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Abstract. A strucutre of binary product is introduced to the context free
language $($Chomsky $algebra)and$ the binary strucutre of an arbitrary algebra
$is$ .realized in the algebra. Non-associative algebras are discussed by
introducing the contexts to Chomsky sentences and flexible algebm and
Jordan algebra are constructed

Introduction
In this paper we introduce an algebraic structure in the context free language which

is called Chomsky algebra and discuss non-associative algebras in this algebra. Here
we call the context free language Chomsky language when a dictionary is given([l]).
For an algebra $A$ , we make the Chomsky algebra $C(A)$ ofthe dictionary $A$ . Then
we see that there exists a homomorphism :

$\Phi:C(A)arrow A$

which is called the versatility homomorphism. This implies that the Chomsky
algebra is a kind of a free algebra of $A$ . Then we can realize the binary structure of
an arbitrary algebra on the Chomsky algebra and discuss associativity or non-
asscoiativity structure by use ofthe binary strucutre of Chomsky algebra. In order
to discuss the given algebra, we have to analyze the kernel ofthe homorphism. Here
we notice that the analysis of the kernel ofthe morophism is nothing but the
introduction of the,,context” to the context free sentences. Hence we see that we
can discuss the non-associativity of algebras in terms ofthe introduction of the
contexts to the context free sentences. Our discussion is divided into three parts:
$($ ] $)$ Generation ofnon-associative algebras in Chomsky sentences.
(2) Generation ofassociative sentences by shift operation
(3) Realization ofnon associative algebra by sentence algebra and Mendel algebra.
(1) $In$ the first part we will introduce a non-associaitve strucutre in Chomsky
sentences as much as possible. Here we choose two algebras, ,,sentence algebra” and
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,,Mende] algebra” which may describe the full non-associative algebraic structure.
The sentence algebra is motivated by the structure of Chomsky sentences([l]). We
can introduce the sentence algebra for a given Chomsky sentence and we can
describe the non-associativity of the sentences explicitly. The second algebra is
motivated by the Mendelian genetics([3]). We cal] the linear space $M$ with
generators $S_{1},S_{2},\ldots,S_{n}$ Mendel algebra, when generators satisfying the following
commutation relations and the distributive law([4]):

$S_{i}*S_{j}= \frac{1}{2}\{S_{l}+S_{j}\}$

We can introduce the non-associativity strucutre in Chomsky sentences by use ofthe
non-associativity ofMendel algebras.

(2) In the second part we will treat well known non-associative algebras. Here we
want to treat the following two algebras as examples([2]):

flexible algebra: $(XY)X=X(XY)$

Jordan algebra: $(((A;\gamma)Y)X)=(_{d}IX)$(IX)

for any pair of elements $\forall_{X^{\forall}Y}\in A$ . For this we restrict ourselves to a special
classes of non-assosiative algebras including flexible algebra and Jordan algebra.
We can introduce a concept of shift operations in Chomsky sentences and describe
commutation relations in terms of shift operations. Then we can describe
,,associative structure” of non-associative algebras in terms ofthe,,shift invarant
sentences“. At first we discuss algebras with following commutation relations:

$(XY)Z=X(1Z)$ or $(((XY)Z)W)=(XY)(ZW)$ .
We can obtain shift invariant sentences making symmetric elements:

$\frac{1}{2}\{(XY)Z+X(lZ)\}$ or $\frac{1}{2}\{(X(Y(ZW)))+(XY)(ZW)\}$

In order to get the commutation relations of flexible algebras or Jordan algebras
$(XY)X=X(IX)$ or $(((XY)Y)X)=(XY)(1\mathcal{X})$ ,

we have to choose shift operations of restricted type and make symmetrizations.
(3) Next we proceed to the realization ofnon-associativity of Chomsky sentences in
an explicit manner. By use ofsentence algebras we can realize flexible algebras or
Jordan algebras by special choices of sentence algberas, but their choices are
strongly restricted. Hence we will consider another realization by use of Mendel
algebras. This is one ofthe important contribution to the theory of non-associative
algebra, ifthere exists. Then we can show that the shift invariant algebras on Mendel
algebra are automatically derive algebras including flexible algebra, Jordan algebra
and others. As for a genetic generation of Jordan algebras will be given in the
forthcoming paper.
By these discussions we may conclude that a method of formal language and
genetics is quite effective for the theory of non-associative algebrs.

