theta^{n}\}_{n=1}^{\infty}$ is not slowly varying.

Theorem C. Fix $f\in \mathcal{A}^{*}$ . If $\delta_{bad}(f)<$ HD $(J(f))$ , then HD$(J(f))=$
HD$hyp(f)$ , and for each sufficiently small nice couple $(\hat{V}, V)$ , the canonical
inducing mapping $F:Darrow V$ associated to it satisfies:

HD $(J(F)\cap V^{c})=$ HD $(J(f))$ , for all $c\in Crit’(f)$ .
Furthermore, fix $t\in$ $(\delta_{bad}(f), HD(J(f)))$ and assume that $f$ satisfies the
$\Theta$ -shrinking condition for some slowly varying and monotone decreasing se-
quence of positive numbers $\Theta=\{\theta_{n}\}_{n=1}^{\infty}$ . Then for each sufficiently small
symmetric nice couple $(\hat{V}, V)$ , there exists a constant $\alpha_{0}=\alpha_{0}(\hat{V}, V)\in$

$(t, HD(J(f)))$ such that, for all $\alpha\geq\alpha_{0}$ and $\sigma\in[0, \alpha-t)$ there is a con-
stant $C>0_{f}$ such that for each $Y\subset V$ and each integer $m\geq 1$ , we have

$W \in \mathfrak{D},m(W)\geq m\sum_{W\subset Y}$

diam$(W)^{\alpha}\leq C$ diam $(Y)^{\sigma} \sum_{n=m}^{\infty}\theta_{n}^{\alpha-t-\sigma}$ ,

where $\mathfrak{D}$ is the collection of all components of $D$ .

The first part of the theorem is needed for the construction of the confor-
mal measure. It follows rather easily from the definition of badness exponent.
In fact, provided that $\hat{V}$ is small enough, we have $\delta_{bad}(\hat{V})<$ HD $(J(f))$
and the statement follows from the observation that the set $(J(f)\cap V)\backslash$

$\bigcup_{n=0}^{\infty}f^{-n}(J(F)\cup K(V))$ is covered by the elements of $\bigcup_{j=m}^{\infty}\mathfrak{B}_{j}(\hat{V})$ for each
$m=1,2,$ $\ldots$ . The same argument shows that for $f\in \mathcal{A}^{*}$ ,

(3.2) $HD$ $(J(f)\backslash J_{con}(f))\leq\delta_{bad}(f)$ .
The proof of the second part is more involved. Let $C_{V}$ be the collection of

components of dom$(f)\backslash K(V)$ . Given a component $\tilde{Y}$ of $f^{-\tilde{m}}(\tilde{V})$ for some
$\tilde{m}\geq 0$ , we use $\mathfrak{D}_{\overline{Y}}$ to denote the collection of all simply connected sets $W$
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for which the following holds: there exist $\tilde{Y}\supset\hat{W}\supset W$ and $U\in L_{V}$ such
that $U\subset f(V)$ and such that $f^{\tilde{m}+1}$ maps $W$ diffeomorphically onto $U$ and
maps $\hat{W}$ diffeomorphically onto $\hat{U}$ .

We use the following lemma which is [PRL08, Lemma 3.4]. It is worth
noticing that this is the only place where we use a nice couple, as opposed
to a nested pair of nice sets.

Lemma 3.1. Let $F$ : $Darrow V$ be the canonical induced map associated
to $(\hat{V}, V)$ , let $\mathfrak{D}$ be the collection of all the connected components of D. Then
we have,

$\mathfrak{D}=\cup\infty$
$\cup$ $\mathfrak{D}_{\overline{Y}}$ ,

$\tilde{m}=0_{\tilde{Y}\in \mathfrak{B}_{\overline{m}}(\hat{V})}$

where $\mathfrak{B}_{0}(\hat{V})$ is the collection of connected components of $\hat{V}$ , and for $\tilde{m}\geq 1$ ,
$\mathfrak{B}_{\tilde{m}}(\hat{V})$ is the collection of all bad pull-backs of $\hat{V}$ by $f^{\tilde{m}}$ .

