Component-wise accumulation sets for Axiom A polynomial skew products

東京工芸大学 中根静男 (Shizuo Nakane)

Tokyo Polytechnic University

1 Introduction

In this note, we consider Axiom A regular polynomial skew products on \mathbb{C}^2 . It is of the form : f(z, w) = (p(z), q(z, w)), where $p(z) = z^d + \cdots$ and $q_z(w) = q(z, w) = w^d + \cdots$ are polynomials of degree $d \ge 2$. Then its k-th iterate is expressed by :

$$f^{k}(z,w) = (p^{k}(z), q_{p^{k-1}(z)} \circ \cdots \circ q_{z}(w)) =: (p^{k}(z), Q_{z}^{k}(w)).$$

Hence it preserves the family of fibers $\{z\} \times \mathbb{C}$ and this makes it possible to study its dynamics more precisely. Let K be the set of points with bounded orbits and put $K_z := \{w \in \mathbb{C}; (z, w) \in K\}$ and $K_{J_p} := K \cap (J_p \times \mathbb{C})$. The fiber Julia set J_z is the boundary of K_z .

Let Ω be the set of *non-wandering points* for f. Then f is said to be Axiom A if Ω is compact, hyperbolic and periodic points are dense in Ω . For polynomial skew products, Jonsson [J2] has shown that f is Axiom A if and only if the following three conditions are satisfied :

(a) p is hyperbolic,

(b) f is vertically expanding over J_p ,

(c) f is vertically expanding over $A_p := \{ \text{attracting periodic points of } p \}.$

Here f is vertically expanding over $Z \subset \mathbb{C}$ with $p(Z) \subset Z$ if there exist $\lambda > 1$ and C > 0 such that $|(Q_z^k)'(w)| \geq C\lambda^k$ holds for any $z \in Z, w \in J_z$ and $k \geq 0$.

We are interested in the dynamics of f on $J_p \times \mathbb{C}$ because the dynamics outside $J_p \times \mathbb{C}$ is fairly simple. Consider the critical set

$$C_{J_p} = \{(z, w) \in J_p \times \mathbb{C}; q'_z(w) = 0\}$$

over the base Julia set J_p . Let μ be the ergodic measure of maximal entropy for f (see Fornaess and Sibony [FS1]). Its support J_2 is called the second Julia set of f. Let $PC_{J_p} := \bigcup_{n \ge 1} f^n(C_{J_p})$ be the postcritical set of C_{J_p} . Jonsson [J2] has shown that

- (d) $J_2 = \overline{\bigcup_{z \in J_p} \{z\} \times J_z}$ (Corollary 4.4),
- (e) the condition (b) $\iff PC_{J_p} \cap J_2 = \emptyset$ (Theorem 3.1),
- (f) J_2 is the closure of the set of repelling periodic points of f (Corollary 4.7).

By the Birkhoff ergodic theorem, μ -a.e. x has a dense orbit in J_2 . Especially, $J_2 = supp \mu$ is transitive. Hence J_2 coincides with the *basic set* of unstable dimension two. See also [FS2].

For any subset X in \mathbb{C}^2 , its accumulation set is defined by

$$A(X) = \bigcap_{N \ge 0} \overline{\bigcup_{n \ge N} f^n(X)}.$$

DeMarco & Hruska [DH1] defined the *pointwise* and *component-wise* accumulation sets of C_{J_p} respectively by

$$A_{pt}(C_{J_p}) = \overline{\bigcup_{x \in C_{J_p}} A(x)} \text{ and } A_{cc}(C_{J_p}) = \overline{\bigcup_{C \in \mathcal{C}(C_{J_p})} A(C)},$$

where $\mathcal{C}(C_{J_p})$ denotes the collection of connected components of C_{J_p} . It follows from the definition that

$$A_{pt}(C_{J_p}) \subset A_{cc}(C_{J_p}) \subset A(C_{J_p}).$$

It also follows that $A_{pt}(C_{J_p}) = A_{cc}(C_{J_p})$ if J_p is a Cantor set and $A_{cc}(C_{J_p}) = A(C_{J_p})$ if J_p is connected.

