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1 Introduction
In the early 20th century, Rad6 [17] proved the following theorem for complex

analytic functions.

Theorem 1.1. Let $f$ be a continuous complex-valued function in a domain $\Omega\subset \mathbb{C}$ .
If $f$ is analytic in $\Omega\backslash f^{-1}(0)$ , then $f$ is actually analytic in the whole domain $\Omega$ .

This result says that a level set is always removable for continuous analytic
functions. Later, an analogous result of Rad\’o $s$ result for harmonic functions has
been obtained.

Theorem 1.2. [1, $8J$ Let $u$ be a real-valued continuously differentiable function
defined in a domain $\Omega\subset \mathbb{R}^{n}$ . If $u$ is hamonic in $\Omega\backslash u^{-1}(0)$ , then it is hamonic
in the whole domain $\Omega$ .

Such removability problems have been intensively studied. The corresponding
results for linear elliptic equations were proved by \v{S}abat [18]. The case ofp-Laplace
equation has been treated in [12, 14]. Juutinen and Lindqvist [13] proved the
removability of a level set for viscosity solutions to general quasilinear elliptic and
parabolic equations. Recently, we have obtained this type of removability results
for general fully nonlinear degenerate elliptic and parabolic equations which cover
most of the previous results [21]. In Section 2, we shall focus on the removability
of a level set for solutions to fully nonlinear equations.

These results stated above concerns the removability of the inverse image of “one
point.” One may consider the following extension: How about the removability of
$u^{-1}(E)$ for general subset $E\subset \mathbb{R}$ rather than one point? This type of removability
result has been studied by Kr\’al [15] for Laplace equation $\Delta u=0$ .

Theorem 1.3. $[15J$ Let $u$ be a real-valued continuously differentiable function de-
fined in a domain $\Omega\subset \mathbb{R}^{n}$ and $E$ a subset of $\mathbb{R}$ . We suppose that each compact
subset $F$ of $E$ is at most countable. If $u$ is hamonic in $\Omega\backslash u^{-1}(E)$ , then it is
hamonic in the whole domain $\Omega$ .
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In this article, we shall obtain Kr\’al type removability theorems for two classes of
elliptic fully nonlinear equations. The equations which we deal with are so-called
k-Hessian equations and k-curvature equations.

This article is organized as follows. In the following section, we review our
previous results, which say that a level set is always removable for solutions to
fully nonlinear elliptic or parabolic equations under some assumptions. In section
3, we give the definition of “generalized solutions” to k-Hessian equations and k-
curvature equations, and state our main theorem, Kr\’al type removability result.
The proof of the main theorem is given in Section 4.

2 Rad\’o type removability result for solutions to
fully nonlinear PDEs

In this section, we consider the removability of a level set for solutions to fully
nonlinear equations, which has been already proved in [21]. The equations which
we are concerned with are the following degenerate elliptic, fully nonlinear equation

$F(x, u, Du, D^{2}u)=0$ , (2.1)

in $\Omega\subset \mathbb{R}^{n}$ , or the parabolic one

$u_{t}+F(t, x, u, Du, D^{2}u)=0$ , (2.2)

in $\mathcal{O}\subset \mathbb{R}\cross \mathbb{R}^{n}$ . In both equations, $D$ means the derivation with respect to the
space variables, that is,

$Du$ $:=( \frac{\partial u}{\partial x_{1}},$

$\ldots,$
$\frac{\partial u}{\partial x_{n}})^{T}$ , $D^{2}u$

$:=( \frac{\partial^{2}u}{\partial x_{i}\partial x_{j}})_{1\leq i\leq n}1\leq j\leq n$ (2.3)

Here $A^{T}$ denotes the transpose of a matrix $A$ .
We use the following notations in this article.

$\bullet$ $S^{n\cross n}:=$ { $n\cross n$ real symmetric matrix}.
$\bullet$ For $X,$ $Y\in S^{n\cross n}$ , $X\leq Y$ es $Y-X$ is non-negative definite.

