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ABSTRACT. We consider surjective endomorphisms $f$ of degree $>1$ on projective man-
ifolds $X$ of Picard number one and their $f^{-1}$ -stable hypersurfaces $V$ . When $X=P^{\mathfrak{n}}$

with $n=3$ , we show that $V$ is a hyperplane $(i.e., \deg(V)=1)$ but with four possible
exceptions; it is conjectured that $\deg(V)=1$ for any $n\geq 2$ ; cf. [8], $[3|$ . For general $X$ ,
we show that $V$ is rationally chain connected. Also given is an optimal upper bound for
the number of $f^{-1}$ -stable prime divisors on (not necessarily smooth) projective varieties.

1. ENDOMORPHISMS OF $\mathbb{P}^{3}$

We work over the field $\mathbb{C}$ of complex numbers. We start with the consideration of
endomorphisms of the projective three space. The main result of this section is Theorem
1.1 below.

Theorem 1.1. Let $f$ : $\mathbb{P}^{3}arrow \mathbb{P}^{3}$ be an endomorphism of degree $>1$ and $V$ an imducible
hypersurface such that $f^{-1}(V)=V$ . Then either $\deg(V)=1$ , i. e., $V$ is a hyperplane, $or$

$V=V_{1}$ $:=\{S_{i}=0\}$ is a cubic hypersurface given by one of the following four defining
equations $S_{i}$ in suitable projective coordinates:

(1) $S_{1}=X_{3}^{3}+X_{0}X_{1}X_{2}$ ;
(2) $S_{2}=X_{0}^{2}X_{3}+X_{0}X_{1}^{2}+X_{2}^{3}$ ;
(3) $S_{3}=X_{0}^{2}X_{2}+X_{1}^{2}X_{3}$ ;
(4) $S_{4}=X_{0}X_{1}X_{2}+X_{0}^{2}X_{3}+X_{1}^{3}$ .

We are unable to rule out the four cases in Theorem 1.1 but see Examples 2.8 (for $V_{1}$ ).

Remark 1.2. (1) The non-normal locus of $V_{i}(i=3,4)$ is a single line $C$ and stabi-
lized by $f^{-1}$ . Let $\sigma$ : $V_{:}’arrow V_{j}(i=3,4)$ be the normalization. Then $V_{i}$

’ is the
(smooth) Hirzebruch surface $\mathbb{F}_{1}$ (i.e., the one-point blowup of $\mathbb{P}^{2}$ ); see [1, Theorem
1.5], [17].

(2) $V_{1}$ (resp. $V_{2}$ ) is unique as a normal cubic (or degree three del Pezzo) surface of
Picard number one and with the singular locus Sing $V_{1}=3A_{2}$ (resp. Sing $V_{2}=$
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$E_{6})$ ; see [20, Theorem 1.2] and [10, Theorem 4.4] (for the anti-canonical embedding
of $V_{i}$ in $\mathbb{P}^{3})$ . $V_{1}$ contains exactly three lines (of triangle-shaped) whose three
vertices form the singular locus of $V_{1}$ . And $V_{2}$ contains a single line on which lies
its unique singular point. $f^{-3}$ (replaced by its cube) fixes the singular point(s) of
$V_{i}(i=1,2)$ .

(3) $f^{-1}$ (or its power) does not stabilize the only line $L$ on $V_{2}$ by using [15, Theorem
4.3.1] since the pair $(V_{2}, L)$ is not $\log$ canonical at the singular point of $V_{2}$ . For
$V_{1}$ , we do not know whether $f^{-1}$ (or its power) stabilizes its three lines.

We now sketch the proof of Theorem 1.1.
By [16, Theorem 1.5], we may assume that $V\subset \mathbb{P}^{3}$ is an irreducible rational singular

cubic hypersurface.
We first consider the case where $V$ is non-normal. Such $V$ is classified in [6, Theorem

9.2.1] to the effect that either $V=V_{i}(i=3,4)$ or $V$ is a cone over a nodal or cusp-
idal rational planar cubic curve $B$ . The description in Remark 1.2 on $V_{3},$ $V_{4}$ and their
normalizations, is given in [17, Theorem 1.1], [1, Theorem 1.5, Case (C), (El)].