Let Λ be the closure of the set of saddle periodic points in $J_p \times \mathbb{C}$. It decomposes into a disjoint union of saddle basic sets : $\Lambda = \bigsqcup_{i=1}^{m} \Lambda_i$. Put $\Lambda_z = \{w \in \mathbb{C}; (z, w) \in \Lambda\}$. The stable and unstable manifolds of Λ are respectively defined by

$$W^{s}(\Lambda) = \{ y \in \mathbb{C}^{2}; f^{k}(y) \to \Lambda \}, \\ W^{u}(\Lambda) = \{ y \in \mathbb{C}^{2}; \exists \text{ backward orbit } \hat{y} = (y_{-k}) \text{ tending to } \Lambda \}.$$

Theorem A. ([DH1])

$$A_{pt}(C_{J_p}) = \Lambda, \quad A(C_{J_p}) = W^u(\Lambda) \cap (J_p \times \mathbb{C}).$$

Theorem B. ([DH1, DH2])

$$A_{cc}(C_{J_p}) = A_{pt}(C_{J_p}) \implies \forall C \in \mathcal{C}(C_{J_p}), C \cap K = \emptyset \text{ or } C \subset K.$$
(1)

$$A_{pt}(C_{J_p}) = A(C_{J_p}) \iff \text{the map } z \mapsto \Lambda_z \text{ is continuous in } J_p.$$
 (2)

Under the assumption $W^u(\Lambda) \cap W^s(\Lambda) = \Lambda$,

$$A_{pt}(C_{J_p}) = A(C_{J_p}) \iff \text{ the map } z \mapsto K_z \text{ is continuous in } J_p.$$
(3)

Note that

 $W^{u}(\Lambda) \cap W^{s}(\Lambda) = \Lambda \iff W^{u}(\Lambda_{i}) \cap W^{s}(\Lambda_{j}) = \emptyset \text{ for any } 1 \le i \ne j \le m.$ (4)

Sumi [S] gives an example of Axiom A polynomial skew product which does not satisfy the condition in (4). It is also (incorrectly) described as Example 5.10 in [DH1].

We define a relation \succ among saddle basic sets by $\Lambda_i \succ \Lambda_j$ if $(W^u(\Lambda_i) \setminus \Lambda_i) \cap (W^s(\Lambda_j) \setminus \Lambda_j) \neq \emptyset$. A cycle is a chain of basic sets : $\Lambda_{i_1} \succ \Lambda_{i_2} \succ \cdots \succ \Lambda_{i_n} = \Lambda_{i_1}$. For Axiom A open endomorphisms, there is no trivial cycle because $W^u(\Lambda_i) \cap W^s(\Lambda_i) = \Lambda_i$ holds for any *i*. See [J2], Proposition A.4. Jonsson has also shown that, for Axiom A polynomial skew products on \mathbb{C}^2 , the non-wandering set Ω coincides with the *chain recurrent set* \mathcal{R} . This leads to the following lemma, which we use later.

Lemma 1. ([J2], Corollary 8.14) Axiom A polynomial skew products on \mathbb{C}^2 have no cycles.

Put

$$C_0 := C_{J_p} \setminus K, \quad C_i := C_{J_p} \cap W^s(\Lambda_i) \ (1 \le i \le m).$$

We will try to give characterizations of the equalities $A_{cc}(C_{J_p}) = A_{pt}(C_{J_p})$ and $A_{pt}(C_{J_p}) = A(C_{J_p})$ in terms of C_i .

Lemma 2. $C_{J_p} = \bigsqcup_{i=0}^m C_i$.

proof. By Proposition 3.1 in Jonsson [J1], $\hat{\Omega}$ has local product structure for open Axiom A endomorphisms. Theorem A implies $A(x) \subset \Lambda$ for any $x \in C_{J_p}$. If $A(x) = \emptyset$, then $x \in C_0$. Otherwise there exist an n and $y \in \Lambda$ such that $f^n(x) \in W^s_{loc}(y)$. Hence $A(x) \subset \Lambda_i$ if $y \in \Lambda_i$. Thus we conclude $C_{J_p} = \bigsqcup_{i=0}^m C_i$. \Box

If we put $\Lambda_0 = \emptyset$, we have $A(C_i) \supset A_{pt}(C_i) = \Lambda_i$ for any $i \ge 0$.

Theorem 1.

$$A_{cc}(C_{J_p}) = A_{pt}(C_{J_p}) \iff \forall C \in \mathcal{C}(C_{J_p}), \ 0 \le \exists i \le m \text{ such that } C \subset C_i.$$
(5)

In terms of C_i , the condition in (1) is expressed by

$$\forall C \in \mathcal{C}(C_{J_p}), \quad C \subset C_0 \text{ or } C \subset \bigcup_{i=1}^m C_i.$$

Hence, if m = 1, that is, Λ itself is a basic set, then the condition in (5) coincides with that in (1). In general, the condition in (5) is stronger than that in (1).