$($ i.e., $(Y-X)\xi\cdot\xi\geq 0$ for all $\xi\in \mathbb{R}^{n}.)$

$\bullet$ For $\xi,$ $\eta\in \mathbb{R}^{n},$ $\xi\otimes\eta$ denotes the $n\cross n$ matrix with the entries

$(\xi\otimes\eta)_{ij}=\xi_{i}\eta_{j}$ $(i,j\in\{1, \ldots, n\})$ . (2.4)
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$\bullet$ For $x\in \mathbb{R}^{n}$ and for $r>0$ ,

$B_{r}(x):=\{z\in \mathbb{R}^{n}||z-x|<r\}$ . (2.5)

$\bullet$ Let $\Omega$ be an open set in $\mathbb{R}^{n}$ or $\mathbb{R}\cross \mathbb{R}^{n}$ .

USC$(\Omega):=$ {$u:\Omegaarrow[-\infty,$ $\infty)$ , upper semicontinuous}, (2.6)

LSC$(\Omega):=$ { $u$ : $\Omegaarrow$ (-00, $\infty]$ , lower semicontinuous}. (2.7)

To deal with our problem, we consider the class of viscosity solutions, which
are solutions in a certain weak sense. The theory of viscosity solutions to fully
nonlinear equations was developed by Crandall, Evans, Ishii, Jensen, Lions and
others. See, for example, [6, 7, 9, 11]. In many nonlinear partial differential
equations, the viscosity framework allows us to obtain existence and uniqueness
results under mild hypotheses. Here we recall the notion of viscosity solutions to
the fully nonlinear elliptic equations (2.1).

Definition 2.1. Let $\Omega$ be a domain in $\mathbb{R}^{n}$ .

(i) A function $u\in$ USC $(\Omega)$ is said to be a viscosity subsolution to (2.1) in $\Omega$ if
$u\not\equiv-$ oo and for any function $\varphi\in C^{2}(\Omega)$ and any point $x_{0}\in\Omega$ which is a
maximum point of $u-\varphi$ , we have

$F(x_{0}, u(x_{0}), D\varphi(x_{0}), D^{2}\varphi(x_{0}))\leq 0$ . (2.8)

(ii) A function $u\in$ LSC $(\Omega)$ is said to be a viscosity supersolution to (2.1) in $\Omega$

if $u\not\equiv\infty$ and for any function $\varphi\in C^{2}(\Omega)$ and any point $x_{0}\in\Omega$ which is a
minimum point of $u-\varphi$ , we have

$F(x_{0}, u(x_{0}), D\varphi(x_{0}), D^{2}\varphi(x_{0}))\geq 0$ . (2.9)

(iii) A function $u\in C^{0}(\Omega)$ is said to be a viscosity solution to (2.1) in $\Omega$ if it is
both a viscosity subsolution and supersolution to (2.1) in $\Omega$ .

We omit the proof of the following proposition. We say that $F$ : $\Omega\cross \mathbb{R}\cross \mathbb{R}^{n}\cross$

$S^{n\cross n}arrow \mathbb{R}$ is degenerate elliptic if

$F(x, r, q, X)\geq F(x, r, q, Y)$ (2.10)

for every $x\in\Omega,$ $r\in \mathbb{R},$ $q\in \mathbb{R}^{n},$ $X,$ $Y\in S^{n\cross n}$ with $X\leq Y$ .

Proposition 2.2. Let $\Omega$ be a domain in $\mathbb{R}^{n}$ and suppose that $F=F(x, r, q, X)$
is continuous and degenerate elliptic. If a $C^{2}$ function $u$ is a classical solution to
$F(x, u, Du, D^{2}u)=0$ , then it is a viscosity solution to the same equation.
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Here we state the result concerning the removability of a level set for solutions
to (2.1).

Theorem 2.3. Let $\Omega$ be a domain in $\mathbb{R}^{n}$ . We suppose that $F=F(x, r, q,X)$
satisfies the following conditions.

(A1) $F$ is a continuous function defined in $\Omega\cross \mathbb{R}\cross \mathbb{R}^{n}\cross S^{n\cross n}$ .

$(A2)F$ is degenemte elliptic.