We can rule out the case where $V$ is a cone over $B$ .
Next we consider the case where $V\subset \mathbb{P}^{3}$ is a normal rational singular cubic hyper-

surface. By the adjunction formula, $-K_{V}=-(K_{P^{3}}+V)|V\sim H|V$ which is ample,
where $H\subset \mathbb{P}^{3}$ is a hyperplane. Since $K_{V}$ is a Cartier divisor, $V$ has only Du Val (or
rational double, or $ADE$) singularities. Let $\sigma$ : $V’arrow V$ be the minimal resolution. Then
$K_{V’}=\sigma^{*}K_{V}\sim\sigma^{*}(-H|V)$ . For $f$ : $\mathbb{P}^{3}arrow \mathbb{P}^{3}$ , we can apply $f|V$ to the result below.

Lemma 1.3. Let $V\subset \mathbb{P}^{3}$ be a normal cubic surface, and $f_{V}$ : $Varrow V$ an endomor-
phism such that $f_{V}^{*}(H|V)\sim qH|V$ for some $q>1$ and the hyperplane $H\subset \mathbb{P}^{3}$ . Let
$S(V)=$ {(irreducible) $G\subset V|G^{2}<0$} be the set of negative curves on $V$ , and set
$E_{V}:= \sum_{E\in S(V)}$ E. Replacing $f_{V}$ by its power, we have:

(1) If $f_{V}^{*}G\equiv aG$ for some Weil divisor $G\not\equiv 0$ , then $a=q$ . $f_{V}^{*}(L|V)\sim q(L|V)$

for every divisor $L$ on $\mathbb{P}^{3}$ . Especially, $\deg(f_{V})=q^{2};K_{V}\sim-H|V$ satisfies
$f_{V}^{*}K_{V}\sim qK_{V}$ .

(2) $S(V)$ is a finite set. $f_{V}^{*}E=qE$ for every $E\in S(V)$ . So $f_{V}^{*}E_{V}=qE_{V}$ .
(3) A curve $E\subset V$ is a line in $\mathbb{P}^{3}$ if and only if $E$ is equal to $\sigma(E’)$ for some $(-1)-$

curve $E’\subset V’$ .
(4) Every curve $E\in S(V)$ is a line in $\mathbb{P}^{3}$ .
(5) We have $K_{V}+E_{V}=f_{V}^{*}(K_{V}+E_{V})+\Delta$ for some effective divisor $\Delta$ containing no

line in $S(V)$ , so that the ramification divisor $R_{f_{V}}=(q-1)E_{V}+\Delta$ . In particular,
the cardinality $\# S(V)\leq 3$ , and the equality holds exactly when $K_{V}+E_{VQ}\sim 0$ ;
in this case, $f_{V}$ is \’etale outside the three lines of $S(V)$ and $f_{V}^{-1}$ (Sing $V$).
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Remark 1.4. In the proof of Theorem 1.1, we can actually show: if $f_{V}$ : $Varrow V$ is an
endomorphism (not necessarily the restriction of some $f$ : $\mathbb{P}^{3}arrow \mathbb{P}^{3}$ ) of $\deg(f_{V})>1$ of a
Gorenstein normal del Pezzo surface with $K_{V}^{2}=3$ (i.e., a normal cubic surface), then $V$

is equal to $V_{1}$ or $V_{2}$ in Theorem 1.1 in suitable projective coordinates.

2. SUMMARY OF MAIN RESULTS

Below is the summary of our recent paper [23]. Theorem $2.1\sim$ Theorem 2.4 are our
main results.

Theorem 2.1. Let $X$ be a locally factorial normal projective variety of dimension $n\geq 2$

and Picard number one, and urith only $log$ canonical singularities, and let $f$ : $Xarrow X$ be

a surjective endomorphism with $\deg(f)=q^{n}>1$ . Then we have:

(1) There are at most $n+1$ prime divisors $V_{i}\subset X$ with $f^{-1}(V_{1})=V_{1}$ .
(2) There are $n+1$ of such $V_{i}$ if and only if.$\cdot$ $X=\mathbb{P}^{n},$ $V_{i}=\{X_{i}=0\}(1\leq i\leq n+1)$

(in suitable projective coordinates), and $f$ is given by

$f:[X_{0}, \ldots, X_{n}]arrow[X_{0}^{q}, \ldots, X_{n}^{q}]$ .

