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Abstract

Polynomial-like mappings plays an important role in studying complex
dynamics in one variable. It has been used to study local connectivity of Ju-
lia sets and the Mandelbrot set, rigidity of polynomials, self-similarity of the
Mandelbrot set, etc. There is an important equivalence relation called hybrid
equivalence for polynomial-like mappings. Here, we consider a stronger
equivalence relation, i.e., holomorphic equivalence and prove that usually
polynomial-like restrictions of rational maps or entire functions are not holo-
morphically equivalent.

1 Introduction and statement of results
Definition. A map $f$ : $U’arrow U$ is called a polynomial-like mapping if

1. $f$ is proper and holomorphic;

2. $U’\Subset U$ are topological disks in $\mathbb{C}$ .

We always assume the degree of any polynomial-like mapping is greater than one.
Thefilled Julia set of a polynomial-like mapping $f$ : $U’arrow U$ is the set

$K(f)=\{z\in U’;f^{n}(z)\in U’(\forall n>0)\}$ .

The simplest example ofpolynomial-like mappings is a restriction of any poly-
nomial; For a polynomial $P$ of degree $d\geq 2$ . Let $U=\{|z|<R\}$ for sufficiently
large $R>0$ and $U’=P^{-1}(U)$ . Then $P$ : $U’arrow U$ is a polynomial-like mappings
of degree $d$ .
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A fundamental theorem on polynomial-like mappings is the straightening the-
orem by Douady and Hubbard [DH] as follows. We say two polynomial-like map-
pings $f$ : $U’arrow U$ and $g$ : $V’arrow V$ of the same degree are hybrid equivalent if
there is a quasiconformal conjugacy $\varphi$ : $U”arrow V’$ between some neighborhoods
$U”$ and $V’$ of $K(f)$ and $K(g)$ respectively such that $\overline{\partial}\varphi\equiv 0$ almost everywhere
in $K(f)$ .

Theorem (Straightening theorem). Any hybrid equivalence class ofpolynomial-
like mappings ofdegree $d\geq 2$ contains a polynomial ofdegree $d$.

More precisely, for any polynomial-like mapping $f$ : $U’arrow U$ of degree $d$,
there exists a polynomial $P$ ofdegree $d$ hybrid equivalent to $f$ .

Here, we consider stronger equivalence relation, that is holomorphic equiva-
lence. Namely, we require the conjugacy $\varphi$ above is holomorphic. Then we can
distinguish most of rational maps or entire maps having polynomial-like restric-
tions.

Main Theorem ([Il]). For $i=1,2$, let $f_{i}$ be a rational map or an entire map.
Assume that there exist polynomial-like restrictions $f_{1}$ : $U_{1}’arrow U_{1}$ and $f_{2}$ : $U_{2}arrow$

$U_{2}$ ofdegree not less than two which are analytically conjugate. Then there exist
rational or entire maps $g,$ $\varphi_{1}$ and $\varphi_{2}$ such that

$f_{1}o\varphi_{1}=\varphi_{1}og$ , $f_{2}o\varphi_{2}=\varphi_{2}og$ (1)

and $g$ has a polynomial-like restriction $g$ : $V’arrow V$ analytically conjugate to
$f_{1}:U_{1}’arrow U_{1}$ by $\varphi_{1}$ .

Furthermore,

$\bullet$ if both of the degrees $d_{1}=\deg f_{1}$ and $d_{2}=\deg f_{2}$ are finite, then $g,$ $\varphi_{1},$ $\varphi_{2}$

are also offinite degrees. In particular, we have $d_{1}=d_{2}$ .
$\bullet$ If $f_{1}$ is a polynomial and $f_{2}$ is a rational map, then $f_{2}$ is a polynomial by

taking a Mobius conjugate and we can take $g,$ $\varphi_{1}$ and $\varphi_{2}$ to be polynomials.

We say a map $g$ is semiconjugate to another map $f$ if there exists a (not nec-
essarily injective) map $\varphi$ such that $\varphi og=fo\varphi$ . The conclusion of the theorem
says that there exists a (rational or entire) map $g$ which is globally semiconjugate
to both $f_{1}$ and $f_{2}$ .

It seems such a (non-trivial) global semiconjugacy is rare. For example, if $f,$ $g$

and $\varphi$ have finite degrees, then by taking the degree of the equation $\varphi\circ g=f\circ\varphi$,

we have $\deg f=\deg g$ . Therefore, we have the following:

63



Corollary 1. If the degrees of rational maps $f_{1},$ $f_{2}$ are different, then they do not
have polynomial-like restrictions $f_{i}$ : $U_{i}’arrow U_{i}(i=1,2)$ which are holomorphi-
cally conjugate.

This corollary is one of the essential steps in proving discontinuity of straight-
ening maps [I2].