Applying a technique based on a Whitney decomposition of the comple-
ment of the critical values of $f^{\tilde{m}+1}$ : $\tilde{Y}arrow f(\hat{V})$ , we prove the following
proposition, which is crucial in the proof of Theorem C.
Proposition 3.2. Assume that $f\in \mathcal{A}^{*}$ satisfies the $\Theta$ -Shrinking Condition
for some slowly varying and monotone decreasing sequence of positive num-
bers $\Theta=\{\theta_{n}\}_{n=1}^{\infty}$ . Then for each sufficiently small symmetric nice couple
$(\hat{V}, V)$ for $f$ , with $\delta_{bad}(\hat{V})<HD_{hyp}(f)$ , there exists $\alpha_{0}\in(\delta_{bad}(\hat{V}), HD_{hyp}(f))$ ,
such that for real numbers $\alpha,$

$t$ , with
$\alpha\geq\alpha_{0},$ $t\in(\delta_{bad}(\hat{V}), \alpha)$ ,

the following holds; There is a constant $C_{1}>0$ such that if $\tilde{Y}$ is a cornponent
of $f^{-\overline{m}}(V)$ for some $\tilde{m}\geq 0,$ $Y\subset\tilde{Y},$ $m\geq 1$ , then we have,

(3.3)
$W \in \mathfrak{D}_{\tilde{Y}},W\subset Y\sum_{m(W)\geq m}$

diam $(W)^{\alpha}\leq C_{1}D(\tilde{Y})$ diam $(Y)^{t}( \sum_{i=m}^{\infty}\theta_{i}^{\alpha-t})$ ,

where $D(\tilde{Y})$ $:=d_{\hat{V}}(\tilde{Y})(\log d_{\hat{V}}(\tilde{Y})+1)$ and $m(W)$ is the canonical inducing

time on $W$ with respect to $(\hat{V}, V)$ .

Theorem $C$ has the following consequence.
Corollary D. For $f\in \mathcal{A}^{*}$ the following properties hold.

1. If $\gamma(f)>1_{f}$ then either HD$(J(f))<$ HD $(dom(f))$ or $J(f)$ has a
non-ernpty interior. Moreover, there exists a $conforrr\iota alrr\iota$easure $\mu$ of
exponent HD $(J(f))$ which is ergodic, supported on the conical Julia
set, satisfies HD $(\mu)=$ HD $(J(f))$ , and it is such that for each $\epsilon>$

$\delta_{bad}(f)+\beta_{\max}(f)^{-1}$ the following holds: for each sufficiently small
$\delta>0$ we have for every $x\in J(f)$ ,

(3.4) $\mu(B(x, \delta))\leq\delta^{HD(J(f))-\epsilon}$ .

38



J. RIVERA-LETELIER AND W. SHEN

2. If $\gamma(f)>2$ , then there is an invariant probability measure $\nu$ that is
absolutely continuous with respect to $\mu$ and this invariant measure $\nu$

is polynomially mixing of each exponent $\gamma\in(0, \gamma(f)-2)$ .

By modifying the proof of [PRL07, Theorem 2], we deduce from The-
orem $C$ the existence of a conformal measure supported on $J_{con}(f)$ . The
uniform estimate on its local dimension follows from the theorem and the
assumption that $f$ is expanding away from critical points. The rest of the
corollary is a rather simple application of Young’s result [You99].

3.2. Poincar\’e series. The estimate of the density of the absolutely contin-
uous invariant measure is obtained from an analysis of the Poincar\’e series.
Recall that for $s>0$ and for a point $x_{0}\in$ dom$(f)$ , the Poincar\’e series of $f$

at $x_{0}$ with exponent $s$ , is defined as

$\mathcal{P}(x_{0};s)=\sum_{m=0}^{\infty}\mathcal{P}_{m}(x_{0};s)$ ,

where

$\mathcal{P}_{m}(x_{0};s)=\sum_{x\in f^{-m}(x_{0})}|Df^{m}(x)|^{-s}$
.

Clearly, if $\mu$ is a conformal measure of exponent $s$ and without an atom, then
$d((f^{m})_{*}\mu)/d\mu=\mathcal{P}_{m}(\cdot, s)$ on a set of full measure with respect to $\mu$ .

For a subset $Q$ of dom$(f)$ and an integer $m\geq 0$ , let $\ovalbox{\tt\small REJECT}_{m}(Q)$ be the
collection of all connected components of $f^{-m}(Q)$ , and let

$\theta_{m}(Q)=\sup\{$diam$(P)$ : $P\in’\ovalbox{\tt\small REJECT}_{m}(Q)\}$ , and $\theta(Q)=\sup_{m=0}^{\infty}\theta_{m}(Q)$ .

