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1 Introduction

We consider the Cauchy problem of the heat equation with a potential,

an Ou=Au—V(jz])u in S=RYN x(0,00),

i ‘
u(z,0) = ¢(z) in RY,

‘where N > 2 and ¢ € L2(R", pdz) with p(x) = exp(|z|2/4). Throughout
this paper we assume that the potential V satisfies the condition (V') for
some w > 0 and 6 > 0:

() V=V(z|) e C'(RM),
(i) V(r)>0 on [0,00),
(V) { (i) supr2t? lV(r) _ %[ < o,
r>1 r
: d
\ (iv) igﬁ) r3 (ZI—;V) (r)| < oo.

We denote by H (t) the set of the maximum points of the solution u of (1.1)
over RN x {t}, that is,

H() = {:1: eRN : u(z,t) = max u(y, t)} :
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and call H(t) the set of hot spots of the solution u at the time ¢.

The large time behavior of hot spots on non-compact domains has been
studied since Chavel and Karp’s interesting work [2] in 1990. In particular,
they used the fundamental solution of the heat equation on RV, and proved
that the hot spots on R tend to the center of mass of the initial data as
t — oo if the initial data is a nonnegative function having a compact support.
Jimbo and Sakaguchi [13] treated the heat equation on the half space in
RY, and studied the relation between the movement of hot spots and the
boundary conditions. More precisely, they showed that H(t) consists of a
single point z(t) = (z1(t), z2(t),-..,zn(t)) for any large ¢t and there holds
(2t)"1/2zn(t) — 1 (xy — 00) as t — oo if the boundary condition is the
Dirichlet or the Robin, whereas zx(t) = 0 (on the boundary) for any large
t if the boundary condition is the Neumann. Furthermore they also treated
the movement of hot spots for the radial solutions in the exterior domain
of a ball. Subsequently, the first author of this paper [6], [7] studied the
movement of hot spots on the exterior domain of a ball without the radial
symmetry of the initial data, by using rescale arguments and the radial
symmetry of the domain effectively. Recently the authors of this paper [8]
studied the decay rate of derivatives of the solution of the heat equations
with a potential, and proved that the optimal decay rate of the derivatives of
solutions was determined by the shape of the harmonic functions for A - V.

From the result of 2], analyzing the heat kernel and showing their global
bounds seem to be powerful to investigate the large time behavior of the hot
spots. The global bounds of the heat kernel have been studied by Aronson
[1], Davies [3], Fabes and Stroock (5], and many others (see also [15], [17],
[18], and references therein). Among others, Zhang [17] studied the large
time behavior of the heat kernel for the case which includes the potential V
satisfying the condition (V). However, as stated in [13], the global bounds for
the heat kernel do not seem useful to obtain particular large time behaviors
of the hot spots for the equation (1.1).

In this paper, we make a survey on the large time behavior of the hot
spots H(t) of the solution u of (1.1) under the condition (V).

We introduce some notations in order to give the main results of this
paper. Let Agn-1 be the Laplace-Beltrami operator on the unit sphere
S¥-1and k=0,1,2.... Let wi be the k-th eigenvalues of

(1.2) ~Agv1Q=wQ on S¥!, QelL*SVY,

that is, wx = k(N +k—2). Furthermore let {Qk,i}?.cﬂ and [ be the complete
orthonormal system and the dimension of the eigenspace corresponding to
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wg, respectively. In particular, lg = 0, l; = N, and we may write

T T 473 .
1.3 — | = | —=)=rk—, t=1,...,N
(1.3) Qo,1 <|w ) K0, Qi <|x]) 1 A
where k¢ and k; are positive constants. Let o = a(w) be a positive root of
the equation a{a + N — 2) = w, that is,

(1.4) a(w)___—-(N—2)+\/2(N—2)2+4w

Then, under the condition (V'), there exists a unique solution Uy of the
ordinary differential equation

> 0.

o) U+ ﬁ;‘—lv' ViU =0 in (0,00)
with
(1.5) limsup |U(r)| < o0, lim r @Ry (r) =1,
r—0 T—00

where Vi (r) = V(r) + wpr—2
We are ready to state the main results, which can be seen in [9, 10, 11].
We put

M= /R  $(x)Uo(la]) da

and we denote the L2(R", pdy) -norm by || - || and the usual LP(R”")-norm
by || - [[Le(rn). We first give a result on the large time behaviors of the
solution of (1.1) and its hot spots when w > 0.