1. An algebra of Chomsky sentences(Chomsky algebra)
In this section we recall the context free language and introduce several algebraic

strucutres on it. At first we recall basic facts on Chomsky sentences. Chomsky has
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discovered that a tree strucutre is essential in the theory of languages([l]). We take a
sentence:,,The cat sleeps on the sofa” and make the decomposition:

$\wedge^{S}\backslash$

$/^{\backslash ;P}\backslash$ $/^{r\prime}\nwarrow$

Dictionary A
$J_{\sim}:..\cdot\cdot\lfloor$

,

$TheD|dog|^{V}$

$s|ee$ps

$onthesofa|’|_{1_{||}^{/\backslash }}^{P\lambda^{-}l)}/^{PP}\backslash \Gamma)\backslash ’.$

’

$sY_{1^{\wedge}}, Y_{\sim},\ldots t_{6}’\in\prod_{\sim}^{\backslash \wedge}\Lambda$

$\{\{\cdot c_{;}^{r},x_{2}\}_{\backslash }\text{く^{}t_{2}’}\sim . \{\underline{|_{\sim}\overline{t_{4}}\rceil},\{-Y_{3} . \wedge 1_{t}’\}\}\}\}$

By this observation we can introduce the following concept:
Definition
We take a set ofwords $A$ which is called dictionary. Choosing words $A_{I},A_{2},\ldots,A_{n}$ ,
we make a sentence: $\{\{A_{1},A_{2}\},\{A_{3},\ldots,A_{t}\}\}$ which is called Chomsky sentence of $A$ .
We notice that we do not care about the context of the sentence. As for the
acceptability condition and generation of Chomsky sentences, see Appendix.

Next we proceed to the algebraic structure of sentences. We choose an algebra $A$

which is generated by $e_{1},e_{2},\ldots,e_{n}$ over $R$ which is denoted by $A=R[e_{1},e_{2},\ldots,e_{n}]$ .
Choosing generators, we make sentences, which we call Chomsky sentences of
algebra $A$ . Making operations of sum and constant multiplication, we can define an
algebra which is called Chomsky algebra $C(A)$ .i.e.,

$\{\begin{array}{l}X,Y\in C(A)\supset\{X,Y\}\in C(A)X,Y\in C(A)\supset X+Y\in C(A)a \in R, X\in C(A)\supset\alpha X\in C(A)\end{array}$

The product of $X$ and $Y$ can be described in terms ofthe tree structure as follows:

$\wedge^{\{X,Y\}}$

$x$ $Y$

We notice that this algebra is non-associative. We give a simple example:

$x_{1}$ $x_{2}$ $x_{3}$
$X_{1}$ $\chi_{2}$

$\chi_{1}$

We see that $\{\{X_{1},X_{2}\},X_{3}\}\neq\{\{X_{1},X_{:}\},X_{3}\}$ . As for an explicit introduction of non-
associativity structure to Chomsky sentences, we will discuss in Section 3.

2. The versatility of the Chomsky algebra for an arbitray algebra
In this section we show that the Chomsky algebra $C(A)$ generated by an arbitrary
algebra $A$ has the versatility property, even if it is a non-associative algebra. Namely
we have a homomorphism $\Phi:C(A)arrow$ A. We begin with some basic notations. We
assume that the algebra is finitely generated: $A=R[e_{1},e_{2},\ldots,e_{1}]$ . Then we can
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represent an arbitray element $X$ as follows:
$X= \sum_{=0}X_{\lambda},X_{k}=\sum\alpha_{(i_{1}(i_{2}..j_{l})}(e_{j_{1}}(e_{j_{2}}(. .e_{l}.)$ ,

where the sum is taken through all possible sentences. In the following we put the
following notations: $\Omega_{(i_{1}(j_{2}\ldots j_{k})}=(e_{i_{1}}(e_{i_{2}}(\ldots.))e_{l_{k}})$ .
We proceed to the construction ofdesired homomorphism. We define

$(^{*})\{\begin{array}{l}\Phi[\{X_{j_{1}}\{X_{i_{2}}\{\ldots.\}\}X_{i_{l}}\}]=(X_{j_{1}}(X_{j_{2}}(\ldots.))X_{i}.))\Phi[X+Y]=\Phi[X]+\Phi[Y], \Phi[\alpha Y]=\alpha\Phi[X](\alpha\in R)\end{array}$

Then we have an algebraic homomorphism: $\Phi:C(A)arrow A$ . By this correspondence
we can prove the following theorem:

Theorem I
Let $A$ be a finitely generated algebra over $R$ , i.e., $A=R[e_{1},e_{2},\ldots,e_{n}]$ and let $C(A)$

be the Chomsky algebra of $A$ . Then we can prove the following assertions:
(1) We have the algebraic homomorphism $\Phi:C(A)arrow A$ defined by $(^{*})$ . (2) We
have the following homomorphism theorem: Namely there exists an ideal $I$ such that
the following commutative diagram holds

$\Phi:C(A)\downarrowarrow$ $A\Vert$

( $\hat{\Phi}$ is isomorphism)
$\hat{\Phi}:C(A)/Iarrow A$

The main task ofthis paper is to describe the ideal $I$ in connection to the Chomsky
sentences.