We refer to S. -W. Zhang [21, Conjecture 1.3.1] for the Dynamic Manin-Mumford
conjecture etc. solved for the $(X, f)$ in Theorem 2.1 (2).

A projective variety $X$ is rationally chain connected if every two points $x_{i}\in X$ are
contained in a connected chain of rational curves on $X$ . When $X$ is smooth, $X$ is rationally

chain connected if and only if $X$ is rationally connected, in the sense of Campana, and
Kolldr-Miyaoka-Mori.

Theorem 2.2. Let $X$ be a projective manifold of dimenion $n\geq 2$ and Picard number one,
$f$ : $Xarrow X$ an endomorphism of degree $>1$ , and $V\subset X$ a prime divisor with $f^{-1}(V)=$

V. Then $X,$ $V$ and the nomalization $V$’ of $V$ are all rationally chain connected.

In Theorem 2.2, the smoothness and Picard number one assumption on $X$ are necessary
(cf. Remark 2.6 and Example 2.9). Theorem 2.2 is known for $X=\mathbb{P}^{n}$ with $n\leq 3$ (cf. [8],
[16] $)$ . In Theorem 2.2, $X$ is indeed a Fano manifold. See Remark 2.6 for the case when
$X$ is singular.

Corollary 2.3. With the notation and assumptions in Theorem 2.2, both $X$ and $V$ are
simply connected, while $V$‘ has a finite (topological) fundamental group.

A morphism $f$ : $Xarrow X$ is polarized (by $H$) if $f^{*}H\sim qH$ for some ample line bundle $H$

and some $q>0$ ; then $\deg(f)=q^{dlmX}$ . For instance, every non-constant endomorphism
of a projective variety $X$ of Picard number one, is polarized; an $f$-stable subvariety
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$X\subset \mathbb{P}^{n}$ for a non-constant endomorphism $f$ : $\mathbb{P}^{n}arrow \mathbb{P}^{n}$ , has the restriction $f|X$ : $Xarrow X$

polarized by the hyperplane; the multiplication map $m_{A}$ : $Aarrow A,$ $x\mapsto mx$ (with $m\neq 0$ )
of an abelian variety $A$ is polarized by any $H=L+(-1)^{*}L$ with $L$ an ample divisor, so
that $m_{A}^{*}H\sim m^{2}H$ .

In Theorems 2.1 and 2.4, we give upper bounds for the number of $f^{-1}$ -stable prime
divisors on a (not necessarily smooth) projective variety; the bounds are optimal, and
the second possibility in Theorem 2.4(2) does occur (cf. Examples 2.8 and 2.9). One
may remove the condition $(^{*})$ in Theorem 2.4, when $\rho(X)=1$ , or $X$ is a weak $\mathbb{Q}$-Fano
variety, or the closed cone NE(X) of effective curves has only finitely many extremal rays
(cf. Remark 2.6); here $N^{1}(X)$ $:=$ NS $(X)\otimes_{\mathbb{Z}}\mathbb{R}$ is the Neron-Severi group (over $\mathbb{R}$ ) and
$\rho(X)$ $:=rank_{R}N^{1}(X)$ is the Picard number of $X$ . We refer to [11, Definition 2.34] for
the definitions of Kawamata $\log$ terminal (klt) and $\log$ canonical singularities.

Theorem 2.4. Let $X$ be a projective variety of dimension $n$ with only $\mathbb{Q}$-factorial Kawa-
mata $log$ terminal singularities, and $f$ : $Xarrow X$ a polarized endomorphism with $\deg(f)=$

$q^{n}>1$ . Suppose $(*)$ : either $f^{*}|N^{1}(X)=q$ id, or $n\leq 3$ . Then we have $($ with $\rho$ $:=\rho(X))$ :

(1) Let $V_{i}\subset X(1\leq i\leq c)$ be prime divisors with $f^{-1}(V_{i})=V.$ Then $c\leq n+\rho$ .
Ihrther, if $c\geq 1$ , then the pair $(X, \sum V_{i})$ is $log$ canonical and $X$ is uniruled.