Theorem 1.1 ([9]) Consider the Cauchy problem (1.1) under the condition
(V) with w >0 and 6§ > 0. Then, for any L > 0,

(1.6) lim sup |t%+°‘(“’)u(a:,t) — cMUp(|z|) | =0,
t=0 2eB(0,L) ,
and
W 2
(1.7) Jim (1 +1) e, ((1 + t)%y,t) = cM|y|*@e %
— 00

in L*(RY, pdy) and L°(RYN), where c =1/ [gn |z|22(@)e~1e1*/4dz. Further-
more, if M >0, for any t > 0, H(t) # 0, and

(1.8) lim sup t"%lxl — v 20(w) ‘ =0.

t—=0 zeH(t)
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Next we give a result on the direction for the hot spots to tend to the space
infinity and the number of the hot spots.

Theorem 1.2 ([9, 11]) Consider the Cauchy problem (1.1) under the con-
dition (V) with w 2 0 and 6 > 0. Furthermore assume M > 0 and

Zz

Ay = /RN $(@) Uy (|z]) - dz £ 0.

]

Then there ezist a constant T > 0 and a curve = z(t) € C*([T, ) : RY)
such that

(19) HO= (@) 2T
and

im |28 _ A | _
010 25 |zl " Tal| =7

In case of w = 0, the situation will change from that in w > 0.

Theorem 1.3 ([10]) Let N > 3. Suppose that u be the solution of the
Cauchy problem (1.1) under the condition (V) with w = 0. Assume M > 0.
Then, for anyt >0, H(t) # 0 and

We) 1l g

I
im sup 2] 2

t—0 zeH(t)

In particular, there hold

liminf ¢t~ inf |z| >0,
t—o0 z€H(t)

limsup ¢~/ sup || < oo
t—00 z€H(t)

for some constant a € (2, N].
As a corollary, we have the following (see Corollary 1.1 in [10]).
Corollary 1.1 Assume the same conditions as in Theorem 1.3.
(i) If im r*V(r) =@ > 0 for some k € (2,N), ‘then
T—00
- 1/k
o] = (Ni‘jt—';) (1+0(1) (2<x<N),

o = 2B 4 01) (e = N),

for all x € H(t) and all sufficiently large t.
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(ii) IfV € LY(RN), then

R NN
ol = | B e V0eDds] o)

for all x € H(t) and all sufficiently large t.

Thus, if V' has a compact support, however small V is, the hot spot moves
to infinity, never stays around the center of mass.

Finally, we treat the case N = 2 and w = 0. Hereafter, we denote the
ball centered at a with its radius r by B(a,r).

Theorem 1.4 ([11]) Let u be the solution of the Cauchy problem (1.1) under
the condition (V) and assume (N,w) = (2,0). Then, for any L > 0,

tlirglo t(logt)?u(x,t) = 7' MUy(|z|)
in C(B(0,L))
tlirgo t(logt)u ((1 +t)1/2y, t) = (27r)’1Me"y|2/4
in C(R?\ B(0,L)) and L*(R?, pdy) hold.

Theorem 1.5 ([11]) Let u be the solution of the Cauchy problem (1.1) under
the condition (V) and assume (N,w) = (2,0) and M > 0. Then, for any
t>0, H(t) # 0 and

(logt)|z[*

lim sup 5

t—00 peH(t)

1 o

Now, we briefly explain the ideas of proving Theorems 1.1 — 1.5. Let ¢ €
L*>(R™, pdz) and u = S(t)¢ be the solution of (1.1). By the same arguments
as in [6] and [7], we can decompose the initial value ¢ in the Fourier series:

co I

(1) 0= el () i PR pde).

k=0 i=1

Put

B1i(@) = u(|) Qe (I—%) k() = ()28 ().
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Then, by the standard arguments for the parabolic equation (see (2.10) and
[14]), we see

(1.12) u(z,t) = iuk,i(x, t) in L°RYM) and C?*RY)
k=0

for all t > 0. Furthermore, for any k = 0,1,2,... and ¢ = 1,...,l§, there
exists a solution v ; = vk i(2,t) = Sk(t)dr,: of

O =Av—Vi(Jz))v in (RN\{0}) x (0,00),
(Pr) limsupy,_,o || ~*|v(z,t)] < oo for t>0,
v(z,0) = ¢ki(jz[) in RV
such that
(1.13) ugi(z,t) = vk (2, 1) Qi (%) , (z,t) €S.
Furthermore we put
(1.14)  wi(y,8) = 1+ ) Tvga(z,t), y=(1+t) "3z, s=log(l+1),
the forward self-similar transformation. Then wy ; = wg i(y, s) satisfies
(Lx) Ow=ILww in (RN\{0})x(0,00), w(y,0)=ki(ly) in R,

where

w

W+ wi N
)" e

w+—w.

