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Abstract
The ”two-constants” theory introduced first by Laplace in 1805 is the currently accepted theory de-

scribing isotropic, linear elasticity. The original, microscopically-descriptive Navier-Stokes [MDNS] equations
were derived in the course of the development of the two-constants theory. From the viewpoint of these equa-
tions, we trace their evolution and the notion of tensor following in historical order the various contributions
of Navier, Cauchy, Poisson, Saint-Venant and Stokes 1, and note the concordance between each.
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1 Preliminary Remarks
In this report, we use the following definition of the stress tensor, due to I. Imai[7, p.178]: we call a $3\cross 3$

array such as $P$ a stress tensor that returns a new vector $P_{n}$ when multiplied from the right by the column
vector of directional cosines:

$\{\begin{array}{l}P_{nx}P_{ny}P_{nz}\end{array}\}=\{\begin{array}{lll}p_{xx} p_{yx} p_{zx}p_{xy} p_{yy} p_{zy}p_{xz} p_{yz} p_{zz}\end{array}\}\{\begin{array}{l}lmn\end{array}\}$ $\Rightarrow$ $P_{n}=P\cdot n$

Moreover, if $p_{ij}=p_{ji}$ for all $i,$ $j=x,$ $y,$ $z$ then this tensor is said to be symmetric. If we suppose for example $t_{ij}$

is the $(i,j)$ element of a tensor, and $t_{ij}=-t_{ji}$ then the tensor is said to be anti-symmetric or skew-symmetric.
Throughout the paper, we display for brevity a tensor by specifying its components, such as $\delta_{ij}$ of the well-
known Kr\"onecker-delta. Furthermore, we write $v_{k,k}= \sum_{i=1\vec{\partial x}}^{3\partial v}$. $= \frac{du}{dx}+\frac{dv}{dy}+\frac{dw}{dz}\cdots$ where we have employed
the Einstein summation convention 2. Simplifications occur as, for example, in Navier’s elasticity of (1-1) in
Table 4 where the tensor can be expressed as follows:

$-C \Vert_{\frac{\frac{3du}{dwdy}\frac{du}{dx}}{dx}+\frac{ddd}{d}\frac{wz)dudxdv}{dz}+\frac{3\frac{}{}(d}{d}\frac{wxv\{du}{dx}+\frac{\}_{dv}}{dy}+3\frac{\frac{du}{dwdwdydz}}{dz}}^{+\frac{dv}{xvu\{dyz}+\frac{d}{\}^{d_{\frac{}{}}}}\frac{du}{w)dydvydy}+\frac{dw}{\frac{dvdx}{dz}}+}+\frac{}{}++\frac{\frac{d}{dd}}{(dz}+\frac{}{}\Vert$ $=- \epsilon[\frac{\frac{\epsilon+du}{dwdxWdy}}{}+\frac {}{}her+\frac{dvx1}{dudx,dz}2\frac{d}{d,e}\epsilon=\frac{yd\tau r\ell vz+}{dx}++\frac{d}{}\frac{d}{}+\frac{d\tau v}{dz\frac{dvdx}{dz}w\epsilon}+\frac{d^{1}\epsilon d}{d}+\frac{\frac {}{}ddddf7J\frac{}{}}{d\frac{x_{\#_{\tau}}vw\prime}{dy}},+2\frac{\frac{du}{dwdd_{w}^{J}dz}}{dz}2,+\frac{}{}]$ (1)

Expressions in Poisson $s$ elasticity (3-1) in Table 4 are also of a similar form.
Moreover, we can easily express Navier’s stress tensor $t_{ij}$ of elasticity in the form: $t_{i_{J}}=-\epsilon(\delta_{ij}u_{k,k}+u_{i,j}+u_{\gamma,i})$ .

Stokes‘ fluid theory (20) or (5) in Table 4 affords a second illustration: $t_{ij}=(-p- \frac{2}{3}\mu v_{k,k})\delta_{ij}+\mu(v_{i,j}+v_{j,i})$ ,
or the equivalent expression $\sigma_{ij}=-p\delta_{ij}+\mu(\frac{\partial v}{\partial xj}+\vec{\partial x_{1}}\partial v)-\frac{2}{3}\delta_{ij_{x_{k}}^{\frac{\partial}{\partial}r}}^{v}$ . $3$

In what follows, “ tensor ” means the stress tensor as defined by I. Imai. 4 When referring to a ‘ fluid ’$\cdot$

an “elastic fluid“ is implied.

2 Introduction
We have studied the original MDNS equations as formulated by their authors 5, Navier, Cauchy, Poisson,

Saint-Venant and Stokes, and endeavor to ascertain their aims and conceptual thoughts in formulating these new
equations. The “two-constants theory” 6 was first introduced in 1805 by Laplace 7 in regard to capillary action
with constants denoted by $H$ and $K$ (cf. Table 2, 3).Thereafter, various pairs of constants have been proposed
by their originators in formulating MSNS equations or equations describing equilibrium or capillary situations.
It is commonly accepted that this theory describes isotropic, linear elasticity. 8 We argue that Poisson had$\overline{}$Navier(17S5-l836), Cauchy$(17S9-lS57),$ $Pois\infty n(17Sl-1840)$ , Saint-Venant(1797-1886), Stokes(1819-1903).

2Remark. in general, $v\neq v$ because the summation convention is in force when there is a repetition of indices.
3c.f. Schlichting [20], in our footnote(22).
4Numbers on the left-hand-side of equations refer to those given by the author in the original paper while numbers on the

right-hand-side correspond to our indexing. The subscript to the original indexing, for example $N/N$ , refer to author and type
of theory, such as . elastic/fluid by Navier

$n$ . For equations indexed by section, the citation is then in the format ”section no.-no.
by author”.