(2) Suppose that $c\geq n+\rho-2$ . Then either $X$ is rationally connected, or there is a
fibmtion $Xarrow E$ onto an elliptic curve $E$ so that every fibre is normal rationally
connected and some positive power $f^{k}$ descends to an $f_{E}:Earrow E$ of degree $q$ .

(3) Suppose that $c\geq n+\rho-1$ . Then $X$ is rationally connected.
(4) Suppose that $c\geq n+\rho$ . Then $c=n+\rho$ , (for some $t>0$)

$K_{X}+ \sum_{i=1}^{n+\rho}V_{i}\sim_{Q}0$ , $(f^{t})^{*}|$ Pic$(X)=q^{t}$ id,

$f$ is \’etale outside $(\cup V_{i})\cup f^{-1}$ (Sing $X$) (and $X$ is a toric surface with $\sum V_{i}$ its
boundary divisor, when $\dim X=2$).

Theorems 2.4 and 2.1 motivate the question below (without assuming the condition
$(^{*})$ in Theorem 2.4), where the last part is also Shokurov’s conjecture (cf. $[$ 18, Theorem
6.4] $)$ .

Question 2.5. Suppose that a projective n-fold $(n\geq 3)X$ has only Q-factorial Kawa-
mata $\log$ terminal singularities, $f$ : $Xarrow X$ a polarized endomorphism of degree $>1$ , and
$V\subset X(1\leq i\leq s)$ prime divisors with $f^{-1}(V_{i})=V_{1}$ . Then, is it true that $s\leq n+\rho(X)$ ,
and equality holds only when $X$ is a toric variety with $\sum V_{i}$ its boundary divisor?

Remark 2.6. (1) In Theorem 2.2, it is necessary to assume that $\rho(X)=1$ (cf. Example
2.9), and $X$ is smooth or at least Kawamata log terminal (klt). Indeed, for every projective

171



INVARIANT HYPERSURFACES

cone $Y$ over an elliptic curve and every section $V\subset Y$ (away from the vertex), there is an
endomorphism $f$ : $Yarrow Y$ of $\deg(f)>1$ and with $f^{-1}(V)=V$ (cf. [15, Theorem 7.1.1,

or Proposition 5.2.2] $)$ . The cone $Y$ has Picard number one and a $\log$ canonical singularity
at its vertex. Of course, $V$ is an elliptic curve, and is not rationally chain connected. By
the way, $Y$ is rationally chain connected, but is not rationally connected.

(2) Let $X$ be a projective variety with only klt singularities. If the closed cone NE(X) of
effective curves has only finitely many extremal rays, then every polarized endomorphism
$f$ : $Xarrow X$ satisfies $f^{*}|N^{1}(X)=q$ id with $\deg(f)=q^{\dim X}$ , after replacing $f$ by its
power, so that we can apply Theorem 2.4 (cf. [16, Lemma 2.1]). For instance, if $X$

or $(X, \triangle)$ is $\mathbb{Q}$-Fano, i.e., $X$ (resp. (X, $\Delta$ )) has only klt singularities and $-K_{X}$ (resp.
$-(K_{X}+\Delta))$ is nef and big, then NE(X) has only finitely many extremal rays.

(3) By Example 2.8, it is necessary to assume the local factoriality of $X$ or the Cartier-
ness of $V_{i}$ in Theorem 2.1 (2) even when $X$ has only klt singularities. We remark that
a $\mathbb{Q}$-factorial Gorenstein terminal threefold is locally factorial. For Theorem 2.1(2), one
may also use Fujita’s theory to prove $X\simeq \mathbb{P}^{n}$ , but our method is useful even when $V_{i}$ ’s
are only $\mathbb{Q}$-Cartier (cf. Theorem 2.4).