It is also known that there is no global semiconjugacy from a transcendental
map to a polynomial [Il]. However, (non-)existences of the following semiconju-
gacies are still open:

Conjecture. I. There is no global semiconjugacyfrom a polynomial to a tran-
scendental entire map.

2. There is no global semiconjugacy from a transcendental entire map to a
rational map.

Here we give some examples of global semiconjugacy $(i.e., f\circ\varphi=\varphi\circ g)$ ;

Example. 1. $f=h_{1}oh_{2},$ $g=h_{2}\circ h_{1}$ and $\varphi=h_{1}$ .

2. $f=g=T_{a}$ and $\varphi=T_{b}$ where $T_{d}$ is the Chebyshev polynomial of degree $d$

$(i.e., T_{d}(\cos z)=\cos dz)$ .

3. $f(z)=z^{c}h(z^{b}),$ $g(z)=z^{c}(h(z))^{c}$ and $\varphi(z)=z^{b}$ .

4. A linear map $g(z)=\lambda z,$ $|\lambda$ I $>1$ can be semiconjugate to power map,
Chebyshev map and Latt\‘es map if $\lambda$ satisfies a certain condition. Note that
the power map $z\mapsto z^{d}$ for $|d|\geq 2$ is semiconjugate to the Chebyshev
map $T_{d}$ , and the Chebyshev map is again semiconjugate to some Latt\‘es
map. However this is not the case of the above theorem because there is no
polynomial-like restriction preserved by those semiconjugacies.

In the case of polynomials (i.e., the case $f,$ $g,$ $\varphi$ are all polynomials), any semi-
conjugate maps are essentially obtained by some combinations of the above 1, 2
and 3 [Il]. This is proved by applying Ritt’s theorems on decomposing polyno-
mials in terms of composition [R] and a theorem by Engstrom [En] which is a
stronger version of Ritt’s second theorem.

Shishikura suggested the following application to the author. Consider a poly-
nomial $P$ having a renormalization hybrid equivalent to itself. More precisely,
assume there exists a polynomial-like mapping $P^{n}$ : $U’arrow U$ hybrid equivalent to
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$P$ itself. This implies that for any $k\geq 0$ , there exists a polynomial-like mapping
$f_{k}$ $:=P^{n^{k}}$ : $U_{k}’arrow U_{k}$ hybrid equivalent to $P$ . After rescaling, $f_{k}$ might converge
to some polynomial-like map $f_{0}$ .

In other words, consider the hybrid class $F$ of polynomial-like mappings con-
taining $P$ . Then any maps $f\in F$ has a polynomial-like restriction $\mathcal{R}(f)=f^{n}$ :
$U_{f}’arrow U_{f}$ , which is again in $F$ . After a proper rescaling and giving some topology
in $F$ , it is known that the renormalization operator $\mathcal{R}$ : $Farrow F$ is contraction for
some cases (see [L] and [M]). For such a case, $\mathcal{R}^{n}(f)$ converges to the unique
fixed point $f_{0}\in F$ satisfying the equation

$f_{0}^{n}( \lambda z)=\frac{1}{\lambda}f_{0}(z)$ .

From this equation, it is easy to see that $f_{0}$ is not a rational map. By the main
theorem, we can prove that any renormalization fixed point is not a rational map
under much weaker assumption:

Corollary 2. The renormalization fixed point is not a rational map. More pre-
cisely, if $f$ : $U’arrow U$ is a polynomial-like mapping such that there is a polynomial-
like restriction $f^{n}$ : $V‘arrow V(n>1)$ holomorphically conjugate to $f$, then $f$ is
not a rational map.

Proof. Consider a rational map $f$ such that $f^{n}$ : $V’arrow V$ is a polynonial-like
mapping for some $n>1,$ $V’$ and $V$ . Since the degrees of $f$ and $f^{n}$ are different,
$f^{n}$ : $V’arrow V$ is not holomorphically conjugate to $f$ itself by Corollary 1. $\square$

2 Idea of proof
The main idea of the proof of Main Theorem is the “pushing-forward” of the
holomorphic conjugacy.

Let $\varphi$ : $U_{1}arrow U_{2}$ be a holomoiphic conjugacy between $f_{1}$ : $U_{1}’arrow U_{1}$ and
$f_{2}:U_{2}’arrow U_{2}$ . Let

$\Gamma_{0}=\{(z, \varphi(z));z\in U_{1}\}\subset \mathbb{C}\cross \mathbb{C}$

be the graph of $\varphi$ . Consider the product dynamics $F(x, y)=(f_{1}(x), f_{2}(y))$ of $f_{1}$

and $f_{2}$ and let
$\Gamma_{n}=F^{n}(\Gamma_{0})$ .