5The order followed is by date of proposal or publication.
6So-called by the author because of the prominence of two constants in the theory.
7Of capillary action, Laplace[8, V.4, Supplement p.2] acknowledges Clailaut[3, p.22], and Clailaut cites Maupertuis[10].
8Darrigol [4, p. 121].
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already pointed out the special aspect deduced by Laplace when, in 1831, he states, ”elles renferment les deux
constantes sp\’eciales donc $j’ ai$ parl\’e tout \‘a 1‘heure” [18, p.4]. Poisson was, we think, one of few who were aware
of this issue.

3 A universal method for the two-constants theory

In this section, we would like to propose a universal method to describe the kinetic equations that arise in
isotropic, linear elasticity. This is outlined as follows:. The partial differential equations describing waves in elastic solids or flows in elastic fluids are expressed

by using one constant or a pair of constants $C$ and $C$ such that:
for elastic solids: $\frac {}{}t\tau-2(CT+CT)=f$ ,
for elastic fluids: $\frac{}{}-(CT+CT)+\cdots=f$ ,
where $T,$ $T,$ $\cdots$ are the first kind of tensors or terms constituting our equations. For example, the

MDNS equations corresponding to incompressible fluids is composed of the kinetic equation along with
the continuity equation and are conventionally written, in modern vector notation, as follows:

$\frac{}{}-\mu\Delta u+u\cdot\nabla u+\nabla p=$ f, divu $=0$ . (2)

. $C$ and $C$ are the two coefficients of the two-constants theory, for example, $\epsilon$ and $E$ introduced by Navier,
or $R$ and $G$ by Cauchy, $k$ and $K$ by Poisson, $\epsilon$ and $\frac{}{}$ by Saint-Venant, or $\mu$ and $\mu 3$ by Stokes. Moreover,
$C$ and $C$ can be expressed in the following form:

$\{\begin{array}{l}C\equiv \mathcal{L}rgS,\{\end{array}$

$S= \int\int garrow C$ ,
$C\equiv \mathcal{L}rgS$ , $S= \int\int garrow C$ ,

$\Rightarrow$ $\{\begin{array}{l}C=C\mathcal{L}rg=\frac {}{}\mathcal{L}rg,C=C\mathcal{L}rg=\frac {}{}\mathcal{L}rg.\end{array}$

. The two coefficients are expressible in terms of either the operator $\mathcal{L}$ $( \sum$ or $\int)$ depending on one $s$

personal preference, 9 where $r$ and $r$ are radial functions related to the radius of the active sphere of
the molecules, raised to some power of $n$ for Poisson’s and Navier’s cases, the relationship between these
functions can be expressing by a logarithm with base $r$ such that: $\log$

$-r\perp$ .. $g$ and $g$ are certain functions which depend on $r$ and are described with attraction &/or repulsion.. $S$ and $S$ are two expressions which describe the surface of the active unit-sphere centered on a molecule
through application of the double integral (or single sum in the case of Poisson $s$ fluid).. $g$ and $g$ are certain compound spherical harmonic functions to calculate the moments over the unit
sphere.. $C$ and $C$ are indirectly determined as the common coefficients derived ffom the invariant tensor. With
the exception of Poisson’s fluid case, $C$ of $C$ is $\frac{}{}$ , and $C$ of $C$ is $\frac{}{}$ , which on computing only the
molecules, and which are independent of personal preferences. In Poisson $s$ case, we get the same as above
after multiplying by $\frac{}{}$ . integrals are calculated from the total moment of the active sphere of the. The ratio of the two coefficients, including Poisson $s$ case, is an invariant: $\overline {}C$ .

4 Genealogy and convergence of the stress tensor
We show in Figure 1 a genealogy tracing in particular the form of the tensor $t$ appearing in the Navier-

Stokes equations. In Table 4, we differentiate between the tensors associated with elastic solids or elastic fluids.
From this genealogy, it could be asserted that Cauchy[l, 2] was the inventor or the first user of tensors, a
view supported by the admission of Poisson[17] that he received the idea of symmetric tensor from Cauchy.
Moreover, the tensor idea of Saint-Venant reappears in the work of Stokes. Here, we denote the two routes as
NCP and PSS, both of which are portrayed in our figure, and by which we can explain the genealogy of tensor
as it applies to the MDNS equations. cf. Table 4.

(fig. 1) A genealogy of stress tensors in the prototypical Navier-Stokes equations

9At the time, there were heated arguments over Navier ‘
$s$ integration and Poisson $s$ summation.
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Table 1: $C,$ $C,$ $C,$ $C$ : definitions of constants and computation of total moment of molecular actions by
Navier, Cauchy, Poisson, Saint-Venant & Stokes
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Table 3: The two constants in the equilibrium equation

Recently Darrigol [4, p.121] has concluded: “it is called that the two-constants theory is the one now accepted
for isotropic, linear elasticity,” but Poisson [18, p.4] has stated already in 1831: “elles renferment les deux
constantes sp\’eciales donc $j’ ai$ parl\’e tout \‘a lheure.

” Moreover, we believe that the first proposer of a ‘ two-
constants ’$\cdot$

theory was Laplace [9] in Table 3.