2.7. A motivating conjecture. Here are some motivations for our paper. It is conjec-
tured that every hypersurface $V\subset \mathbb{P}^{n}$ stabilized by the inverse $f^{-1}$ of an endomorphism
$f$ : $\mathbb{P}^{n}arrow \mathbb{P}^{n}$ of $\deg(f)>1$ , is linear. This conjecture is still open when $n\geq 3$ and $V$

is singular, since the proof of [3] is incomplete as we were informed by an author. The
smooth hypersurface case was settled in the affirmative (in any dimension) by Cerveau-
Lins Neto [4] and independently by Beauville [2]. See also [16, Theorem 1.5 in its arXiv
version: arXiv$:0908.1688v1$].

From the dynamics point of view, as seen in Dinh-Sibony [5, Theorem 1.3, Corollary
1.4], $f$ : $\mathbb{P}^{n}arrow \mathbb{P}^{n}$ behaves nicely exactly outside those $f^{-1}$ -stabilized subvarieties. We
refer to Fornaess-Sibony [8], and [5] for further references.

A smooth hypersurface $X$ in $\mathbb{P}^{n+1}$ with $\deg(X)\geq 3$ and $n\geq 2$ , has no endomorphism
$f_{X}$ : $Xarrow X$ of degree $>1$ (cf. [2, Theorem]). However, singular $X$ may have plenty of
endomorphisms $f_{X}$ of arbitrary degrees as shown in Example 2.8 below. Conjecture 2.7
asserts that such $f_{X}$ can not be extended to an endomorphism of $\mathbb{P}^{n+1}$ .

Example 2.8. We now construct many polarized endomorphisms for some degree $n+1$

hypersurface $X\subset \mathbb{P}^{n+1}$ , with $X$ isomorphic to the $V_{1}$ in Theorem 1.1 when $n=2$ .
Let $f=(F_{0}, \ldots, F_{n})$ : $\mathbb{P}^{n}arrow \mathbb{P}^{n}(n\geq 2)$ , with $F_{i}=F_{j}(X_{0}, \ldots, X_{n})$ homogeneous,
be any endomorphism of degree $q^{n}>1$ , such that $f^{-1}(S)=S$ for a reduced degree
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$n+1$ hypersurface $S=\{S(X_{0}, \ldots, X_{n})=0\}$ . So $S$ must be normal crossing and
linear: $S= \sum_{l}^{n}=0S_{i}$ (cf. [16, Thm 1.5 in arXiv version]). Thus we may assume that
$f=(X_{0}^{q}, \ldots, X_{n}^{q})$ and $S_{i}=\{X_{i}=0\}$ . The relation $S\sim(n+1)H$ with $H\subset \mathbb{P}^{n}$ a
hyperplane, defines

$\pi:X=Spec\oplus_{1=0}^{n}\mathcal{O}(-iH)arrow \mathbb{P}^{n}$

which is a Galois $\mathbb{Z}/(n+1)$-cover branched over $S$ so that $\pi^{*}S_{i}=(n+1)T_{i}$ with the
restriction $\pi|T_{1}$ : $T_{i}arrow S_{1}$ an isomorphism.

This $X$ is identifiable with the degree $n+1$ hypersurface $\{Z^{n+1}=S(X_{0}, \ldots , X_{n})\}\subset$

$\mathbb{P}^{n+1}$ and has singularity of type $z^{n+1}=xy$ over the intersection points of $S$ locally defined
as $xy=0$ . Thus, when $n=2$ , we have Sing $X=3A_{2}$ and $X$ is isomorphic to the $V_{1}$ in
Theorem 1.1 (cf. Remark 1.2). We may assume that $f^{*}S(X_{0}, \ldots, X_{n})=S(X_{0}, \ldots, X_{n})^{q}$

after replacing $S(X_{0}, \ldots, X_{n})$ by a scalar multiple, so $f$ lifts to an endomorphism $g=$

$(Z^{q}, F_{0}, \ldots, F_{n})$ of $\mathbb{P}^{n+1}$ (with homogeneous coordinates $[Z,$ $X_{0},$
$\ldots,$