3. Generation of non-associative algebras by sentence algebra and
Mendel algebra

In this section we introduce two concept of algebras. The first one is sentence
algebra which is motivated by the graph strucutre of Chomsky sentences, and the
second one is Mendel algebras which is motivated by the separation law ofMendel’s
law respectively. Then we can describe the non-associativity condition of Chomsky
sentences by these algebras.
(Sentence algebra)
At first, we consider the simplest sentence and associate a product structure on it:

$e_{k}$

$e_{j} \bigwedge_{e_{j}}$
$\Rightarrow$

$e_{j}e_{j}=e_{k}(e_{k}=\{e_{i},e_{j}\})$

Next we introduce $generators\wedge$ ofan algebra with the product table:

$\Leftrightarrow$ $e_{l}e_{j}=\delta e_{i},e_{j}e_{!^{=}}\mathcal{E}e_{k}$

$k$

$e_{j}e_{j}=\delta^{1}e,$ $(\delta,\delta’,\epsilon=\pm 1 or 0)$

$’>j$

When $X’\epsilon=0$ holds, then the sentence is called degenerate. Then we can generate
an algebra by use of compositions of generators of basic sentence algebras. We notice
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that we can associate associative algebras when $\epsilon=1$ and non-associative algebra
when $\epsilon=-1$ respectively. We call the algebra the basic sentence algebra which is
denoted by $S(e_{i},e_{j}:\epsilon e_{k})$ when we can endow an algebraic structure, for example,
$k=iorj$ . We proceed to more complicated sentences:

$\Leftrightarrow$ $((e_{j},e_{j}),e_{k})$

This sentence can be described by use of two basic sentence algebra: Preparing
$S(e_{j},e_{j} : \epsilon_{1}e_{l})$ and $S(e,,e_{k} : \epsilon_{2}e_{r})$ and introducing a product strucutre $((e_{j},e_{j}),e_{A}.)$ , we
can introduce an algebra which is denoted by

$S(e_{j},e_{j}:\epsilon_{1}e,)xS(e,,e_{k}:\epsilon_{2}e_{r})$

The graphic description ofthe algebra can be given in the following manner:

$0$

Next we proceed to an association ofan algebra to sentences ofmore general type

Then we can prove the following theorem:
Theorem II
(1) We can associate an algebra for an arbitray given Chomsky sentence which is
generated by the two kinds of products:

$((S(e_{j},e_{j}:\epsilon_{1}e,)\cross\ldots.\cross S(e_{f},e_{k};\epsilon_{2}e_{r}))\circ\ldots..\circ S(e,,e_{k}:\mathcal{E}_{2}e_{r}))\cross\ldots.$ .

(2) Choosing $\epsilon,(l=1,2,\ldots)$ , we can realize the associativity or non-associativity of
the sentence.
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(3) For a sentence $X$ , we make an element ofthe sentence algebra
$X(\epsilon_{1},\epsilon_{2},\ldots,\epsilon_{n})$ and we have

$X(\epsilon_{1},\epsilon_{2},\ldots,\epsilon_{n})=\pm X(1,1,\ldots,1)$ .
(Mendel algebra)
In order to treat flexible algebras and Jordan algebras, it is convienient to introduce a
concept of Mendel algebra([4]):

Definition
Let $A(=R[S_{1},S_{2},\ldots,S_{n}])$ be a linear space. Introducing the product by

$\{X^{*}Y=\sum_{l.j\overline{-}1}^{n}\alpha_{l}\beta,S^{*}S_{j}(=\sum_{-,-|}^{n}\alpha,S,,Y=\sum_{\overline{-}I}^{n}\beta,S,)S_{\prime}*S_{/}=\frac{l}{X2}\{S_{l}+S_{/}\}$

Then we have an algebra $M^{(\prime\prime)}$ which is called Mendel algebra.