5.1 Navier’s two constants and tensor
In his theory of elasticity, Navier deduced the single constant $\epsilon$ in (1). The corresponding Navier-Stokes
equations derived by Navier himself for incompressible fluids (2) are as follows:

$\{\begin{array}{l}\frac {}{}d B=X+\epsilon(3=+\frac{}{}\nabla 2yu+=dudz+2\frac{}{}+2\frac{}{})-\frac{}{}-\frac{}{}\cdot u-\frac{}{}\cdot v-\frac{}{}\cdot w;\frac{}{}\neq=Y+\epsilon x+3\frac{}{}+\frac{}{}+2\frac{}{}+2\frac{}{}-\frac{}{}-\frac{}{}\cdot u-\frac{}{}\cdot v.-\frac{}{}\cdot w.;\# 22;\end{array}$ (3)

along with the equation of continuity: $\frac{}{}+\frac{}{}+\frac{}{}=0$ . Navier supposes two constants as follows:

(3-10) $\epsilon\equiv\frac{}{}\int d\rho\rho f(\rho)=\frac{}{}\int d\rho\rho f(\rho)$ , $E \equiv\frac{}{}\int d\rho\rho F(\rho)=\frac{}{}\int d\rho\rho F(\rho)$ . (4)

$Inthecaseoffluid,Navierwaswellawareofthenecessityfortuionofcontinuity,becausehom(3)heobtained\epsilon\Delta bydifferentiatingtheequationofcontinuitywith\frac{}{},\frac{}{},\frac{}{}.Forexample,the\epsilon-termsin(3),as$

well as (5), are reduced to $\epsilon\Delta u$ as for example in (6). This is solely due to the mass conservative law, according
to the explanation given by Navier.

As an aside, Navier always used his well-used method involving a four-step procedure to solve three equations,
such as the equilibrium equation for the fluid [13], the kinetic equation for the elastic [12], and the kinetic
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equation for the fluid [13] with general methods as follows: . initially, to deduce one or two constants including
incomputable function such as $f\rho,$ $f(\rho)$ or $F(\rho)$ in Table 2, . then to construct the indeterminate equation,. then to make a Taylor series expansion and partial integration, exchanging $d$ and $\delta$ , and pairing with the same
integral operator, . and finally, to solve the indeterminate equation from the two points of view, the interior
and the boundary. We present more details of this procedure by outlining Navier $s$ analysis of fluid flow [13].

5.1.1 Indeterminate equation

The indeterminate equation, so-called then by Navier, is as follows:

(3-24) $f$
$0$ $=$ $\iiint dxdydz1[RPQd-\rho\{\begin{array}{l}\frac{}{}+u\frac{}{}+v\frac{}{}+w\frac{}{})]\delta u\frac{}{}+u\frac{}{}+v\frac{}{}+w\frac{}{})]\delta v\frac{}{}+u\frac{}{}+v\frac{}{}+w\frac{}{})]\delta w\end{array}$

$-$ $\epsilon\int\int\int dxdydz\Vert$

$3 \frac{}{}\frac{}{}+\frac{}{}\frac{}{}+\frac{}{}\frac{}{})+(\frac{}{}\frac{}{}+\frac{}{}\frac{}{})+(\frac{}{}\frac{}{}+\frac{}{}\frac{}{})$

$\frac{}{}\frac{}{}+\frac{}{}\frac{}{})+(\frac{}{}\frac{}{}+3\frac{}{}\frac{}{}+\frac{}{}\frac{}{})+(\frac{}{}\frac{}{}+\frac{}{}\frac{}{})$

$\frac{}{}\frac{}{}+\frac{}{}\frac{}{})+(\frac{}{}\frac{}{}+\frac{}{}\frac{}{})+(\frac{}{}\frac{}{}+\frac{}{}\frac{}{}+3\frac{}{}\frac{}{})$

$+$ $SdsE(u\delta u+v\delta v+w\delta w)$ . (5)

5.1.2 Determinate equation from a Taylor series expansion and partial integration

Putting $SdsE(u\delta u+v\delta v+w\delta w)=0$ in the indeterminate equation (5) and performing a Taylor series expansion
to first.order and neglecting higher-order terms, we get as follows:

(3-29) $0=$ $\iiint dxdydz\{RQ---\rho\rho\{\begin{array}{l}\frac{}{}+u\frac{}{}+v\frac{}{}+w\frac{}{})+\epsilon(==u\frac{}{}+u\frac{}{}+v\frac{}{}+w\frac{}{})+\epsilon(\frac {}{}2xTv+\frac {}{}7v+\frac {}{}vF)]\delta v\frac{}{}+u\frac{}{}+v\frac{}{}+w\frac{}{})+\epsilon(\neg+\frac {}{}w\tau+=ddzw)]\delta w\end{array}$ (6)

Rom (6) we obtain (3), i.e. the kinetic equation, which is equivalent to the first equation of (2).

5.1.3 Determinate equation deduced from boundary condition

As a boundary condition, Navier used two constants in one equation. In this aspect, his method is unique
among the original formulators. Navier explains as follows: regarding the conditions which apply at the points
on the surface of the fluid element, if we substitute
$edydz$ $arrow$ $ds\cos l$ , where $l$ is the angle by which the tangent plane makes with the yz-plane of the surface
frame,
$edxdz$ $arrow$ $ds\cos m$ , where similarly $m$ is $s$ the angle with the xz-plane,. $dxdy$ $arrow$ $ds\cos n$ , where similarly $n$ is the angle with the xyplane,. $\iint dydz,$ $\iint dxdz,$ $\iint dxdy$ $arrow$ $Sds$ , where $S$ is the unit normal to the surface at the point,
then, because the factors multiply $\delta u,$ $\delta v$ and $\delta w$ respectively reduce to zero, the following determinate equations
should hold for any point on the surface of the fluid element:

(3-32) $\{\begin{array}{l}Eu+\epsilon[\cos l2+\cos m(\frac{}{}+\frac{}{}+\cos nEv+\epsilon[\cos l(\frac{}{}+\frac{}{})+\cos m\frac{}{}+\cos n\},’Ew+\epsilon[\cos l(\frac{}{}+\frac{}{})+\cos m(\frac{}{}+\frac{}{})+\cos n2\frac{}{}]=0.\end{array}$ (7)

Here the value of the constant $E$ must vary in accordanoe with the nature of solid with which the fluid is in
contact. The equations of (7) are an expression of conditions prevailing on the boundary of the surface and
constitute the so-called boundary conditions. The first terms of the left-hand-side of (7) are defined in (4) for
the expression that we seek for the sum of the momentum of all interactions arising between molecules on the
boundary and the fluid, while the second terms are the normal derivatives. Here, derivative terms on the left-
hand-side of (7) are expressible as $v+v$ . If we introduce the basis of the tensor as $[\cos l$ $\cos m$ $\cos n]$ ,
then the tensor part of (7) is expressible as: $t=\epsilon[\{2v-(v+v)\}\delta+(v+v)]=\epsilon\{0\delta+(v+v)\}=$

$\epsilon(v+v)$ .
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5.2 Cauchy’s two constants and tensor
In this section we assume the following definitions:

$a,$ $b,$ $c$ : the coordinate values of a molecule $m$ in the rectangular axes of $x,$ $y,$ $z$ ; $a+\Delta a,$ $b+\Delta b,$ $c+\Delta c$ :
the coordinates of an arbitrary molecule $m$ ; . $\xi,$

$\eta,$
$\zeta$ : three functions of $a,$ $b,$ $c$ representing infinitesimal

displacements parallel to the axes of molecule $m;$ $\cdot(x, y, z),$ $(x+\Delta x, y+\Delta y, z+\Delta z)$ : the coordinates
of molecules $m$ and $m$ in the new state of the system ; . $r(1+\epsilon)$ : the distance between the molecule $m$

and $m$ ; . $\epsilon$ : the dilatation of the length $r$ in the path from the first state to the second, and then we have
$x=a+\xi,$ $y=b+\eta,$ $z=c+\zeta$ ; $\circ X,$ $Y,$ $Z$ : the quantities of the algebraic projections.

Cauchy deduces the three following elements of material points of elasticity after calculating the interactions
of molecules, the details of which are omitted for sake of brevity. Moreover, we start with the following equation
of elasticity

(40) $\{\begin{array}{l}X=(L+G)\frac {}{}a\xi+(R+H)\frac{}{}\xi+(Q+I)\frac{}{}\xi+2R\frac{}{}+2Q\frac{}{},Y=(R+G)\frac{}{}\#+(M+H)\frac{}{}+(P+I)\frac{}{}\not\leq+2P\frac{}{}+2R\frac{}{},Z=(Q+G)\frac {}{}i+(P+H)\frac{}{}\xi+(N+I)4+2Q\frac {}{}L+2P\frac{}{}\end{array}$

which displays a119 components of a tensor. (The invariants of the tensor are represented by the two constants
$G$ and $R$ . )
Cauchy says of the elements of the tensor, i.e. the invariable values: $G,$ $H,$ $I,$ $L,$ $M,$ $N,$ $P,$ $Q,$ $R$ :
If we suppose that the molecules $m,$ $m,$ $m,$ $\cdots$ are originally allocated by the same way in relation to the

three planes made by the molecule $m$ in parallel with the plane coordinates, then the values of these quantities
come to $\underline{}$invariable, even though a series of changes are made among the three angles: $\alpha,$

$\beta,$
$\gamma$ .

Cauchy considers symmetric tensors such that:

(41) $G=H=I$, $L=M=N$, $P=Q=R$, (45) $L=3R$.

(46) $1Y=(R+G)\}\{\begin{array}{l}+2R\frac{}{}+2R\frac{}{},(47)\nu=\frac{}{}+\frac{}{}+\frac{}{}\end{array}$

Cauchy may be the inventor of the term 10 “tensor“, and Poisson supports Cauchy’ $s$ symmetry properties
when he reduces the number of independent components $hom9$ to 6 elements, in the following quote:

$D$ ‘un autre c\^ot\’e, il faut, pour 1 ‘equilibre $d$ ‘un parall\’el\’epip\‘ede rectangle $d$ ‘une \’etendue insensible,
que les neuf composantes des pressions appliquees \‘a ses trois faces non-parall\’elles, se r\’eduisent \‘a
six forces qui peuvent \^etre in\’egales. Cette proposition est due \‘a M.Cauchy, et se d\’eduit de la
consideration des momens. [17, \S 38, p.83]

Continuing, we define the density of molecules as: (48) $\Delta=\frac{}{}$ , where $\mathcal{M}$ is the sum of the mass of molecules
contained in the sphere and $V$ is the volume of the sphere. We then find expressions for the two constants, $G$

and $R$ :

(50) $\{\begin{array}{l}G=\pm\frac{}{}\int\int\int rf(r)\cos\alpha\sin pdrdqdp =\pm\frac{}{}\int rf(r)dr,R=\frac{}{}\int\int\int rf(r)\cos\alpha\cos\beta\sin pdrdqdp =\frac{}{}\int rf(r)dr=\pm\frac{}{}\int[rf(r)-rf(r)]dr\end{array}$ (8)

where we have used: (51) $\cos\alpha=\cos p$ , $\cos\beta=\sin p\cos q$ , $\cos\gamma=\sin p\sin q$ . 11 When we calculate
these values in the general case then (8) yields the following expressions:

(57) $\{E\equiv\ovalbox{\tt\small REJECT}(Q+G)\angle+(Q+I)f\Delta$

”,
$1$ The editors of Hamilton $s$ papers [6, p.237, footnote] say, ‘’ The writer believes that what originally led him to use the terms

‘modulus’ and ‘amplitude,’ was a recollection of M. Cauchy’s nomenclature respecting the usual imaginaries of algebra.”
1lWe obtain the following results:

$\{\begin{array}{l}\int\int\cos\alpha\sin pdqdp =2\pi\int\cos p\sin pdp=2\pi[-\frac {}{}B]=\frac{}{},\int\int\cos\alpha\cos\beta\sin pdp=\int\cos qdq\int\cos p(1-\cos p)\sin pdp=[\frac{}{}+\frac{}{}\sin 2q][-\frac{}{}]=(\frac{}{}-0)(\frac{}{}-\frac{}{})=\frac{}{}C=\frac{}{}\frac{}{}=\frac{}{}, C=\frac{}{}\frac{}{}=\frac{}{},\end{array}$
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$\frac{}{}=2(R+c)+(R-G)v,\frac{}{}=2(R+G)+(R-G)vy(41)cant$, $\frac{}{}=2(R+G)\Delta+(R-G)v$ ,

$\frac{}{}=(R+G)(\Delta\Delta)$ , $\frac{}{}=(R+G)(+)$ , $\frac{}{}=(R+G)(\frac {}{}b\xi\Delta)$ .

For the sake of convenience, in the particular case when booth (41) and (45) hold, it is sufficient to have :
(59) $(R+G) \Delta\equiv\frac {}{}k$ , $(R-G)\Delta\equiv K$ , $\Rightarrow$ $R= \frac{}{}$ $G= \frac{}{}$ . Equations (56) and (57) can be
displayed in a more convenient manner

(60) $\Rightarrow$ $\{\begin{array}{lll}A F EF B DE D C\end{array}\}$ $=$ $[k \frac {}{}k\frac {}{}k4+Kv\frac {}{}k(+)\frac {}{}k\}a\partial c\partial c\partial b\partial c\partial+\frac {}{}k(\Delta\Delta\Delta+\Delta\partial\partial a\partial c\partial]$ (9)

Here, we must remark that the layout of the symmetric tensor of (58) or (60) is Cauchy’s invention. If,
moreover, the condition (54) : $R=-G$ holds, then $k=0$ holds, thus yielding the following identities:
(61) $A=B=C=Kv$ , $D=E=F=0$.

5.2.1 Equilibrium and kinetic equation of fluid by Cauchy

In what follows, equations referring to Cauchy’s work on fluids will be designated in the form $(\cdot)$ . instead
by $(\cdot)$ to distinguish these ffom equations appearing in his work on elasticity above.
(Verification of equations in fluid. )
By replacing $(a, b, c)$ of (56) and (57) with $(x, y, z)$ , we derive an equivalent set of equations for fluids as
for elasticity. We omit for the sake of brevity the precise process in leading to the two constants or equations
and present the final form

(76) . $\{\begin{array}{l}\frac{}{}+\frac{}{}+\frac{}{}+X\Delta=0,\frac{}{}+\frac{}{}+\frac{}{}+Y\Delta=0,\frac{}{}+\frac{}{}+\frac{}{}+Z\Delta=0,\end{array}$ $\Rightarrow$ $\{\begin{array}{lll}A F EF B DE D C\end{array}\}$ $[ \frac{}{}\frac{}{}]$ $+\Delta\{\begin{array}{l}XYZ\end{array}\}$ $=0$

We follow the layout of Cauchy’s symmetric tensor as presented originally in (76) $\cdot\cdot$ By replacing $R+G$ and

$motionandinequi1ibriumtothesame2RwithCauchy’ susageC\equiv R+G=\frac{}{},C\equiv 2R=\frac{}{},wefor(46)foundforticity$.
$canreducetheseequationsoffluidsinHowever,herewewouldliketoadopt$

not Cauchy ’
$sC$ and $C$ but $C=R$ and $C=G$, because it is more rational to do so, as can be seen by

checking the reciprocal coincidence in Table 2. 12

(Comparison with and comments on Navier’s equation in elasticity. )

Cauchy states: for the reduction of equations (79) . and (80) . to Navier’s equations( [12]) to determine
the law of equilibrium and elasticity, it is necessary to assume such as the condition which we have mentioned
above: $k=2K$. If $G=0$ then we get as the equations of equilibrium and the kinetic equations in equal
elasticity, then the tensor is equivalent with the tensor not only of the elastic but also of $\epsilon$ in Navier’s fluid
equation (3) (c.f. Table 4).

5.3 Poisson’s two constants and tensor
5.3.1 Principles and equations in elastic solids

Below, we deduce $K$ and $k$ according to Poisson[15, pp.368-405, \S 1-\S 16]. For brevity, we introduce the
following definitions:

$\{\begin{array}{l}ax+by+c(z-\zeta)\equiv\phi,ax+by+c(z-\zeta)\equiv\psi,\end{array}$ $\{\begin{array}{l}\phi\frac{}{}+\psi\frac{}{}+\theta\frac{}{}\equiv\phi)\phi\frac{}{}+\psi\frac{}{}+\theta\frac{}{}\equiv\psi,\end{array}$

$ax+by+c(z-()\equiv\theta$ , $\phi\frac{}{}+\psi\frac{}{}+\theta\frac{}{}\equiv\theta$

(10)

We assume that $\alpha$ is the average molecular distance, $\omega$ represents a finite surface area, and $\frac {}{}z$ is the average
number of molecules in $\omega$ . We then get the pressure terms.