Lyw = Liw—|e*V(e 3y WE VT2

} w, Liw = %div (pVyw)—
In order to study the behavior of the solution u, we investigate the behaviors
of wy ;(s) in the space L2(RY, pdy), by using the eigenfunctions of L}. The
lack of regularity of wy; near the origin is driven from the potential term
of L, and it seems to be difficult to obtain the asymptotic behaviors of the
derivatives of wy ;(s) as s — oo, by the behaviors of wii(s) in L*(RV, pdy),
directly.

We follow the strategy in [6]-[8], and obtain the asymptotic behaviors
of the derivatives of wg i(s) as s — oco. However, it also seems difficult to
apply the same arguments as in [6]-[8] directly, because of the singularities
of the potential (w + wi)r~2 at 7 = 0 and of e*V (e~*/%y) at (y, s) = (0,0).
We use several properties of Uy and radial functions constructed from inho-
mogeneous elliptic problems, and construct two super-solutions of (P) to



overcome the difficulty driven from the singularity of (w + wg)r—2 at r = 0.
By using these supersolutions, we can obtain Theorems 1.1 and 1.2.

The organization of this paper is as follows: In Section 2 we give basic
lemmas on several properties of stationary solutions and the super-solutions
of (Px). In Section 3 we consider the transformed problem (L), and study
the behaviors of the solutions. Proofs of Lemmas and Propositions in this
paper are not provided. They can be found in [9, 10, 11]. In Section 4 we
give sketchy proofs of Theorems 1.1 — 1.5 by using several results given in
the previous sections.

2 Basic Lemmas

In this section we enumerate several lemmas which assure the fundamen-
tal properties of solutions.

We first introduce several notations. For any sets A and B, let f =
f(Av) and g = g(A, ) be maps from A x B to (0,00). Then we say
fuu) < g\ p) for all X € A if, for any u € B, there exists a positive
constant C such that f(A, u) < Cg(), p) for all A € A. Furthermore, we say
FOyp) = g(A, ) for all X € Aif f(A, u) < g(A 1) and g(A, p) X (A, p) for
all A € A.

The following lemma on the solution of (O) is fundamental.

Lemma 2.1 Assume (V) for some w > 0 and § > 0. Let k = 0,1,2,...
and R=sup{r>0: V(r)=0 in [0,7]} €0, 00).

(1) There exists a unique solution Ui(r) of the ordinary differential equation
of (O) satisfying (1.5). Furthermore Uy, satisfies

(2.1) Uk(r) >0, Ui(r) >0, r >0,
(2.2) U(r)<rk,  0<r<i,
(2.3) Ur(r) < r®, Up(r) <xr®*1 r>R+1.

(ii) Let f be a continuous function on [0,00) such that |f(r)| < AUi(r) on
[0,00) for some constant A. Put

fl(r) = Uk(r)/ N[Uw(s)]™ (/Os TN_IUk(T)f(T)dT) ds.
Then

(2.4)  [|F[fl(r)| < —7'2Uk(7'), | Flf)'(r)] < 2N [2rUi(r) + r2U(r)]

7
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for all 7 > 0. Furthermore, for any solution v = v(r) of

(2.5) U’ + ﬁrll—

U’ —Vk(r)U = f mn (0, oo),
satisfying limsup,._,q |v(r)| < oo, there erists a constant ¢ such that

(2.6) v(r) = cUg(r) + Fx[f](r), r > 0.

(ili) In case of N = 2, statements in (i) and (i) except (2.3) hold. The
relation (2.3) is replaced by
lim rUj(r) = 1.

T—00

Next we construct a super-solution of (Py) by using the solution Uy. We
improve the argument in Lemma 4.1 of [8] for the exterior problem, and
obtain the following lemma.

Lemma 2.2 Let k = 0,1,2,.... Assume that (V) and E, hold for some
w € [0,wx). Lety > 0 and Uy, be a unique radial solution to (O). Then there
ezist a radial function

W(z,t) = C1(1 +t) ™ [Uk(z]) — A(L + )" Fx[Uk](|2])]

with A = oy + /2 satisfies the following properties: for any 0 < € < ¢ =
(A+2)7! and T > 0, there ezists a constant C such that

(2.7) AW > AW — Vi(|z))W in S,

(2.8) 0 < W(z,t) < CA+)"FWi(jzl) in De(T),
(2.9) W(z,t) > (1+t)"" on T(T),

where

DT) = {0 €RY x (T,0) : ol < (1 +£7}.
I(T) = {(:c,t) e RN x (T, 00) : |z] =e(1+t)1/2}
U{(:c,T) eRN x {T} : |z| < e(1+:r)1/2}.