(A3) $F(x, 0,0, O)=0$ for every $x\in\Omega$ .

$(A4)$ There exists a constant $\alpha>2$ such that for every compact subset $K\Subset\Omega$ we
can find positive constants $\epsilon,$

$C$ and a continuous, non-decreasing function
$\omega_{K}:[0, \infty)arrow[0, \infty)$ which satisfy $\omega_{K}(0)=0$ and the following:

$F(y, s,j|x-y|^{\alpha-2}(x-y), Y)-F(x, r,j|x-y|^{\alpha-2}(x-y), X)$ (2.11)
$\leq\omega_{K}(|r-s|+j|x-y|^{\alpha-1}+|x-y|)$

whenever $x,$ $y\in K,$ $r,$ $s\in(-\epsilon, \epsilon),$ $j\geq C,$ $X,$ $Y\in S^{n\cross n}$ and

$-3j(\alpha-1)_{1}^{1}x-y|^{\alpha-2}I_{2n}\leq(\begin{array}{ll}X OO -Y\end{array})$ (2.12)

$\leq 3j(\alpha-1)|x-y|^{\alpha-2}(\begin{array}{ll}I_{n} -I_{n}-I_{n} I_{n}\end{array})$

holds.

If $u\in C^{1}(\Omega)$ is a viscosity solution to (2.1) in $\Omega\backslash u^{-1}(0)_{f}$ then $u$ is a viscosity
solution to (2.1) in the whole domain $\Omega$ .

Remark 2.1. We remark about the regularity assumption on $u$ . This theorem
also holds if we only assume that $u$ is continuously differentiable on some neigh-
borhood of $\{u=0\}$ instead of assuming that $u\in C^{1}(\Omega)$ . However, one can not
weaken the differentiability assumption. More precisely, if we replace $u\in C^{1}(\Omega)$

by $u\in C^{0,1}(\Omega)$ , the conclusion fails to hold. Define the function $u$ by

$u(x)=|x_{1}|$ , $x=(x_{1}, \ldots, x_{n})\in\Omega=B_{1}=\{|x|<1\}$ . (2.13)

It is easily checked that $u$ satisfies -Au $=0$ in $\Omega\backslash u^{-1}(0)=B_{1}\backslash \{x_{1}=0\}$ in the
classical sense as well as in the viscosity sense. But $u$ does not satisfy $-\triangle u=0$

in $B_{1}$ in the viscosity sense.
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In Theorem 2.3, the conditions (Al) and (A2) are quite natural, and it is neces-
sary to assume (A3) since the function $u\equiv 0$ must be a solution to (2.1). However,
the condition (A4) seems to be complicated and artificial. For the particular case
that $F$ can be expressed as $F(x,r, q,X)=\tilde{F}(q,X)$ or $\tilde{F}(q,X)+f(r)$ , the hypothe-
ses can be simplified as follows.

Corollary 2.4. Let $\Omega$ be a domain in $\mathbb{R}^{n}$ . We suppose that $\tilde{F}=\tilde{F}(q,X)$ and
$f=f(r)$ satisfy the following conditions.
$(Bl)\tilde{F}$ is a continuous function defined in $\mathbb{R}^{n}\cross S^{n\cross n}$ and $f$ is a continuous

function defined in $\mathbb{R}$ .

$(B2)\tilde{F}$ degenemte elliptic.

$(B3)\tilde{F}(0, O)+f(0)=0$ .

If $u\in C^{1}(\Omega)$ is a viscosity solution to

$\tilde{F}(Du, D^{2}u)+f(u)=0$ (2.14)

in $\Omega\backslash u^{-1}(0)$ , then $u$ is a viscosity solution to (2.14) in the whole domain $\Omega$ .
For parabolic equations (2.2), we can also define the notion of viscosity solutions

and obtain the removability result similar to Theorem 2.3.

Theorem 2.5. Let $O$ be a domain in $\mathbb{R}\cross \mathbb{R}^{n}$ . We suppose that the conditions
given below are satisfied.
$(Cl)F$ is a continuous function defined in $\mathcal{O}\cross \mathbb{R}\cross \mathbb{R}^{n}\cross S^{n\cross n}$ .