$P= \sum\frac {}{}fr$ , $Q= \sum\frac {}{}fr$ $R= \sum\frac {}{}fr$ . (11)

12Here, $C$ and $C$ are not the two-constants defined here by us but introduced temporarily by Cauchy himself.
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By using his so-called effective transformation, 13, we get from (11) the following:

$\{Q=\int\int 2\pi R=\int\int\{\begin{array}{l}(g+g)\sum fr+(gg+hh+ll)g \sum\frac{}{}\tau 35\frac {}{}F’,(l+l)\sum\frac{}{}\tau fr+(gg+hh+ll)l\sum\frac{}{}\tau 35,\end{array}$ $\Delta$ $:=\cos\beta\cdot\sin\beta d\beta d\gamma$, (12)

Later, Poisson recalculates this problem in another book [17] 14, in which he deduces the general principles
behind elasticity and fluids, and hence derives the representative two-constants theory with $K$ and $k$ for both
elasticity and fluids as follows:

$\{Q=\ovalbox{\tt\small REJECT}$ (13)$KK(1+ \frac{}{})+kK((11++\frac{}{}\frac{}{}))++kk\{\begin{array}{ll}3\frac{}{}+\frac{}{}+\frac{}{} +\frac {}{}3\frac{}{}+\frac{}{} \frac{}{}+\frac{}{} +3\frac{}{}\end{array}\} \exists c+c+\prime ti[\}],,$

,

where, for abbreviation, he uses similarly $K$ and $k$ . Moreover, instead of $\alpha$ in (11), he introduces $\epsilon$ as the
average distance between molecules, and from the following considerations:. on voit que la pression $N$ restera la m\^eme en tous sens autour de ce point: elle sera normale \‘a ce plan
et dirigee de dehors en dedans de $A$ , ou de dedans en dehors, selon que sa value sera positive ou negative, [
(transl): we see that the pressure $N$ orients omni-directionally around an arbitrary point: $A$ , and from outward
to inward or from inward to outward, according to that the value will be positive or negative, (then we ought
to consider as $\frac{}{}$ ) ; $]$

$0$ from the assumption of isotropy and homogeneity of space, $r=x+y+z$ , $\Rightarrow$ $\Sigma\frac {}{}fr=\Sigma\frac {}{}rfr$ ,
(cf. Poisson [17], pp. 32-34):

(3-8) $K \equiv\frac{}{}\sum rfr=\frac{}{}\sum\frac{}{}$ , $k \equiv\frac{}{}\sum r\frac{}{}=\frac{}{}\sum\frac {}{}r\frac{}{}$ , (14)

et \’etendant les sommes $\Sigma$ \‘a tous les points mat\’eriels du corps qui sont compris dans la sph\‘ere
$d$ ‘activit\’e de M. $[\Rightarrow$ and extending the summation $\Sigma$ to all the material points contained in the
active sphere by $M$ . ] (cf. Poisson [17], p. 46):

5.3.2 Fluid pressure in motion
15 Poisson‘s tensor of the pressures in a fluid, which he assumes compressible, reads as follows:

(7-7) $\{\begin{array}{lll}U U UV V VW W W\end{array}\}$ $=$ $[p \beta\beta-\frac{}{}-\frac{}{}+2(\frac{}{}+\frac{}{}\beta\frac{}{}+\frac{}{})\}t]$ ,

$(k+K)\alpha=\beta$ , $(k-K)\alpha=\beta$ , $p=\psi t=K$ , $\Rightarrow$ $\beta+\beta=2k\alpha$ ,

where $\chi t$ is the density of the fluid around the point $M$ , and $\psi t$ is the pressure. Here $K$ and $k$ are the same
constants as in $(3-8)(=(14))$ for an elastic body. Velocity and pressure are defined as follows:

$u=(u, v, w)$ , $\frac{}{}=u,$ $\frac{}{}=v,$ $\frac{}{}=w$ , $\varpi\equiv p-\alpha\frac{}{}-\frac{}{}\frac{}{}$ , ( $\varpi\equiv p$ , if incompressible.)

which substituted into $(??\cdots)$ yields

$\{\begin{array}{l}=dxdt=\frac{}{}+u\frac{}{}+v\frac{}{}+w\frac{}{},\frac {}{}t\#=\frac{}{}+u\frac{}{}+v\frac{}{}+w\frac{}{},=dzdt=\frac{}{}+u\frac{}{}+v\frac{}{}+w\frac{}{}.\end{array}$ $\Rightarrow$ $(7-9)$ $\{\begin{array}{l}\rho(X-\frac {}{}7)=\frac{}{}+\beta(\frac {}{}7uuu\rho(Y-\frac{}{}\#)=\rho(Z-=)=\frac{}{}+\beta(\frac {}{}wr\frac{}{}+\beta(7v+\frac {}{}z+)+=+).\end{array}$ (15)

$13$ ([17, p.42]).
14In Poisson [17], the title of the chaper 3 reads “ Calcul des Pressions dans les Corps \’elastiques ; \’equations defferentielles de

l’equilibre et $du$ mouvement de ces Corps.”
15In Poisson [17], the title of the chaper 7 reads ” Calcul des Pressions dans les Fluides en mouvement; $\acute {}quatio\eta s$ defferentielles

de ce mouvement.”
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5.4 Saint-Venant’s tensor

Saint-Venant 16 explains that the object of his paper [19] is to simplify the description and calculation of
the molecular interactions without specifying the molecular function. We show Saint-Venant’s tensor, which
from the extract seems to hint Stokes [19]. For this section we introduce the following parameters: $\xi,$ $\eta,$

$\zeta$

are the Velocity components at the arbitrary point $m$ of a fluid in motion in the coordinate directions $x,$ $y,$ $z$

respectively, $P,$ $P,$ $P$ are the normal pressures and $P,$ $P,$ $P$ are the tangential pressures with sub-index
pair indicating the perpendicular plane and direction of decomposition.