We have another characterization of $A_{pt}(C_{J_p}) = A(C_{J_p})$ in terms of C_i .

Theorem 2. For any $i \ge 0$, we have

$$A(C_i) = \Lambda_i \iff C_i \text{ is closed }.$$
(6)

Consequently we have

$$A_{pt}(C_{J_p}) = A(C_{J_p}) \iff C_i \text{ is closed for any } i \ge 0.$$

As for the condition in (3), we have

Theorem 3. The following three conditions are equivalent to each other. (a) C_0 is closed,

- (b) $A(C_{J_p}) = W^u(\Lambda) \cap W^s(\Lambda),$
- (c) the map $z \mapsto K_z$ is continuous in J_p .

Note that Theorem 3 reproves the equivalence (3) in Theorem B. We also note that $A_{pt}(C_{J_p}) = A(C_{J_p})$ is equivalent to

$$W^{u}(\Lambda) \cap (J_{p} \times \mathbb{C}) = W^{u}(\Lambda) \cap W^{s}(\Lambda) = \Lambda.$$

Corollary 1. Suppose C_0 is closed. Then,

$$W^{u}(\Lambda) \cap W^{s}(\Lambda) = \Lambda \iff C_{i}$$
 is closed for any $i \geq 1$.

We do not know whether the assumption that C_0 is closed can be removed or not. The (\Rightarrow) part holds without this assumption.

The author would like to thank Hiroki Sumi for helpful discussion on his example.

2 Proofs of Theorems

First we prove Theorem 1. Note that $A_{pt}(C_{J_p}) = A_{cc}(C_{J_p})$ if and only if $A(C) \subset \Lambda$ for any $C \in \mathcal{C}(C_{J_p})$.

 (\Rightarrow) Suppose $C \in \mathcal{C}(C_{J_p})$ intersects at least two of C_i . By Theorem B, (1), we may assume $C \subset \bigcup_{i=1}^m C_i$. Then, by Lemma 2, we have $C = \bigsqcup_{i=1}^m (C \cap C_i)$. If all $C \cap C_i$ are closed, it contradicts the connectivity of C. Thus at least one of them is not closed. We may assume that there exists a sequence $x_n \in C \cap C_i$ tending to $x_0 \in C \cap C_j$ for some $i \neq j$. Take a small open neighborhood U_k of Λ_k for $1 \leq k \leq m$ so that $f(U_k) \cap U_\ell = \emptyset$ for $k \neq \ell$. Since $x_0 \in C_j$, there exists a K > 1 such that $f^k(x_0) \in U_j$ for $k \geq K$. Then $f^K(x_n) \in U_j$ for large n. Since $x_n \in C_i$, the orbit of x_n eventually leaves U_j . Hence put $k_n := \min\{k \ge K; f^k(x_n) \notin U_j\}$. We will show $k_n \to \infty$. Otherwise, taking a subsequence, we may assume $\{k_n\}$ is bounded. Then there is a subsequence n_ℓ such that $k_{n_\ell} = L$ for all ℓ . That is, $f^L(x_{n_\ell}) \notin U_j$. Taking $\ell \to \infty$, we have $f^L(x_0) \notin U_j$, which contradicts $L \ge K$. Now let y be an accumulation point of the sequence $\{f^{k_n}(x_n)\}$. From the definition of U_k , we have $y \notin \cup U_k$, hence $y \notin \Lambda$. Since $y \in A(C)$, this implies $A_{cc}(C_{J_p})$ contains a point y outside $\Lambda = A_{pt}(C_{J_p})$. Thus we conclude $A_{pt}(C_{J_p}) \neq A_{cc}(C_{J_p})$.

Moreover we can prove $y \in W^u(\Lambda_j)$. In fact, by taking subsequences if necessary, put $y_{-\ell} = \lim_{n \to \infty} f^{k_n - \ell}(x_n)$. Then $\{y_{-\ell}; \ell \ge 0\}$ forms a backward orbit of y in $\overline{U_j}$. By the local product structure of $\hat{\Omega}$, we conclude $y_{-\ell} \to \Lambda_j$, hence $y \in W^u(\Lambda_j)$.