We notice that the Mendel algebra is non-associative and commutative algebra. In
fact we can give a simple example:

$((S_{l}^{*}S_{j})^{*}S_{k})= \frac{1}{4}(S_{l}+s_{j}+2S_{k})$ , $((S_{j}^{*}(S_{j}^{*}S_{k}))= \frac{1}{4}(2S_{j}+s_{j}+s_{k})\cdot$

Following the scheme in the sentence algebra construction, we can make sentences in
Mendel algebras. We give an example.

$\supset(S_{j}^{*}S_{j})^{*}S_{k}$

With this Mendel algebra, we willl treat flexible algebra and Jordan algebra in S. 5,6.

4. Shift operations and description of associaitive elements
In this section we give an description of elements ofthe Chomsky algebra in terms of
shift operations.
(Shift operation)
We consider an element ofthe Chomsky algebra which is called element of L-type:

$\tilde{\Omega}_{(j_{1}(i_{\sim},..J_{k})}=(X_{i_{1}}(X_{i_{2}}(\ldots.))X_{j,})$. We denote the linear space over $R$ by $L(A)$ :
$L(A)= \{\sum\alpha_{(i_{1}(i_{2}..I)}\tilde{\Omega}_{(j_{1}(i_{2}\ldots i_{k})}\}$. The tree representation is given by

$\tilde{\Omega}_{(j_{1}(1:\ldots i_{k})}=$

Next we proceed to shift operations in Chomsky sentences. At first we define a shift
operation from $L(A)$ to $C(A)$ . We define $\sigma_{l_{k}i_{k\cdot t}}$ : $L(A)arrow C(A)$ by

$\sigma_{j_{t}j_{1\cdot 1}}[(\ldots((X_{j_{1}},X_{j_{1}})\ldots)X_{k})X_{1\cdot \mathfrak{l}}\ldots X_{t})]=(((X_{j_{I}},X_{l})\ldots)X_{1}(X_{t\I}\ldots X_{1}))\vee\ldots,,,,$ ,

where $\vee($ implies the taking offthe bracket. The graphical description is given as
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follows:

$\supset$

Examples
We give two examples of shift operations which are connected to non-associative
algebras([2])

$D$
$X$ $Y$ $X$ $X$ $X$ $Y$ $X$ $X$ $Y$ $X$

$\sigma_{34}$

$x$ $x$

flexible algbera Jordan algbera

Then we see the following proposition:

Proposition
Any element of $C(A)$ can be obtained from that of$L(A)$ by the successive operations
of shift operators.

(Shift invariant non-associative algebra)
Next we introduce a class ofnon-associative algebra which can be described in terms
of shift operations. Hence we have the following definition:
Definition
A non-associative algebra of shift type, or homogenous non-associative algebra, if
associative elements are given by shift invariant elements: $\sigma(X)=X$ , where $\sigma$ is the
shift operation. It is extended to the identity for remained elements. The element

$\hat{X}$(or $X^{t}$ ) which is defined from $X(\in A)$ in the following manner is called
symmetric (or anti-symmetric) element:

$\hat{X}=\frac{1}{2}(\sigma(X)+X)(resp.X’=\frac{1}{2}(\sigma(X)-X))$

In fact, we see that the typical non-associativity condition connected to the flexible
and Jordan algebras can be described in terms ofthe shift invariant condition;

$\sigma(((X,Y),Z))=(X,(Y,Z))$ , $\sigma(((X,Y),Z),W))=(X,Y),(Z,W))$

(Non associative algebra generated by shift operations)
We construct an algebra which is generated by the shift invariance condition. We
consider an algebra which is generated by $e_{1},e_{2},\ldots,e_{n}$ . We take a shift operation and
make a system of shift invariant sentences: $S_{1}.S_{2},\ldots,S_{nl}$ . Making the symmetrization,
we can obtain non-associative algebras. We give an explicit generation of the algebra.
We consider the following set:

$C_{k}= \{\sum\alpha_{(\prime 1(i_{2}\ldots\rangle_{\lambda})}((e_{1}(\ldots..)e_{k})\}$

We decompose elements by use of $e_{1}.e_{-},,\ldots,e_{nz}$ and $\hat{S}_{j}.S_{i}’(i=1,2, , , , m)$ :Putting one
of them as $\theta_{j}$

$C_{k}= \{\sum\alpha_{(j_{t}(i_{2}\ldots\rangle_{k})}((\theta_{i_{1}}(\theta_{j_{2}}\ldots\theta_{kl}..)\theta_{j_{k}})\}$
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Then we can prove the following theorem:

Theorem III
(1)$Every$ element of Chomsky algebras can be obtained from that $ofL(A)$ by shift
operations and symmetrization.
(2) Making the symmertization ofelements ofan algebra $A$

$\hat{c}_{k}=\{\sum\alpha_{(j_{1}(i_{2l})((\hat{\theta}_{j_{1}}(\hat{\theta}_{j_{?}}\ldots\hat{\theta}_{\prime},\cdot\cdot)\hat{\theta}_{j_{1}})\}}$

and we can obtain a new algebra $\hat{A}$ introducing product strucutre: $\circ:\hat{A}\circ\hat{A}arrow\hat{A}$ by
$\forall x\in\hat{C}_{k},\forall y\in\hat{C}$ , $\supset$ $x\circ y=(\varphi)\in\hat{C}_{/+m}\wedge$

(3) We have $\dot{C}_{k}\subset\sum_{+\beta=k}\hat{C}_{X}\circ\hat{C}_{\beta}$ . Hence we see that the algebra is determined by finite
$\hat{C}_{k}(k=1,2,..,M)$

(Shift operations of restricted type)
Next we proceed to the shift operation ofrestricted type. In order to treat flexible
algebra and Jordan algebras, we have to treat shift operation ofrestricted type

$\sigma(((X,Y),X))=(X,(Y,X))$ , $\sigma(((X,X),Y),X))=(X,X),(Y,X))$

In order to treat this type of shift invariant sentences we have to introduce shift
operations with bigger symmetries. Wejust indicate its idea by considering an
example $((XY)Z)X=(XY)(ZX)$ :Putting $X= \sum\alpha_{j}e_{l},Y=\sum\beta_{j}e_{j},Z=\sum\gamma_{j}e_{j}$ , we can write the
invarinat condition. Then we have

$\sum\alpha_{i}\beta_{j}\gamma_{k}\alpha,((e_{l}e_{j})e_{k})e_{f}=\sum\alpha_{j}\beta_{J}\gamma_{k}\alpha_{f}((e_{i}e_{j})(e_{k}e_{f}))$ for $\forall\alpha_{j},\forall\beta,\forall\gamma\in R$.
Rewriting this condition in the following form

$\sum\alpha_{j}\beta,r_{k}\alpha,\{((e,e_{j})e_{l}.)e_{f}+((e,e,)e_{k})e,\}=\sum\alpha_{j}\beta,\gamma_{k}\alpha,\{((e_{j}e,)(e_{k}e,)+((e,e,)(e_{k}e_{j})\}$ Hence
we obtain the shift invariance condition:

$\{((e_{l}e,)e_{k})e, +((e,e,)e_{k})e,\}=\{((e,e_{j})(e_{k}e_{f})+((e,e_{j})(e_{k}e_{1}\}\}\cdot$

Making the symmetrization for these elements, we can describe elements ofthe
algebras.

5. Flexible algebra
In this section we treat flexible algebra from our point of view([2]). We begin with

the definition:

Definition
An algebra is called flexible algebra, ifthe following commutation relation holds:

$\forall X,\forall Y\in A\supset(XY)X=X(lX)$

At first we choose a basic sentence algebra and make a flexible algebra. We choose a
degenerate sentence algebra: $S(e_{1},e_{2} : e_{2}:2,0,1)$ .

$\epsilon$

$=$ $e_{2}(e_{1}e_{1})\neq(e_{2}e_{1})e_{1}$

$‘$

Proposition
Algebra $S(e_{1},e, :e_{2}:2,1,0))$ is a flexible algbera.
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Proof
Putting $X= \sum\alpha_{j}e_{i}$ , $Y=\sum\beta_{i}e_{j}$ , we check the condition: $(XY)X=X(1\mathcal{X})$ . Since

$XY=IX=2x_{1}y_{1}e_{1}+(x_{1}y_{2}+x_{2}y_{1})e_{2}$ . Hence we have $(XY)X=2x_{1}^{2}y_{I}e_{1}+x_{1}x_{2}y_{1}e_{2}$ and
$(X(ZY)=2_{X_{1}^{2}}y_{1}e_{1}+x_{1}x_{2}y_{1}e_{2}$ which proves the assertion.