$(C2)F$ is degenerate elliptic.

$(C3)F(t, x, 0,0, O)=0$ for every $(t, x)\in \mathcal{O}$ .

$(C4)$ There eststs a constant $\alpha>2$ such that for every compact subset $K\Subset \mathcal{O}$ we
can find positive constants $\epsilon,$

$C$ and a continuous, non-decreasing function
$\omega_{K}:[0, \infty)arrow[0, \infty)$ which satisfy $\omega_{K}(0)=0$ and the following:

$F(t’, y, s,j|x-y|^{\alpha-2}(x-y), Y)-F(t, x, r,j|x-y|^{\alpha-2}(x-y),X)$ (2.15)
$\leq\omega_{K}(|t-t’|+|r-s|+j|x-y|^{\alpha-1}+|x-y|)$

whenever $(t, x),$ $(t’, y)\in K,$ $r,$ $s\in(-\epsilon, \epsilon),$ $j\geq C,$ $X,$ $Y\in S^{n\cross n}$ and

$-3j(\alpha-1)|x-y|^{\alpha-2}I_{2n}\leq(\begin{array}{ll}X OO -Y\end{array})$ (2.16)

$\leq 3j(\alpha-1)|x-y|^{\alpha-2}(\begin{array}{ll}I_{n} -I_{n}-I_{n} I_{n}\end{array})$

holds.

162



If $u\in C^{1}(\mathcal{O})$ is a viscosity solution to (2.2) in $\mathcal{O}\backslash u^{-1}(0)_{f}$ then $u$ is a viscosity
solution to (2.2) in the whole domain $\mathcal{O}$ .

Remark 2.2. For $F$ of the form $\tilde{F}(q, X)+f(r)$ , a level set of a viscosity solution
to (2.2) is always removable if we assume the continuity of $\tilde{F}$ and $f$ , the degenerate
ellipticity of $\tilde{F}$ , and $\tilde{F}(0, O)+f(0)=0$ only, as in the elliptic case.

Example 2.1. Utilizing Theorem 2.3 or Corollary 2.4, and Theorem 2.5, one sees
that our removability results can be applied to many well-known equations. Here
are the examples.

(i) Laplace equation -Au $=0$ , cf. [1, 8, 15].

(ii) The heat equation $u_{t}-\Delta u=0$ .

(iii) Poisson equation $-\Delta u=f(u)$ , where $f(O)=0$ and $f$ is continuous, for
example, $f(u)=|u|^{p-1}u(p>0)$ .

(iv) Linear elliptic equations

$- \sum_{i,j=1}^{n}a_{ij}(x)D_{ij}u(x)+\sum_{i=1}^{n}b_{i}(x)D_{i}u(x)+c(x)u(x)=0$, (2.17)

cf. \v{S}abat [18].

(v) Quasilinear elliptic equations

$- \sum_{i,j=1}^{n}a_{ij}(x, u, Du)D_{ij}u(x)+b(x, u, Du)=0$ , (2.18)

such as the minimal surface $equation-div(Du/\sqrt{1+|Du|^{2}})=0$ , p-Laplace
equation $-\triangle_{p}u$ $:=-div(|Du|^{p-2}Du)=0(p\geq 2)$ and $\infty$-Laplace equation
$\sum_{i,j=1}^{n}D_{i}uD_{j}uD_{ij}u=0$ , cf. Juutinen and Lindqvist [i3]. We note that our
result does not contain theirs, but that is because they utilize the quasilinear
nature of the equation.

(vi) Quasilinear parabolic equations, such as p-Laplace diffusion equation $u_{t}-$

$\Delta_{p}u=0(p>2)$ .