(\Leftarrow) We have only to show that $A(C) \subset \Lambda_i$ if $C \subset C_i$. If $C \subset C_0$, then $A(C) = \emptyset$ since C is compact. Suppose $C \subset C_i$ and there exists $x \in A(C) \setminus \Lambda_i$ for $i \geq 1$. By taking U_i small, there exists a neighborhood V of x such that $V \cap U_i = \emptyset$. Since $x \in \bigcup_{k \geq N} f^k(C)$ for any $N \geq 0$, there exist $m_n \nearrow \infty$ and $x_n \in C$ such that $f^{m_n}(x_n) \in V$, i.e. $f^{m_n}(x_n) \notin U_i$ for any n. Since C is closed, we may assume x_n tends to some $x_0 \in C \subset C_i$. As above, if we put $k_n := \min\{k \geq K; f^k(x_n) \notin U_i\}$, we have an accumulation point y of $\{f^{k_n}(x_n)\}$ outside Λ . By the above remark, $y \in W^u(\Lambda_i) \setminus \Lambda_i$. We have $y \notin W^s(\Lambda_i)$ because $W^u(\Lambda_i) \cap W^s(\Lambda_i) = \Lambda_i$. Since $y \in A(C), y \in K_{J_p} \setminus J_2 = W^s(\Lambda)$. Thus y must belong to $W^s(\Lambda_{i_1})$ for some $i_1 \neq i$. That is, we have an order $\Lambda_i \succ \Lambda_{i_1}$.

By successively applying this argument, we have a chain of saddle basic sets :

$$\Lambda_i \succ \Lambda_{i_1} \succ \Lambda_{i_2} \succ \cdots, \quad i \neq i_1 \neq i_2 \neq \cdots.$$

Since there exist only finitely many basic sets, we must have a cycle of them, which contradicts Lemma 1. This completes the proof of Theorem 1. \Box

We will prove Theorem 2. By the same argument as above, we have

Lemma 3. Let $i, j \ge 1$. If $\overline{C_i} \cap C_j \neq \emptyset$, then $A(C_i) \cap (W^u(\Lambda_j) \setminus \Lambda) \neq \emptyset$. If C_i is closed, then $A(C_i) = \Lambda_i$.

Note that $A_{pt}(C_{J_p}) = A(C_{J_p})$ if and only if $A(C_i) \subset \Lambda$ for any *i*. We have only to show (6).

 (\Rightarrow) If C_i for some *i* is not closed, then there exists a $j \neq i$ such that $\overline{C_i} \cap C_j \neq \emptyset$. If $i \geq 1$, then $j \geq 1$ and by Lemma 3, $A(C_i)$ contains a point outside Λ . Suppose C_0 is not closed. Then there exists a sequence $x_n \in C_0$ tending to a point $x_0 \in C_i$ for some $i \geq 1$. For a fixed large R > 0, put $k_n := \min\{k \in \mathbb{N}; ||f^k(x_n)|| > R\}$. It is easy to see $k_n \to \infty$. (Otherwise,

 $||f^{L}(x_{0})|| \geq R$ for some $L \geq K$, which contradicts $x_{0} \in C_{i}$.) Note that $\{f^{k_{n}}(x_{n})\}$ is bounded. Thus, if we take any one of its accumulation points y, then $y \in A(C_{0}) \setminus K_{J_{p}}$, hence $A(C_{0})$ intersects $W^{u}(\Lambda) \setminus K_{J_{p}}$.

(\Leftarrow) By Lemma 3, it follows that, for $i \ge 1$, $A(C_i) = \Lambda_i$ if C_i is closed. If C_0 is closed, it is compact, hence $A(C_0) = \emptyset$. This completes the proof of Theorem 2. \Box

Now we prove Theorem 3.

(a) \Rightarrow (b) By Theorem 2, $A(C_0) = \emptyset$ if C_0 is closed. Then

$$A(C_{J_p}) = \bigcup_{i=1}^m A(C_i) \subset K_{J_p} \cap (W^u(\Lambda) \cap (J_p \times \mathbb{C})) = W^u(\Lambda) \cap W^s(\Lambda).$$

(b) \Rightarrow (a) As is shown in the proof of Theorem 2, if C_0 is not closed, then $A(C_0)$ intersects $W^u(\Lambda) \setminus K_{J_p}$. Thus $A(C_{J_p}) \neq W^u(\Lambda) \cap W^s(\Lambda)$.