Since $F$ is a proper map, $\Gamma_{n}$ is a local analytic set.
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Corollary 1. $\Gamma_{n}\subset\Gamma_{n+1}$ .

Proof. Let $(f_{1}^{n}(z), f_{2}^{n}(\varphi(z)))\in\Gamma_{n}$ . Since $z\in U_{1}$ , there exists some $w\in U$’ such
that $f_{1}^{n}(w)=z$ . Therefore,

$(f_{1}^{n}(z), f_{2}^{n}(\varphi(z)))=(f_{1}^{n+1}(w), f_{2}^{n}(\varphi(f_{1}(w))))=(f_{1}^{n+1}(w), f_{2}^{n+1}(\varphi(w)))$ .

Since $U’\subset U$ , this proves that $(f_{1}^{n}(z), f_{2}^{n}(\varphi(z)))\in\Gamma_{n+1}$ . $\square$

Therefore, we have an increase sequence of local analytic sets

$\Gamma_{0}\subset\Gamma_{1}\subset\cdots\subset\Gamma_{n}\subset\Gamma_{n+1}\subset\cdots$ (2)

Let $\pi_{n}$ : $X_{n}arrow\Gamma_{n}$ be a resolution of singularities, i.e., $X_{n}$ is a Riemann
surface and $\pi_{n}$ is a holomorphic map which is biholomorphic outside a discrete
set. By (2) and the property $F(\Gamma_{n})=\Gamma_{n+1}$ , it follows that there is an injective
map $\iota_{n}$ : $X_{n}arrow X_{n+1}$ and a proper map $g_{n}$ : $X_{n}arrow X_{n+1}$ for each $n\geq 0$ such
that

$\pi_{n+1}0\iota_{n}=\pi_{n}$ , $\pi_{n+1}\circ g_{n}=F\circ\pi_{n}$ .

Then the following diagram

commutes.
Now take the direct limit of $X_{n}$ :

$X= \lim_{arrow}X_{n}$ .

Then $X$ is a complex manifold. Furthermore, $\pi_{n}$ and $g_{n}$ induce holomorphic maps

$\pi:Xarrow\Gamma=\bigcup_{n\geq 0}\Gamma_{n}$
, $g:Xarrow X$

such that $\pi\circ g=F\circ\pi$ . Let $\varphi_{i}=p_{i}\circ\pi$ where $p_{i}$ is the projection to the i-th
coordinate. Then we have $\varphi_{i}og=f_{i}o\varphi_{i}$ for $i=1,2$ . Moreover on $X_{0}$ , the map
$\varphi_{i}$ : $X_{0}arrow U_{i}$ is biholomorphic. Therefore, $X$ has a polynomial-like restriction
$g$ : $V’arrow V$ holomorphically conjugate to $f_{i}$ : $U_{i}’arrow U_{i}$ , where $V=X_{0}$ and
$V’=(\varphi_{1}|_{X_{0}})^{-1}(U_{1}’)$ .
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We need to classify $g$ : $Xarrow X$ . To do this end, we apply the uniformization
theorem to divide into several cases, and we need to study all the possibilities. For
example, we have the following:

$\bullet$ Since $g$ has a polynomial-like restriction, there is a repelling periodic point
of $g$ . By the Schwarz lemma, it follows that $X$ is not hyperbolic. There-
fore, by taking the universal covering, we may assume that $X$ is either the
complex plane $\mathbb{C}$ or the Riemann sphere $\hat{\mathbb{C}}$ .

$\bullet$ If both $f_{1}$ and $f_{2}$ are rational, then we have

$\deg g\leq\deg F=\deg f_{1}\cdot\deg f_{2}<+\infty$ .

Hence it follows that $g$ is not transcendental.

In this way, we can exclude most of the possibilities and prove the theorem.

References
[DH] A. Douady, J. H. Hubbard. On the dynamics ofpolynomial-like mappings.

Ann. Sci. \’Ecole Norm. Sup. (4) 18 (1985), 287-343.

[En] H. T. Engstrom. Polynomial substitutions. Amer. J. Math. 63, (1941). 249-
255.

[Il] H. Inou. Extending local analytic conjugacies. To appear in Trans. Amer.
Math. Soc.

[I2] H. Inou. Combinatorics and topology ofstraightening maps $\Pi$; discontinu-
ity. arXiv:0903.4289, 2009.

[L] M. Lyubich. Feigenbaum-Coullet-Tresser universality and Milnor’s hairi-
ness conjecture. Ann. of Math. (2) 149 (1999), 319-420.

[M] C. T. McMullen. Renormalization and 3-manifolds which fiber over the
circle. Annals of Mathematics Studies, 142. Princeton University Press,
Princeton, NJ, 1996.

[R] J. F. Ritt. Prime and composite polynomials. Trans. Amer. Math. Soc. 23
(1922), 51-66.

67