In the case of N = 2, a variant lemma is obtained.



Lemma 2.3 Assume the condition (V). Then for any i,5 > 0 and any
sufficiently small € > 0, there ezist a function W = W (z, t) in S and positive
constants C1 and Cy such that
OW > AW —V(|z))W in S,
W(z,t) < Co(1+¢) " log(2 + )] I~ Wy(|z|) in D(T),
W(z,t) > Ci(1+¢t)*log(2+t)] on T(T.),
where T¢ is the constant satisfying e(1 + T,)'/? = 1.
Under (V), we can see that the LP-L? estimate holds.

Lemma 2.4 Let ¢ € L2(RN). Then, for any 1 < q < p < o0, there exists a
constant C' such that

1. 1

_N_1
(2.10) 1S®) 9|l Lrmmy < Ct z(y ”)||¢”Lq(RN), t>0,
(2.11) 10.5(€)8l 2, < CEM 6l gy, ¢ > 0.

Next we prove the existence of the solution of (Py), and give some properties
of the solution.

Lemma 2.5 Assume the condition (V) with somew > 0 and 6 > 0. Let ¢
be a radial function in L2(RN, pdx) and k = 0,1,.... Then there exists a
classical and radial solution of

(2.12) Ov=Av—Vi(lz])v in [RN\ {0}] x (0,00)

with the following properties:
(i) For any T > 0, v € L*(0,T : L*(RN)) N L2(0, T : HYRYN)). Further-
more, for anyi=1,...,l, the function

o(jl, ) Qe ( z )

||

is a solution of (1.1) with u(x,0) = ¢(|z|)Qk:(z/|z|).
(ii) Assume ¢ >0 on RN. Then, for any k, | € N with k < l,

0<S(t)¢ < Sk(t)p, t>0.

(iii) v satisfies (2.10) and (2.11) with S(t)¢ replaced by v(t).
(iv) Assume that there exist positive constants Cy and d such that

(2.13) le(®)lamm < Cit™, ¢ >o0.

79



80

Then, for any T > 0 and any sufficiently small € > 0, there exists a constant
Cy such that

Cat =4~ T~ F~1U,(|z)),

Cot=+4=F [[UL(lal)| + £ || Ui ()]

(2.14)  [(Bv)(=, 1)l
(2.15)  |(9rv)(|=|, )]
for all (z,t) € D(T), where j =0,1.

(v) In case of (N,w) = (2,0), assume that there erist constants C3 > 0 and
j > 0 such that

<
<

(2.16) [o(®)ll2 < Cs(1 + )2 [log(2 + )] 7

for all t > 0. Then for any sufficiently small € > 0, there exists a constant
Cy4 such that

(2.17)

830k f(z,1)| < Ca(1 + )7 [log(2 + £)) 7o' Vi(J<)

for all (z,t) € D(T¢) and 1l =0,1.

3 Self-similar transformation

In this section, we enumerate several properties of solutions to (Lg). To
this end, we first recall the following lemma on the eigenvalue problem for
the operator L,

Lip=—Xp in RV,
(Ek) ¢ is a radial function in RV with respect to 0,
o € H'(RY, pdy).

Lemma 3.1 (See Lemma 2.1 in [16].) Let w > 0 and k = 0,1,2,.... Let
{Aki}2, be the eigenvalues of (Ey) such that Ao < Ak < .... Then

(3.1) M = %ﬁ +i

and all the eigenvalues are simple. Furthermore the eigenfunction ¢y corre-
sponding to Ao is given by

2
(3.2) ek (y) = cily|*“ ) exp (_I_y4l_) a

where ¢y, is a positive constant such that ||pg| = 1.



By using Lemmas 2.4 and 3.1, we have the following proposition on the
decay rate of the functions vy, and wy.

Proposition 3.1 Assume the same conditions as in Lemma 2.5. Let v =
v(|z|,t) be the function constructed in Lemma 2.5 and w = w(|y|,s) be
defined by (1.14). Then there erists a positive constant C; such that

(33) lw()] < Cre™ZlIgll, s> 0.
Proposition 3.2 Assume the same conditions as in Proposition 3.1. Put
(3.4 o =cr [ Ukllel)(z)da.