Next we introduce the Mendelian algebra $M^{(n)}$ and prove the following Theorem:
Theorem IV
(1)$Shift$ invariant algebra ofassociative type is a flexible algebra. Namely, ifwe
assume that $X^{*}(Y^{*}Z)=(X^{*}Y)^{*}Z$ for $\forall X,\forall Y,\forall Z\in M(A)$ , then we have $X^{*}=Z^{*}$ .
Hence we obtain a flexible algebra from the shift invariance condition.
(2) Mendel algebra $M^{(n)}(n\geq 3)$ is a flexible algebra,but not associative algebra

Proof of(l) Putting $X= \sum\alpha_{j}S_{j},Y=\sum\beta_{j}S_{j},Z=\sum\gamma,S_{j}$ we consider the shift invariant
condition: $X^{*}(Y^{*}Z)=(X^{*}Y)^{*}Z$ . Restricting special elements, $X=S_{j},Y=S_{j},Z=S_{k}$ ,
we consider $((S_{j}*s_{j})^{*}S_{k})=((s_{j}*(S_{j}*s_{k}))\cdot$ Then we have $S_{j}=S_{k}$ . Hence putting
$((XY)X)= \sum\alpha_{j}\beta_{j}\alpha_{k}\delta_{jk}(S_{l}^{*}S_{f})^{*}S_{k}$, and $(X( I\mathcal{X}))=\sum\alpha_{j}\beta_{/}\alpha_{k}\delta_{jk}S_{j}*(s, *s_{k})$ , we obtain
$X^{*}(Y^{*}X)=(X^{*}Y)^{*}X$ .
Proof of(2) Putting $X= \sum\alpha_{j}S,,Y=\sum\beta,S,$ , we see

$((XY)X)= \sum\alpha_{i}\beta_{j}\alpha_{k}(S_{j}^{*}S_{j})^{*}S_{k}$ , and $(X( I\mathcal{X}))=\sum\alpha_{j}\beta_{j}\alpha_{k}S_{j}^{*}(S^{*}S_{k})$,

$assertion,itisenoughtoprovethe.following\sum^{provethe}\alpha_{j}\beta_{\dot{j}}\alpha_{k}(s_{j}*s_{j})^{*}S_{k}=\sum^{}\alpha_{j}\beta_{j}\alpha_{k}S_{i}^{*}(S_{j}^{*}S_{k})$
equality:

For this we decompose the both sides in the following manner:
$\sum\alpha_{j}\beta_{\int}\alpha_{k}(s_{j}*s,)^{*}S_{k}=\sum_{=k},\alpha_{j}\beta_{\int}\alpha_{k}(S_{j}^{*}S,)^{*}S_{k}+\sum_{j\neq k}\alpha_{j}\beta,\alpha_{k}(s_{j}*s,)^{*}S_{k}$

$\sum\alpha_{l}\beta_{j}\alpha_{k}S^{*}(s_{j}*s_{k})=\sum\alpha\beta_{j}\alpha_{k}S_{l}^{*}(S_{j}^{*}S_{k})+\sum_{l\neq k}\alpha_{j}\beta,\alpha_{k}S_{j}^{*}(s_{j}*s_{k})$

Since $((S_{l}^{*}S_{j})^{*}S,)=((S_{l}^{*}(S_{j}^{*}S_{j}))$ , the first term ofthe both sides are identical. The
second terms ofthe both sides can be written as follows:

$\sum_{i\neq k}\alpha,\beta_{j}\alpha_{k}(s_{j}*s_{j})^{*}S_{k}=\sum_{l\neq k}\alpha_{j}\beta_{/}\alpha_{k}\{(s, *s_{j})^{*}S_{k}+(S_{k}^{*}S_{j})^{*}S_{i}\}$

$\sum_{t\neq k}\alpha_{i}\beta,\alpha_{k}S_{j}^{*}(s_{j}*s_{k})=\sum_{l\neq k}\alpha,\beta_{j}\alpha_{k}\{S_{j}^{*}(s, *s_{k})+S_{k}^{*}(s_{J}*s_{j})\}$

By use ofthe commutativity ofMendel algebra, we see the both sides are identical.
Hence we have proved the assertion.

6. Jordan algebra
In this section we give an understanding commutation relations ofJordan algebra
from the point of Chomsky sentence and make a Jordan algebra by use of basic
sentence algebra and Mendel algebra. We recall the definition ofJordan algebra([2]):
Definition
An algebra $J$ is called Jordan algebra ifthe following commutation relation holds:

$\forall X,\forall Y\in A=(((XY)Y)X)=((XY)(I\mathcal{X}))$
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When it is commutative, it is Jordan algebra simply, otherwise it is called non-
commutative Jordan algebra.