$X_{n}|)$ , stabilizing $X$ ,
so that $g_{X}$ $:=g|X$ : $Xarrow X$ is a polarized endomorphism of $\deg(g_{X})=q^{n}$ (cf. [16, Lemma
2.1] $)$ . Note that $g^{-1}(X)$ is the union of $q$ distinct hypersurfaces $\{Z=\zeta^{i}S(X_{0}, \ldots , X_{n})\}\subset$

$\mathbb{P}^{n+1}$ (all isomorphic to $X$ ), where $\zeta$ $:=\exp(2\pi\sqrt{-1}q)$ .
This $X$ has only Kawamata log terminal singularities and Pic $X=(Pic\mathbb{P}^{n+1})|X(n\geq 2)$

is of rank one (using Lefschetz type theorem [12, Example 3.1.25] when $n\geq 3$). We have
$f^{-1}(S_{i})=S_{i}$ and $g_{X}^{-1}(T_{i})=T_{i}$ , where $0\leq i\leq n$ . Note that $(n+1)T_{i}=\pi^{*}S_{j}$ is Cartier,
but $T_{j}$ is not Cartier (cf. Theorems 2.1).

When $n=2$ , the relation $(n+1)(T_{1}-T_{0})\sim 0$ gives rise to an \’etale-in-codimenion-one

$\mathbb{Z}/(n+1)$-cover $\tau$ : $\mathbb{P}^{n}\simeq\overline{X}arrow X$ so that $\Sigma_{i=0}^{n}\tau^{*}T_{1}$ is a union of $n+1$ normal crossing
hyperplanes; indeed, $\tau$ restricted over $X\backslash \cup T_{1}$ , is its universal cover (cf. [13, Lemma 6]),
so that $g_{X}$ lifts up to $\overline{X}$. A similar result seems to be true for $n\geq 3$ , by considering
the ‘composite’ of the $\mathbb{Z}/(n+1)$-covers given by $(n+1)(T_{1}-T_{0})\sim 0(1\leq i<n)$ ; see
Question 2.5.

The simple Example 2.9 below shows that the conditions in Theorem 2.4 (2) (3), or
the condition $\rho(X)=1$ in Theorem 2.2, is necessary.

Example 2.9. Let $m_{A}$ : $Aarrow A(x\mapsto mx)$ with $m\geq 2$ , be the multiplication map
of an abelian variety $A$ of dimension $u\geq 1$ and Picard number one, and let $g$ : $\mathbb{P}arrow$

$\mathbb{P}$ $([X_{0}, \ldots, X_{v}]\mapsto[X_{0}^{q}, \ldots , X_{v}^{q}])$ with $v\geq 1$ and $q;=m^{2}$ . Then $f=(m_{A}\cross g)$ :
$X=A\cross \mathbb{P}arrow X$ is a polarized endomorphism with $f^{*}|N^{1}(X)=$ diag$[q, q]$ , and $f^{-1}$

stabilizes $v+1$ prime divisors $V_{i}=A\cross\{X_{1}=0\}\subset X$ and no others; indeed, $f$ is \’etale

outside UV. Note that $X$ and $V_{1}\simeq A\cross \mathbb{P}^{-1}$ are not rationally chain connected, and
$v+1=\dim X+\rho(X)-(1+\dim A)$ .
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2.10. The results of Favre [7], Nakayama [15] and Wahl [19] are very inspiring about

the restriction of the singularity type of a normal surface imposed by the existence of

an endomorphism of degree $>1$ on the surface. For the proof of our results, the basic
ingredients are: a $\log$ canonical singularity criterion, a rational connectedness criterion
of Qi Zhang [24] and its generalization in Hacon-McKernan [9], the equivariant MMP in

our early paper [22], and the characterization in Mori [14] on hypersurfaces in weighted
projective spaces.

Acknowledgement. I thank N. Nakayama for the comments and informing me about
Shokurov’s conjecture (cf. 2.5) and Wahl’s result [19, Corollary, page 626], and the
following colleagues for the opportunity of conference /colloquium talks in December
2009: the organizer H. Sumi of Integrated Research of Complex Dynamics and Related
Fields, I. Shimada of Hiroshima University and K. Oguiso of Osaka University.
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