RN

Then, for any L > 0,

(3:5) Jim |leF*w(s) - apen

=0.
C2({L~1<yI<L})

apn+2
Furthermore, if ay, = 0, then |lw(s)|| = O(e~"% *) as s — oo, and for any
L > 0, there exists a constant Cy such that

(3.6) ”e%k'sw(s)

< Coe™?%, s> 1.
C2({L1<lyl<L})

Here, we recall that v(]z|,t) can be expressed as
v(lzl,t) = c(®)Uk(|2) + Fil(Op0) ()](|])
with c(t) being a smooth function due to Lemma 2.1.

Proposition 3.3 Assume the same conditions as in Proposition 3.2. Then,
there hold

tlim t%"+°‘°c(t) = apco, if (N,w) # (2,0),
tlim t(logt)®c(t) = 2agco, if (N,w)=(2,0).
—00

4 Proofs of Theorems 1.1- 1.5

Let u be the solution of (1.1). Let Ukis Uk, and wg; be the functions
defined in Section 1. For any m =0,1,2..., put

oo g m—1 I
Um(z,t) = Z Zukﬂ-(w,t) = u(z,t) — Z Zuk,i(x, t).
k=m i=1 k=0 i=1

Then we have the following lemma.

81
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Lemma 4.1 Assume (V) for some w > 0 and 8 > 0. Then, for any m =
0,1,2,... andl =0,1,2, there exists a positive constant Cy such that

_Nitap .
(4.1) |(VEum)(z,t)] < Crit™ "2 ||4| in 8.
Furthermore, for any € > 0, there exists a positive constant L such that
(4.2) lu(z, 1)) < et T2

for all (z,t) € S with |z| > L(1 +t)/2,

Proof of Theorem 1.1. By (1.3), (1.11), and the orthonormality of {Qx},
we have

@3) w0 [ onalu)Uolubedy = [ a(z)Uo(laldz = b1

By Propositions 3.2, 3.3, and (4.3), there exist positive constants € and T
such that

(44) 1+ t)ﬂ“"’vo 1(z,t) = kg "M (1 + o(1))Uo(J2]) + Ot~ z|*Uo(|=))
(4.5) (1 +1t) Tty (z,t) = OUk(jz])) if k>1i=1,...,0

for all (z,t) € D(T). Let m = 2,3,... such that o, > 2aq. Since

(4.6) u(z,t) — um(z,t) = Kovo,1(z, t)

m—1 I
+I€1Z’012$t +Zkaz($tle(l I) in S,
k=2 i=1
by (4.1), (4.4), and (4.5), we have (1.6). Furthermore, by (1.5), (4.1) with
(k,m) = (0,1), and (4.4), we have
@7 a4+ (1 +2,1) = O(yl™) + O(™F)

for all y € RN with |y| < e and t > T. On the other hand, by Proposition
3.2, Lemma 4.1, (4.3), and (4.6), for any L > 0, we see that ug; is the
dominant term and have

(48)  Jim(1+ £)~t (v’ u) ((1 +8)Y2y,t )

= lim (1 + )T (VL ug 1) ((1 +t)/2y,¢ ) coM(V:00)(y)



uniformly for all y € RN with L~ < ly| < L, where | = 0,1,2. Therefore,
by (4.2), (4.7), and (4.8) with k = 0, we have (1.7) in L°(R¥). Furthermore,
we have Nia

Jim (146) 72 koo, (14 8)1/2y,t) = coMepo(y)

in L*({|y| > ¢}, pdy) for any ¢ > 0. These with (4.7) imply (1.7) in
L*(RYN, pdy).
We next assume M > 0. By (1.1) and (O), we see that

i/ u(z,t)Up(|z|)dz = 0, t>0,
dt RN

and for any tg > 0, we have

/ u(z, to)Up(|z|)dx :/ &(z)Uo(|z|)dx = M > 0.
RN RN

So there exists a point zg such that u(zo, top) > 0. Then, by (4.2), there exists
a positive constant L > 0 such that |u(z,t)| < u(zo,to) for all |z| > L.
This implies that H(tg) # (. Furthermore, since Yo = coraoe‘r2/ 4 takes
its maximum only at r = /2aq, by (1.7), we have (1.8), and the proof of
Theorem 1.1 is complete. O

Next, in order to prove Theorem 1.2, we give the following lemma on
aw + wg).