Moreover, for $s\geq 0$ we let,

$\mathcal{L}_{m}(Q;s)=\sum_{P\in\ovalbox{\tt\small REJECT}_{m}(Q)}d_{Q}(P)diam(P)^{s}$
, and $\mathcal{L}(Q;s)=\sum_{m=0}^{\infty}\mathcal{L}_{m}(Q;s)$ ,

where $d_{Q}$ is defined as in \S 2.2. Note that if $x\in J(f)$ is disjoint from the
critical orbits, then

$\mathcal{P}_{m}(x;s)=\lim_{\deltaarrow 0}\frac{\mathcal{L}_{m}(B(x,\delta);s)}{diam(B(x,\delta))^{s}}$ .

For $z\in J(f)$ and $m\geq 0$ , let

$\triangle_{m}(z)=$ dist $(z, \bigcup_{j=0}^{m}f^{j}$ (Crit $(f)$ ) $)$ ,

and for $\epsilon\in(0,1/2)$ , let

$\xi_{m}(z;\epsilon)=\theta_{m}(B(z, \epsilon\triangle_{m}(z)))$ .
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Given a nice set $\hat{V}$ , let $\mathfrak{B}_{0}=\swarrow\ovalbox{\tt\small REJECT}_{0}(\hat{V})$ , and for $m\geq 1$ , let $\mathfrak{B}_{m}$ denote
the collection of all elements $\overline{Y}\in.\ovalbox{\tt\small REJECT}_{m}(\hat{V})$ which are bad pull-backs of $\hat{V}$ .
Moreover, for $s\geq 0$ , let

$\mathcal{L}_{m}^{bad}(\hat{V};s)=\sum_{\tilde{Y}\in \mathfrak{B}_{m}(\hat{V})}d_{\hat{V}}(\tilde{Y})$

diam $(\tilde{Y})^{s},$
$\mathcal{L}^{bad}(\hat{V};s)=\sum_{m=0}^{\infty}\mathcal{L}_{m}^{bad}(\hat{V};s)$ .

Using the fact that each pull back of a nice set $\hat{V}$ can be written as
composition of a bad pull back with a diffeomorphic pull back, and estimating
the diameter of a diffeomorphic pull back of a fixed nice set with bounded
distortion by a conformal measure, we obtain the following estimates.

Proposition 3.3. Assume that $f\in \mathcal{A}^{*}$ has a conformal measure of expo-
nent $h_{0}>\delta_{bad}(f)$ . Then for each sufficiently small nice couple $(\hat{V}, V)$ , the
following hold:

1. For any $s>h_{0)}t\in(0, s)$ and $\epsilon\in(0,1]$ , there exists a constant
$C>0$ such that for each $z\in V\cap J(f)\rangle$ we have

(3.5) $\mathcal{P}(z;s)\leq C\sum_{m=0}^{\infty}\mathcal{L}_{m}^{bad}(\hat{V}, t)\xi_{m}(z;\epsilon)^{s-t}\Delta_{m}(z)^{-s}$ .

2. For and each $t\in(0, h_{0})$ and $\epsilon\in(0,1]$ there exists $C>0$ such that
for each $z\in J(f)\cap V$ and each integer $n\geq 1$ ,

(3.6) $\mathcal{P}_{n}(z;h_{0})\leq C\sum_{m=0}^{n}\mathcal{L}_{m}^{bad}(\hat{V}, t)\xi_{m}(z;\epsilon)^{h_{0}-t}\triangle_{m}(z)^{-h_{0}}$ .

The $L^{p}$ estimate of the density of the absolutely continuous invariant
measure follows from part 2 of Proposition 3.3, together with the (expanding
away from critical points” property. See [RLSIO, Theorem $G$ ] for a more
precise statement.

4. FURTHER RESULTS

In this section we state a result related to fractal dimensions (Theorem $E$

in \S 4.1), and another related to holomorphic removability of Julia sets in the
complex setting (Theorem $F$ in \S 4.2).
4.1. Fractal dimensions. Given $f\in \mathcal{A}$ , we say that a point $x\in$ dom$(f)$

is exceptional if the set $\bigcup_{n=0}^{\infty}f^{-n}(x)$ is finite, and we say that $x$ is asymp-
totically exceptional if its $\alpha$-limit set is finite. The Poincare exponent of $f$ is
by definition,

$\delta_{Poin}(f)$ $:= \inf\{s>0$ : $\mathcal{P}(x_{0};s)<\infty$ for some $x_{0}$

that is not asymptotically exceptional} $\cup\{0\}$ .
Note that every point in the $\alpha$-limit set of an asymptotically exceptional
point is exceptional. It is well-known that for a rational map of degree at
least 2 each asymptotically exceptional point is exceptional, that there are
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at most 2 exceptional points, and that they are not in the Julia set. Note
however that an interval map in $\mathcal{A}_{\mathbb{R}}$ can have infinitely many asymptotically
exceptional points.