(c) \Rightarrow (a) Suppose C_0 is not closed. Then there exists a sequence $x_n = (z_n, c_n) \in C_0$ tending to a point $x_0 = (z_0, c_0) \in C_i$ for some $i \ge 1$. Then there exists $\delta > 0$ such that $\mathbb{D}(c_0, \delta) \subset int K_{z_0}$ since $c_0 \in int K_{z_0}$. Note that the map $z \mapsto J_z$ is continuous in J_p . Hence, if z is close to z_0 , we have either $\mathbb{D}(c_0, \delta) \subset int K_z$ or $\mathbb{D}(c_0, \delta) \cap K_z = \emptyset$. Since for large $n, c_n \in \mathbb{D}(c_0, \delta)$ is outside K_{z_n} , we conclude that $\mathbb{D}(c_0, \delta) \cap K_{z_n} = \emptyset$ for large n. This implies the discontinuity of the map $z \mapsto K_z$ at $z = z_0$.

(a) \Rightarrow (c) We use the argument in Lemma 3.7 of [J2]. Note that $z \mapsto K_z$ is upper semi-continuous in J_p . Hence if $z \mapsto K_z$ is discontinuous at $z = z_0$, then it is not lower semi-continuous there. Thus there exist $w_0 \in int K_{z_0}$ and $\delta > 0$ such that $D(w_0, \delta) \cap K_z = \emptyset$ for $z \neq z_0$ close to z_0 . Put $(z_k, w_k) = f^k(z_0, w_0)$. By Corollary 3.6 in [J2] (see also Theorem 3.3 and Lemma 3.2 in Comerford [C]), there exist k and a critical point c_k of q_{z_k} in the connected component U_{w_k} of $int K_{z_k}$ containing w_k such that, for any $\epsilon > 0$, there exists an n so that $|w_n - Q_{z_k}^{n-k}(c_k)| < \epsilon$. Since C_0 is closed, the set $\bigcup_{i=1}^m C_i \ni (z_k, c_k)$ is away from C_0 . Thus the critical point c'_k of $q_{p^k(z)}$ close to c_k for z sufficiently close to z_0 also belongs to $int K_{p^k(z)}$. For this n, take z sufficiently close to z_0 so that $|Q_z^n(w_0) - w_n| < \epsilon$ and that $|Q_{p^k(z)}^{n-k}(c_k)| < \epsilon$. Thus we have

$$\begin{aligned} |Q_{z}^{n}(w_{0}) - Q_{p^{k}(z)}^{n-k}(c_{k}')| &\leq |Q_{z}^{n}(w_{0}) - w_{n}| + |w_{n} - Q_{z_{k}}^{n-k}(c_{k})| \\ &+ |Q_{z_{k}}^{n-k}(c_{k}) - Q_{p^{k}(z)}^{n-k}(c_{k}')| \\ &< 3\epsilon. \end{aligned}$$

Since $Q_z^n(w_0) \notin K_{p^n(z)}$ and $Q_{p^k(z)}^{n-k}(c'_k) \in int K_{p^n(z)}$, this implies the distance of the postcritical set from J_2 is less than 3ϵ . Since we can take ϵ arbitrarily small, this contradicts the fact that f is Axiom A. This completes the proof of Theorem 3. \Box

Remark 1. [DH1, DH2] has proved $(c) \Rightarrow (b)$.

References

- [C] M. Comerford: Hyperbolic non-autonomous Julia sets. Ergod. Th. & Dynam. Sys. 26 (2006), pp. 353–377.
- [DH1] L. DeMarco & S. Hruska: Axiom A polynomial skew products of C² and their postcritical sets. Ergod. Th. & Dynam. Sys. 28 (2008), pp. 1749–1779.
- [DH2] L. DeMarco & S. Hruska: Corrections to "Axiom A polynomial skew products of \mathbb{C}^2 and their postcritical sets". Preprint 2009.
- [FS1] J.E. Fornaess & N. Sibony: Complex Dynamics in higher dimension II. Ann. Math. Studies 137 (1995), pp. 134–182.
- [FS2] J.E. Fornaess & N. Sibony: Hyperbolic maps on ℙ². Math. Ann. 311 (1998), pp. 305–333.
- [J1] M. Jonsson: Dynamical studies in several complex variables, I. Hyperbolic dynamics of endomorphisms. PhD thesis, Royal Institute of Technology, 1997.
- [J2] M. Jonsson: Dynamics of polynomial skew products on C². Math. Ann. 314 (1999), pp. 403–447.
- [S] H. Sumi: Dynamics of postcritically bounded polynomial semigroups III
 : Classification of hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles. To appear in Ergod. Th. & Dynam. Sys.