(vii) Pucci’s equation, which is an important example of fully nonlinear uniformly
elliptic equation,

$-\mathcal{M}_{\lambda,\Lambda}^{+}(D^{2}u)=f(u)$ , $-\mathcal{M}_{\lambda,\Lambda}^{-}(D^{2}u)=f(u)$ , (2.19)
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where $\mathcal{M}_{\lambda,\Lambda}^{+},$ $\mathcal{M}_{\lambda,\Lambda}^{-}$ are the $s(\succ$called Pucci extremal operators with parame-
ters $0<\lambda\leq\Lambda$ defined by

$\mathcal{M}_{\lambda,\Lambda}^{+}(X)=\Lambda\sum_{e_{i}>0}e_{i}+\lambda\sum_{e:<0}e_{i}$
,

$\mathcal{M}_{\lambda,\Lambda}^{-}(X)=\lambda\sum_{e_{1}>0}e_{i}+\Lambda\sum_{e:<0}e_{i}$
, (2.20)

for $X\in S^{n\cross n}$ (see [2, 16]). Here $e_{1},$ $\ldots,$
$e_{n}$ are the eigenvalues of $X$ .

(viii) Monge-Amp\‘ere equation

$\det D^{2}u=f(u)$ . (2.21)

When we are concerned with (2.21), we look for solutions in the class of
convex functions. It is known that the equation (2.21) is not elliptic on all
$C^{2}$ functions; it is degenerate elliptic for only $C^{2}$ convex functions. In this
case, the condition (A2) is not satisfied. However, modifying our argument
below appropriately, one can also apply Theorem 2.3 to (2.21) and obtain
the removability result.

(ix) The parabolic Monge-Amp\‘ere equation $u_{t}-(\det D^{2}u)^{1/n}=0$ .

(x) k-Hessian equation

$F_{k}[u]=S_{k}(\lambda_{1}, \ldots, \lambda_{n})=f(u)$ , (2.22)

where $\lambda=(\lambda_{1}, \ldots, \lambda_{n})$ denotes the eigenvalues of $D^{2}u$ and $S_{k}(k=1, \ldots, n)$

denotes the k-th elementary symmetric function, that is,

$S_{k}( \lambda)=\sum\lambda_{i_{1}}\cdots\lambda_{i_{k}}$ , (2.23)

where the sum is taken over increasing k-tuples, $1\leq i_{1}<\cdots<i_{k}\leq n$ . Thus
$F_{1}[u]=\Delta u$ and $F_{n}[u]=\det D^{2}u$ , which we have seen before. This equation
has been intensively studied, see for example [3, 23, 24, 25].

(xi) Gauss curvature equation

$\det D^{2}u=f(u)(1+|Du|^{(n+2)/2})$ . (2.24)

(xii) Gauss curvature flow equation $u_{t}-\det D^{2}u/(1+|Du|^{2})^{(n+1)/2}=0$ .

(xiii) k-curvature equation

$H_{k}[u]=S_{k}(\kappa_{1}, \ldots, \kappa_{n})=f(u)$ , (2.25)
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where $\kappa_{1},$
$\ldots,$

$\kappa_{n}$ denote the principal curvatures of the graph of the function
$u$ , that is, namely, the eigenvalues of the matrix

$D( \frac{Du}{\sqrt{1+|Du|^{2}}})=\frac{1}{\sqrt{1+|Du|^{2}}}(I-\frac{Du\otimes Du}{1+|Du|^{2}})D^{2}u$ , (2.26)

and $S_{k}$ is the k-th elementary symmetric function. The mean, scalar and
Gauss curvature equation correspond respectively to the special cases $k=$

$1,2,$ $n$ in (2.25). For the classical Dirichlet problem for k-curvature equations
in the case that $2\leq k\leq n-1$ , see for instance [4, 10, 22].

We could also prove the removability of a level set for solutions to the singular
equations such as p-Laplace diffusion equation where $1<p<2$ . See [21] for
details.

In the final part of this section, we give a sketch of the proof of Theorem 2.3.
This is divided into two parts.

Step 1. Removability of the set $\{x\in\Omega|u(x)=0, Du(x)\neq 0\}$

Let $x_{0}$ be a point in $\{x\in\Omega|u(x)=0, Du(x)\neq 0\}$ . Then it follows from the
implicit function theorem that the level set $\{u=0\}$ is locally a $C^{1}$ hypersurface.