(1) $\frac{}{}=\frac{}{}=\frac{}{}=\frac{}{}=\frac{}{}=\frac{}{}=\epsilon$ ,

where $\frac{}{}(P+P+P)-\frac{}{}(\mathscr{F}+\neq+\mathscr{F})=\pi$ . Rom this last equation, we solve for normal pressure

as follows: (2) $P=\pi+2\epsilon 4$ , $P=\pi+2\epsilon d$ , $P=\pi+2\epsilon$ . From (1) , we then obtain the
tangential pressures: $P,$ $P,$ $P$ , which then reduces the tensor to symmetric form

$\{\begin{array}{lll}P T TT P TT T P\end{array}\}$ $=$ $[ \pi+24\epsilon\epsilon d\angle+d1\epsilon(\frac {}{}D\angle)\pi+2\epsilon \mathscr{Q}gd\Delta dx\overline {}z]$ . (16)

Saint-Venant says that by using his theory, we can obtain concordance with Navier, Cauchy and Poisson:

Si 1‘on remplace $\pi$ par $\varpi-\epsilon(\frac{}{}+\frac{}{}+\frac{}{})$, et si 1‘on substitue les \’equations (2) et (3)
dans les relations connues entre les pressions et les forces acc\’el\’eratrices, on obtient, en supposant $\epsilon$ le
m\^eme en tous les points du fluide, les \’equations diff\’erentielles donn\’ees le 18 mars 1822 par M.Navier
( $M\mathscr{E}moires$ de l’Institut, t.VI), en 1828 par M.Cauchy (Exercices de Mathematiques, p.187) 17, et
le 12 octobre 1829 par M.Poisson (m\^eme $M\mathscr{E}moire$ , p.152) 18. La quantit\’e variable $\varpi$ ou $\pi n$‘est
autre chose, dans les liquides, que la pression normale moyenne en chaque point. [19, p.1243]

Saint-Venant’s paper[19] seems to provide Stokes a clue to the notion of tensor (20) and his principle, because
we can see the close correspondence by comparing 19 Saint-Venant’s $t$ :

$t=(\pi+2\epsilon v-\gamma)\delta+\gamma$ , $($where, $\gamma\equiv\epsilon(v+v))$ ,

$=$ $( \frac{}{}(P+P+P)-\frac{}{}(\frac{}{}+\frac{}{}+\frac{}{})+2\epsilon v-\gamma)\delta+\gamma$

$=$ $( \frac{}{}(P+P+P)-\frac {}{}v)\delta+\epsilon(v+v)$ $\Leftarrow$ $2\epsilon v\delta=\epsilon(v+v)\delta=\gamma\delta$ (17)

with Stokes’ $t$

’ (21). Here, using (17), if we put 20 $P=P=P=-p$ by assuming isotropy and
homogeneity, which Stokes similarly takes as his principle as follows:

If the molecules of $E$ were in a state of relative equilibrium, the pressure would be equal in all
directions about $P$ , as in the case of fluids at rest. Hence I shall assume the following principle :. That the difference between the pressure on a plane in a given direction passing through any

point $P$ of a fluid in motion and the pressure which would exist in all directions about $P$ if the
fluid in its neighbourhood were in a state of relative equilibrium depends only on the relative
motion of the fluid immediately about $P$ ; and. that the relative motion due to any motion of rotation may be eliminated without affecting the
differences of the pressures above mentioned.

[21, p.80].

Then (17) is equivalent to Stokes’ $t$ as follows. For example, if we put $\epsilon\equiv\mu$ , and choose the $t$ component
of Saint-Venant’s tensor from (16):

$\pi+2\epsilon\frac{}{}$ $=$ $-p+(2- \frac{}{}\epsilon\frac{}{})-\frac{}{}(\frac{}{}+\frac{}{})=-p+2\epsilon\{\frac{}{}\frac{}{}-\frac{}{}(\frac{}{}+\frac{}{})\}$

$=$ $-p+2 \epsilon\{\frac{}{}-\frac{}{}(\frac{}{}+\frac{}{}+\frac{}{})\}=-p+2\epsilon(\frac{}{}-\delta)$ $\Rightarrow$ $P$ of Stokes’ (20).

16Adh\’emar Jean-Claude Barr\’e de Saint-Venant $(1797arrow 1886)$ .
17 Cauchy [1, p. 226]
18 Poisson [17, p. 152] $(7-9)f$ .
19Here, we cite the source of the tensorial description of $t$ of Poisson and Cauchy from C.Ttuesde11[23], of Navier from G.Darrigol

[4], and otherwise by ourself or Schlichting[20].
$2$ cf. I.Imai [7, p.185].
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The other tensor components are likewise demonstrated but we omit the proof here for brevity. Moreover, Saint-
Venant proposes that putting $\pi=\varpi-\epsilon(+\Delta dyd+\Delta ddz)=\varpi-\epsilon v$ then $t=(\varpi-\epsilon v+2\epsilon v-\gamma)\delta+\gamma=$

$(\varpi-\epsilon v)\delta+\epsilon(v+v)$ . This form of his tensor plays a key role in common with Navier $s$ , Cauchy’s and
Poisson‘s constants.