Next we proceed to make a Jordan algebra by use of basic sentence algebra. At first
we notice the following proposition:
Proposition
The following sentence algebra $S’(e_{1},e_{2}:-1e_{3})$ is a non-commutative Jordan algebra

$\Rightarrow$
$(e_{2}e_{1})e_{2}\neq e_{-},(e_{1}e_{2})$

Proof
The proof is a direct calculation. Putting $X= \sum x_{j}e_{j},Y=\sum y_{j}e_{j}$ , we have

$(XY)=(x_{1}^{2}+x_{2}^{2})e_{1}$ , and $(1X)=(x_{1}y_{1}+x_{2}y_{2})e_{1}+(x_{2}y_{1}+x_{\iota}y_{2})e_{2}$

From $(XY)Y=(x_{1}^{2}+x_{2}^{2})(y_{1}e_{1}+y_{2}e_{2})$ , we have
$((XY)Y)X=(x_{1}^{2}+x_{2}^{2})\{(x_{1}y_{1}+x_{2}y_{2})e_{1}+(x_{2}y_{1}-x_{I}y_{2})e_{2})\}$ .

On the other side we have
$((XY)(1\mathcal{X})=(x_{1}^{2}+x_{2}^{2})\{(x_{1}y_{l}+x_{2}y_{2})e_{1}+(x_{2}y_{1}-x_{1}y_{2})e_{2})\}$.

Hence we have the assertion.
Next we proceed to the realization of Jordan algebra by use of the Mendelian algebra
$M^{(n)}$ We can prove the following:

Theroem V
(1)$We$ assume that $(((X^{*}Y)^{*}Z)^{*}W)=((X^{*}Y)^{*}(Z^{*}W))$ then we have $X=Z=W$ .
Hence we obtain a non-commutative Jordan algebra from the shift invariance
condition
(2) Mendel algebra $M^{t\prime\prime}$

) is a Jordan algebra

Proof of (1) : From
$(^{****})(((S_{l}^{*}S_{l})^{*}S_{k})*S_{f})= \frac{1}{8}(S_{l}+S_{j}+2S_{k}+4S_{f}),((S_{i}^{*}S_{j})^{*}(S_{k}*S,))=\frac{1}{4}(S_{j}+s_{j}+s_{k}+S,)$

and $(((s_{j}*s_{j})^{*}S_{k})*S,)=((s_{j}*s_{j})^{*}(s_{k}*s_{l}))$ , we have $S_{j}=S_{f}=S_{f}$ . Hence putting
$X= \sum\alpha_{l}S_{j},Y=\sum\beta_{j}S_{j}$ , we have the commutation relation ofa Jordan algebra as in the
proof.of Theorem IV.

Proof of (2): Putting $X= \sum\alpha,S_{l},Y=\sum\beta,S,$ , we see
$((( \mathcal{X}Y)Y)X)=\sum\alpha,\alpha,\beta_{k}\alpha,((S_{j}^{*}S_{j})^{*}S_{k})^{*}S_{l}$ ,

$((XY)( IX))=\sum\alpha_{j}\alpha_{j}\beta_{k}\alpha_{l}(S_{l}^{*}S,)^{*}(S_{k}^{*}S,)$,

Hence to prove the assertion, it is enough to prove the following equality:
$\sum a_{j}\alpha_{j}\beta_{k}\alpha,((S_{i}^{*}S_{j})^{*}S_{k})^{*}S,$ $= \sum a_{j}a_{j}\beta_{k}\alpha,(s_{j}*s_{f})^{*}(s_{k}*s,)$ .

For this we decompose the both sides in the following manner:
$\sum\alpha,\alpha,\beta_{k}\alpha,((S^{*}S,)^{*}S_{l})^{*}S,$ $= \sum_{J=}j=’\alpha,\beta,\alpha_{k}\alpha,((S^{*}S,)^{*}(s_{k}*s,)+\sum’\alpha_{j}\alpha,\beta_{\lambda}\alpha,(s, *s_{j})^{*}(s_{l}*s,)$