Let $\varphi\in C^{2}(\Omega)$ be any function such that $x_{0}$ is a maximum point of $u-\varphi$ . We
want to show (2.8). For this purpose, we add an appropriate small perturbation $\psi_{\delta}$

to $\varphi$ such that $\psi_{\delta}arrow 0$ in $C^{2}(\Omega)$ as $\deltaarrow+0$ and that the maximum of $u-(\varphi+\psi_{\delta})$

attains at a point $x_{\delta}$ which lies in $\{u\neq 0\}$ . It follows from the definition of the
viscosity subsolution that

$F(x_{\delta}, u(x_{\delta}), D(\varphi+\psi_{\delta})(x_{\delta}), D^{2}(\varphi+\psi_{\delta})(x_{\delta}))\leq 0$ . (2.27)

Letting $\deltaarrow+0$ , we can show that $x_{\delta}arrow x_{0}$ and obtain (2.8).

Step 2. Removability of the set $\{x\in\Omega|u(x)=0, Du(x)=0\}$

In this case, we can prove that in the definition of viscosity solutions, we require
no testing at all at the points where the gradient of $u$ vanishes under our assump-
tions $(i.e.$ , if a test function $\varphi$ and a “touching point” $x_{0}$ satisfy $D\varphi(x_{0})=0$ , then
$F(x_{0}, u(x_{0}), D\varphi(x_{0}), D^{2}\varphi(x_{0}))\leq 0(\geq 0)$ must hold.).

3 Main results
In this section, we state our Kr\’al type removability result for k-Hessian equations

$F_{k}[u]=S_{k}(\lambda_{1}, \ldots, \lambda_{n})=0$ , (3.1)
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where $\lambda_{1},$

$\ldots,$
$\lambda_{n}$ denotes the eigenvalues of $D^{2}u$ , and k-curvature equations

$H_{k}[u]=S_{k}(\kappa_{1}, \ldots, \kappa_{n})=0$ , (3.2)

where $\kappa_{1},$
$\ldots,$

$\kappa_{n}$ denote the principal curvatures of the graph of the function $u$ .
To deal with our problem, we consider the class of genemlized solutions instead

of that of viscosity solutions. The notion of generalized solutions gives a new
framework for the study of k-Hessian equations $F_{k}[u]=\psi$ and k-curvature equa-
tions $H_{k}[u]=\psi$ where $\psi$ is a Borel measure. It is introduced by Colesanti and
Salani [5] and Trudinger and Wang [23, 24, 25] for k-Hessian equations and by the
author [20] for k-curvature equations. Here we only focus on the case of k-Hessian
equations (3.1). We can treat the case of k-curvature equations (3.2), see [19] for
details.

Let $\Omega\subset \mathbb{R}^{n}$ be a domain. We define the set $\Phi^{k}(\Omega)$ as follows:

$\Phi^{k}(\Omega)=$ { $u:\Omegaarrow[-\infty,$ $\infty)|u$ is a viscosity subsolution to $F_{k}[u]=0.$ }. (3.3)

We omit the proof of the following proposition.

Proposition 3.1. (i) $\Phi^{1}(\Omega)\supset\Phi^{2}(\Omega)\supset\cdots\supset\Phi^{n}(\Omega)$ .
(ii) $\Phi^{1}(\Omega)$ is a set of subharmonic functions on $\Omega$ , and $\Phi^{n}(\Omega)$ is a set of convex

functions on $\Omega$ .

The important fact is that for $u\in\Phi^{k}(\Omega)$ , we can define $F_{k}[u]$ as a Borel measure,
which is well-known for the cases $k=1$ and $k=n$ .