5.5 Stokes’ equations and tensor

In expressing the fluid equations in the following form

(12) $\{\begin{array}{l}\rho(\frac{}{}-X)+\frac {}{}Rx-\mu(\frac {}{}xT2u+=dudy+=ddu)-\mu 3(\frac{}{}+\frac{}{}+\frac{}{})=0,\rho(\frac{}{}-Y)+\frac {}{}Ry-\mu(=+arrow dydv+=ddv)-\mu 3(\frac{}{}+\frac{}{}+\frac{}{})=0,\rho(\frac{}{}-Z)+\frac {}{}Rz(=+\frac {}{}yw+=ddw)-3\mu(\frac{}{}+\frac{}{}+\frac{}{})=0.\end{array}$ (18)

Stokes points out the coincidence with Poisson with the correspondence: $\varpi=p+\frac{}{}(K+k)(\frac{}{}+\frac{}{}+\frac{}{})$ $\Rightarrow$

$\nabla\varpi=\nabla p+\rho\nabla\cdot(\nabla\cdot u)$ .
Stokes also makes the comment:

The same equations have also been obtained by Navier in the case of an incompressible fluid
(M\’em. de 1‘Acad\’emie, $t$ . VI. p.389) 21, but his principles differ $hom$ mine still more than do
Poisson‘ $s$ . [ $21$ , p.77, footnote]

He further states: observing that $\alpha(K+k)\equiv\beta$ , this value of $\varpi$ reduces Poisson $s$ equation $(7-9)(=(15)$
in our renumbering) to the equation (12) of this paper. Stokes proposes his approximate equations in [21,
p.93] :

(13) $\{\begin{array}{ll}\rho(\frac{}{}-X)+\frac {}{}Rx-\mu(dx+=dudg!+=dudz)=0, \rho(\frac{}{}-Y)+\lrcorner dddv \frac{}{}+\frac{}{}+\frac{}{}=0,\rho(\frac{}{}-Z)+ddwdwdw \end{array}$ (19)

which are identical to $(7-9)(=(15)$ , adding that: ‘ these equations are applicable to the determination of the
motion of water in pipes and canala, to the calculation of the effect of friction on the motions of tides and waves,
and such questions. ([21, p.93]). Here we shall trace his deduction with the Stokes tensor in the form:

$\{\begin{array}{lll}P T TT P TT T P\end{array}\}$ $=$

$[p-2 \frac{}{}-\delta)-\mu(\frac{}{}+\frac{}{}-\mu(+\frac{}{}\{p-2\mu\frac{}{}-)-\mu(\frac{}{}+\frac{}{}-\mu\frac{}{}+\frac{}{})p-2\mu\frac{}{}-\delta)-\mu(+\frac{}{})-\mu(\frac{}{}+)]$ ,
(20)

where $3 \delta=\frac{}{}+\frac{}{}+\frac{}{}$

He remarks: “it may also be very easily provided directly that the value of $3\delta$ , the rate of cubical dilatation ”

We find that Stokes’ tensor can be described compactly in component form as follows:

$-t=\{p-2\mu(v-\delta)+\gamma\}\delta-\gamma$, $\Leftarrow$ where, $\gamma=\mu(v+v)$ ,
$=$ $\{p-2\mu v\}\delta+\gamma(-\delta+\delta-1)$ $\Leftarrow$ where, 2$\mu v\delta=\mu(v+v)\delta=\gamma\delta$ ,

$=$ $(p+2 \mu\gamma)\delta-\gamma=(p+\frac{}{}\mu v)\delta-\mu(v+v)$ (21)

Therefore, the sign $of-t$ depends on the location of the tensor in the equation. 22

Now, in considering the coincidence of (16) with (18), we see that Stokes’ tensor rnay have originated with
Saint-Venant’s. The article by J.J. $O$ ‘Connor and E.F.Robertson points out this resemblance. 23 Moreover,
Stokes reports on the then academic activities within hydromechanics [22], in which he cites Saint-Venant[19].
Therefore, Stokes says: “I shall therefore suppose that for water, and by analogy for other incompressible fluids.”
([21, p.93]). At any rate, we obtain (13) $(=(19))$ with (20) and the following (22):

where $\{\begin{array}{l}PQR\end{array}\}$ $=$ $\{\begin{array}{lll}P T TT P TT T P\end{array}\}$ $[ \frac{}{}\frac{}{}]$ (22)

21Navier[13].
22Schlichting reverses the sign of the Stokes’ tensor as follows: $\sigma=-p\delta+\mu(+\frac{}{}\frac {}{}L)-t;\delta$ [$20$ , p.58, in footnote].
23 cf. J.J. $O$ ‘Connor, E.F.Robertson, $arrow$ http: $//www$-groups.dcs.st-and.ac.uk$/history/Printonly/Saint$-Venant.html. [14]
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6 Conclusions
The “two-constants theory” is the currently-accepted theory for isotropic, homogeneous, linear elasticity.

(Darrigol[4, p.121]). We have shown in our report: i) the original mathematical evidence in the genealogy of
tensor; of which ii) the tensors and the corresponding equations as developed historically by Navier (1822),
Cauchy (lS28), Poisson (1829), Saint-Venant (1843) and Stokes (1845) (sic. in order) ; and iii) the appearance
of the notion of tensors especially in the work of Saint-Venant. It is our contention that his was an epoch-making
contribution, by simplifying and identifying the concordance between these pioneers of the MDNS equations,
for using only tensor without the microscopically descriptions, and providing context for the contribution of
Stokes.
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