Lemma 4.2 Let w >0 and k =0,1,2,.... Then

(4.9) a(w+ wrt1) < alw + wg) + 1,
(4.10) 20(w + wit1) < o(w + wiy2) + a(w + wy).

Proof of Theorem 1.2. We may assume, without loss of generality, that
Ay = |Agler # 0, where e; = (1,0,...,0) € RM. By (1.3) and (1.11),

/RN ¢(:17)U1(|213|)|—d33 = li1/}y\f ¢1,i(|x|)U1(|x|),$l2d$

i
z|

= mN7 [ llaUi(fel)ds, i=1,...,N,
RN
and we have

(4.11) [, #1:aDUs(el)dz = 57N Aglo.
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Then, by (3.5) and (4.11), for any L > 0 and | = 0,1, 2,
@12) Jim (1 + 05 Glon) (1462 t) = sy V|4l @or) )

uniformly for all y with L™ < |y| < L. So, by (1.13) and (4.12), for any
L>0,

(413)  lim (1+ ) (Vi) ((1 +8)1/2y, t)

— N 4lV} (1)L ) = VA, (yfor e

]

uniformly for all y with L™! < |y| < L. Similarly, by (4.9), (3.5), (3.6), and
(4.11), for any (k,7) ¢ {(0,1),(1,1)}, 1 =0,1,2, and L > 0, there exists a
constant C; such that

’(af"vk,i) ((1 + t)1/2|y|,t)’ < Oy

for all y with L™! < |y| < L and all sufficiently large . Then, there exists
a constant Cy such that

@3 (G (00 < 2

for all y with L™! < |y| < L and all sufficiently large t. Put u* = u; — u1 1.
Then, by (4.2) and (4.14), for any L > 0, there exists a constant C3 such
that

(4.15) |(v;u*) (a+ t)l/zy,t)| < Gyt~
for all y with L=! < |y| < L and all sufficiently large t.
Put
_ ||
(4.16) ¢(z) = 02X =
Then,we have
|z1e1 |z — |zle1] _ |z| —z1
Q2, ( ) Qz,'(— = < + (N = 1)¢(z
1) =@ (s B ] K=




for all z € RN \ {0}. Then, by Theorem 1.1, (4.12), and (4.15), there exists
a positive constant ¢, such that

(4.17) 0 < u(z,t) — u(|z|e, t)
z1 — |7

]

= et T (14 0(1)) 2 ﬁ'“" + Ot 72)¢(2)
x
for all z € H(t) and sufficiently large ¢. Thus, any point on H(t) sits in
RY = {z = (21,2') € RY : z; > 0} for all sufficiently large t and we see
that

+ u*(z,t) — u*(|z|e1, t)

= K1v1,1(z, t)

lim sup ((x)=0.
t—0 peH(t)

Then we have

1 = () (- ) =cer

for all z € H(t) and all sufficiently large ¢. Furthermore, by (4.17) and
(4.18), there exists a positive constant Cy4 such that

0 < —((2)*+Cat™ "7 ()

for all z € H(t) and all sufficiently large ¢. Therefore, putting

C(t):{xERﬁY. inf |$|<|a:|< sup |z, ()SCJ—EL;&L}’

T€H(t) z€eH(t)
we have
(4.19) H(t) c C(t)
for all sufficiently large t.
Let
(4.20) Hy(t) = {:L' € RN : ug(z,t) = max ug (2, t)} :
2€RN

Since (r®e~""/4)" < 0 near r = /2ag, we can estimate the Hessian (0.03u)
to show the uniqueness of the hot spot. O
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Proofs of Theorems 1.3— 1.5. These will be done by using almost the
same arguments as above with noting the differences of the asymptotic be-
haviors stated in Sections 2 and 3. Details can be seen in [10, 11] and we
omit the detail. O

Concluding remarks. Throughout this paper, we consider the case when
V > 0. There aries one question: what happens to hot spots when V < 0?7
To have a positive solution, V should be restricted so that the Hardy type
inequality holds. That is, V sould be a function such that

/ |Vu|2dm2/ V(|z|)u? dz
RV RV

holds for any u € 2 := {u| [z~ |[Vu[?dz < co}. For such V, we can disucss
as in this paper. However, in this case, any points on the hot spot will
converge to the origin if w > 0 unlike the cases in this paper. Details will
appear in [12]. For the cases when V changes its sign, more careful analysis
will be needed to investigate the behavior of hot spots. For the cases other
than commented in this paper, we are required to make other kinds of tools
to analyze this type of problems.
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