Theorem $E$ (Equality of fractal dimensions). If f $\in \mathcal{A}*$ satisfies $\gamma(f)>1$ ,
then

$\delta_{Poin}(f)=\overline{BD}(J(f))=$ HD $(J(f))=HD_{hyp}(f)>0$ .

See \S 3.1 for the definition of $\gamma(f)$ .
Equalities of dimensions were shown in [LS08] for backward contracting

rational maps, in [Prz98] for rational maps whose derivatives at critical values
grow at least as a stretch exponential function, and in [GS09, Theorem 7] for
complex rational maps satisfying a summability condition with a small expo-
nent. However, in the latter result a slightly different definition of Poincar\’e
exponent is used: in the case that $J(f)=\overline{\mathbb{C}}$, the exponent $\delta_{Poin}(f)$ was
defined to be 2. Thus our theorem says more in this case. These equalities
were shown for a class of infinitely renormalizable quadratic polynomials
in [AL08]. See also [Dob06] for the case of interval maps without recurrent
critical points.

Equality HD$(J(f))=HD_{hyp}(f)$ is an easy consequence of Theorem $B$

and (3.2). The proof of the equalities $\delta_{Poin}(f)=$ BD$(J(f))=$ HD $(J(f))$ is
more difficult. It relies on the following proposition, whose proof is based on
Proposition 3.3, and on Proposition 4.2 stated in \S 4.2.

Proposition 4.1 (Poincar\’e series). Assume that $f\in \mathcal{A}^{*}$ satisfies $\gamma(f)>1$ .
Then $\delta_{Poin}(f)=$ HD $(J(f))$ . More precisely, we have

1. For every $x_{0}\in$ dom $(f)$ that is not asymptotically exceptional, $we$

have $\mathcal{P}(x_{0}, HD(J(f)))=\infty$ .
2. There is a subset $E$ of $J(f)$ with HD$(E)<$ HD $(J(f))$ and a neigh-

borhood $U$ of $J(f)$ such that for every $x_{0}\in U\backslash E$ , and every $s>$
HD $(J(f))$ , the Poincare series $\mathcal{P}(x_{0}, s)$ converges.

4.2. Holomorphic removability of Julia sets. We will say that a com-
pact subset $J$ of the Riemann sphere is holomorphically removable, if every
homeomorphism $\varphi$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ that is holomorphic outside $J$ is a M\"oebius
transformation.

Theorem $F$ (Holomorphic removability). If $f\in \mathcal{A}_{\mathbb{C}}^{*}$ is such that

$\beta_{\max}(f)(2-\delta_{bad}(f))>1$ ,

then the.Julia set of $f$ is holomorphically removable. In particular, for every
integer $\ell\geq 2_{f}$ there is a constant $r>1$ such that the Julia set of a com-
plex polynomial $f\in \mathcal{A}(\ell)$ that is backward contracting with constant $r$ , and
without parabolic periodic points, is holomorphically removable.

See also [Jon95, Kah98] and [GS09, Theorem 8] for other removability
results of Julia sets.
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In view of thc holomorphic removability result [JSOO, Theorem 5] (sce also
[GS09, Fact 9.1] $)$ , the theorem above is an easy consequence of the following
proposition.

Proposition 4.2. $Ass\uparrow\iota rne$ that $f\in \mathcal{A}^{*}$ has a conforrrial measure $\mu$ of expo-
nent $h_{0}>\delta_{bad}(f)$ such that $\beta_{\max}(f)(h_{0}-\delta_{bad}(f))>1$ and such that for each
open set $U$ intersecting $Crit’(f)$ we have $\mu(U)>0$ . Then there exists $\delta_{0}>0$

such that for each $z\in J(f)$ and each $s>h_{0}$ , $\mathcal{L}(B(z, \delta_{0});s)<\infty$ . $Moreover_{f}$

if $\mu(J_{con}(f))=0_{\rangle}$ then we also have $\mathcal{L}(B(z, \delta_{0});h_{0})<\infty$ for each $z\in J(f)$ .

Notice that in the proposition above the conformal measure $\mu$ might not
charge $J(f)$ .
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