Theorem 3.2. $[23J$ Let $\Omega$ be an open convex bounded set in $\mathbb{R}^{n}$ , and let $u\in$

$\Phi^{k}(\Omega)$ . Then there exist a unique nonnegative Borel measure $\sigma_{k}(u;\cdot)$ such that the
following properties hold:

(i) If $u\in C^{2}(\Omega)$ , then for every Borel subset $\eta$ of $\Omega$ ,

$\sigma_{k}(u;\eta)=lF_{k}[u](x)dx$ . (3.4)

(ii) If $u,$ $u_{i}\in\Phi^{k}(\Omega)(i\in N)$ satisfy $u_{i}arrow u$ in $L_{loc}^{1}(\Omega)$ , then

$\sigma_{k}(u_{i};\cdot)arrow\sigma_{k}(u;\cdot)$ (weakly). (3.5)

Example 3.1. Let $B_{1}$ be a unit ball in $\mathbb{R}^{n}$ and $\alpha$ be a positive constant.
(1) Let $u_{1}(x)=\alpha|x|$ . Then

$F_{n}[u_{1}]=\omega_{n}\alpha^{n}\delta_{0}$ . in $B_{1}$ , (3.6)

where $\omega_{n}$ denotes the volume of the unit ball in $\mathbb{R}^{n}$ , and $\delta_{0}$ is the Dirac measure
at $0$ .
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(2) Let $u_{2}(x)=\alpha\sqrt{x_{1}^{2}++x_{k}^{2}}$ , where $x=(x_{1}, \ldots, x_{n})$ . Then

$F_{k}[u_{2}]=\omega_{k}\alpha^{k}\mathcal{L}^{n-k}\lfloor T$ in $B_{1}$ , (3.7)

where $\omega_{k}$ denotes the k-dimensional measure of the unit ball in $\mathbb{R}^{k}$ and $T=$

$\{(x_{1}, \ldots, x_{n})\in B_{1}|x_{1}=\cdots=x_{k}=0\}$ .

The definition of generalized solutions of curvature equations is given as follows:

Definition 3.3. Let $\Omega$ be a domain in $\mathbb{R}^{n}$ , let $\nu$ be a nonnegative finite Borel
measure on $\Omega$ . $u\in\Phi^{k}(\Omega)$ is said to be a genemlized solution of

$F_{k}[u]=\nu$ in $\Omega$ , (3.8)

if it holds that

$\sigma_{k}(u;\eta)=\nu(\eta)$ (3.9)

for every Borel subset $\eta$ of $\Omega$ .

The following proposition indicates that the notion of generalized solutions is
weaker (hence wider) than that of viscosity solutions in some sense.

Proposition 3.4. Suppose $\psi\in C^{0}(\Omega)$ is a nonnegative function and set $\nu=\psi dx$ .
If $u$ is a viscosity solution to $F_{k}[u]=\psi$ in $\Omega$ , then it is a generalized solution to
$F_{k}[u]=\nu$ in $\Omega$ .

Colesanti and Salani [5] give the characterization of $\sigma_{k}(u;\cdot)$ for a convex function
$u$ defined in a convex domain $\Omega$ (we note that $u\in\Phi^{k}(\Omega)$ due to Proposition
3.1 $(i))$ . For $x\in\Omega,$ $\partial u(x)$ denotes the subdifferential of $u$ at $x$ (if $u$ is $C^{1}$ at $x$ ,
then $\partial u(x)=\{Du(x)\}.)$ . For $\rho>0$ and a Borel subset $\eta$ of $\Omega$ , we set

$P_{\rho}(u;\eta)$ $:=\{z\in \mathbb{R}^{n}|z=x+\rho v, x\in\eta, v\in\partial u(x)\}$. (3.10)

Then the following equality holds:

$\mathcal{L}^{n}(P_{\rho}(u;\eta))=\sum_{j=0}^{n}\sigma_{j}(u;\eta)j$ . (3.11)

Here we define $\sigma_{0}(u;\eta)$ $:=\mathcal{L}^{n}(\eta)$ .
Now we state the Kr\’al type removability result for k-Hessian equations (3.1).

Theorem 3.5. Let $\Omega\subset \mathbb{R}^{n}$ be a domain, $u\in C^{1}(\Omega)$ and $E$ a subset of $\mathbb{R}$ . We
suppose that each compact subset $F$ of $E$ is at most countable and that for every
compact set $K\Subset\Omega$ ,

$\sup\{|Du(x)-Du(y)||x, y\in K, |x-y|\leq\delta\}=o(\delta^{(k-1)/k})$ $(as \deltaarrow+0)$ .
(3.12)

If $u$ is a genaralized solution to (3.1) in $\Omega\backslash u^{-1}(E)$ , then it is a genemlized solution
to (3.1) in the whole domain $\Omega$ .
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We can obtain the removability result similar to Theorem 3.5 for the k-curvature
equation (3.2).

4 Sketch of the proof of Theorem 3.5
In this section, we give a sketch of the proof of our main theorem, Theorem 3.5.

We can prove the removability of $u^{-1}(E)\cap\{x\in\Omega|Du(x)=0\}$ in a similar way
to Step 2 of Theorem 2.3.

We fix a point $x_{0}$ in $u^{-1}(E)\cap\{x\in\Omega|Du(x)\neq 0\}$ . It follows from the implicit
function theorem that for some small neighborhood $U_{1},$ $U_{2}$ of $x_{0}(U_{1}\Subset U_{2})$ , the
Hausdorff dimension of $A$ $:=U_{1}\cap u^{-1}(E)$ is $n-1$ . We set

$\psi(\delta)=\sup\{|Du(x)-Du(y)||x, y\in\overline{U_{2}}, |x-y|\leq\delta\}$ . (4.1)

By the assumption, we get that $\psi(\delta)=o(\delta^{(k-1)/k})$ , i.e., $\delta^{n-k}\psi(\delta)^{k}=o(\delta^{n-1})$ .
We fix $\epsilon>0$ . Then from the fact stated above, there exists countable balls

$\{B_{r_{*}}.(x_{i})\}_{1=1}^{\infty}$ such that

$A \subset\bigcup_{1=1}^{\infty}B_{r_{1}}(x_{i})\subset U_{2}$ and $\sum_{i=1}^{\infty}r_{i}^{n-k}\psi(r_{i})^{k}<\epsilon$ . (4.2)

We can show that

$P_{\rho}(u;B_{r}.(x_{i}))\subset B_{r_{*}+\rho\psi(r_{i})}(x_{i}+\rho Du(x_{i}))$ . (4.3)

Indeed, taking any $z\in P_{\rho}(u;B_{r_{i}}(x_{i}))$ we obtain

$|z-(x_{i}+\rho Du(x_{i}))|\leq|y-x_{i}|+\rho|Du(y)-Du(x_{i})|<r_{i}+\rho\psi(r_{i})$ . (4.4)

for some $y\in B_{r}:(x_{i})$ . Therefore, it follows from (3.11) that

$\sigma_{k}(u;B_{r}.(x_{i}))\rho^{k}\leq\sum_{j=0}^{n}\sigma_{j}(u;B_{r}.(x_{i}))j$ (4.5)

$=\mathcal{L}^{n}(P_{\rho}(u;B_{r}.(x_{i})))$

$\leq \mathcal{L}^{n}(B_{r_{t}+\rho\psi(r)}:(x_{i}+\rho Du(x_{i}))$

$=\omega_{n}(r_{i}+\rho\psi(r_{i}))^{n}$ .

Now we put $\rho:=r_{t}/\psi(r_{i})$ . We obtain that

$\sigma_{k}(u;B_{r_{i}}(x_{i}))\leq 2^{n}\omega_{n}r_{i}^{n-k}\psi(r_{2})^{k}$ . (4.6)
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It holds that

$\sigma_{k}(u;A)\leq\sum_{i=1}^{\infty}\sigma_{k}(u;B_{r_{i}}(x_{i}))\leq\sum_{i=1}^{\infty}2^{n}\omega_{n}r_{\dot{\iota}}^{n-k}\psi(r_{i})^{k}=2^{n}\omega_{n}\epsilon$ . (4.7)

Thus we have $\sigma_{k}(u;A)=0$ due to the arbitrariness of $\epsilon$ . The proof that $u$ satisfies
$F_{k}[u]=0$ in the whole domain $\Omega$ is complete.

Remark 4.1. For the case of $k=1$ (Laplace equation), the convexity assumption
of $u$ can be removed so that we get the same removability result as Kr\’al $s$ .
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