$\sum\alpha_{i}\alpha_{j}\beta_{k}\alpha_{k}(S_{l}^{*}(S_{j}^{*}S_{k}))^{*}S$,
$= \sum_{=k=l},\alpha_{j}\alpha_{j}\beta_{k}\alpha_{(}(S_{j}^{*}S,)^{*}(s_{k}*s,)+\sum^{1}\alpha_{j}\alpha,\beta_{k}\alpha,(S_{j}^{*}S,)^{*}(s_{k}*s,)$

where, the second sum is remained sum. Since $((S_{l}*s_{l})^{*}S_{k})^{*}S_{l}=((S, *s_{f})^{*}(s_{k}*s_{l}))$ ,
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the first term ofthe both sides are identical. Next we decompose the remained sum
into two parts: $\Sigma’=\Sigma_{1}^{t}+\Sigma_{2}’$ ;The first sum is taken for the case oftwo ofthe
indices(i,j,1) are identical and the remained sum is taken for the three indices are
different.The second terms ofthe both sides can be written as follows:

$\sum_{2}^{1}\alpha_{j}\alpha_{/}\beta_{k}\alpha_{l}((S_{j}^{*}S_{j})^{*}S_{k})^{*}S,$ $= \sum_{\sigma}\alpha_{\sigma(i)}\alpha_{\sigma(j)}\beta_{k}\alpha_{\sigma(\prime)}\{(s_{\sigma(\iota)}*s_{\sigma(j)})^{*}S_{k}^{*}S_{\sigma(/)}\}$

$\sum_{2}’\alpha_{j}\alpha_{j}\beta_{k}\alpha_{f}(S_{j}^{*}S_{j})^{*}(S_{k}^{*}S,)=\sum_{\sigma}\alpha_{\sigma(i)}\alpha_{\sigma(j)}\beta_{k}\alpha_{\sigma(l)}\{(s_{\sigma(i)}*s_{\sigma(j)})^{*}(S_{k}^{*}S_{\sigma(l)})\}$

where the sum is taken through the permutations ofthree words. By use of $(^{****})$ we
see the both sides are identical. In a completely analogous manner, we have the first
equality for $\Sigma_{1}^{1}$ . Hence we have proved the assertion.

Appendix
In this appendix we give the acceptability condition and the generation of Chomsky
sentences. We begin with the tree strucutre of Chomsky sentences:

$t_{ecangivetheacceptability}^{Acceptabi1itycondition)}$

condition of Chomsky sentences in the following
$manner:We$ choose a sequence, for example, $\{\{,$ $\},\{,$ $\}\}$ or $\{\{,$ $\},$

$,$

$\}$ We make a
numbering:

$\{\{,$ $\},$ $\{,$ $\}\}$ , $\{\{,$ $\},$
$,$

$\}$

123456789 1234567

Then we can give the following criterion ofthe acceptability condition:
$\overline{For}$the sequence $1(\{\sim 7\backslash y4\backslash \ldots\ldots$

(1) $\sim(\{)_{k}\geq u(.)_{\lambda}$. $\geq\ddot{\ddot{\#}}(\})_{i}$

(2) $\tilde{r}(\{),$ $= \frac{\prime}{fr}$ $($ . $),,$ $=\vec{\underline{.}.}(\}),$ ,
for only $n(=length)$

(3) $\succ(,$ $)_{\kappa^{g}}^{\underline{*}}\prime j^{-.j}(.)_{k}\leq 1$

We give several examples:
$\{\{..1_{1},.t_{-},\}..t_{3}’\}$

$\#(\{)_{k}$

it $(,$ $)_{k}$

$\#(\})_{k}$

$\#(\{)_{k}$ implies the sum of open
brackets from the first to the k-step.
The other notations are similarly
used

Acceptable Non acceptable Non acceptable
(Generationof Chomskysentences)
We proceed to a generation of Chomsky sentences.We introduce the circle
representation of centences.

1
$\prime g^{i}’\backslash _{\backslash ,-}$

$f\backslash \underline{.}1^{\backslash }|.\{.\bullet,\prime J^{\backslash }B^{t}’\nearrow’-,\cdot\cdot\cdot)$

$’.\cdot.\dot{y}.\cdot\cdot\bullet_{\backslash }|\ddot{\dot{8}}_{\vee}^{\prime t}r_{i}\bullet\ldots,:_{\Vert t\Vert\Vert_{:’}^{\backslash }},,\bullet_{-}\bullet..!\prime’..\cdot-.\cdot$.

.,

$\bullet\bullet’\ldots-_{\backslash },$

$\prime j.\ldots.\cdot\cdot:\bullet\nearrow.-0’....’\phi..,\cdot$

$J_{-r,\prime 11:/.(\backslash \backslash }-,,$, $1|\{_{l}.\}.(_{1}$

Then we can state the generatlon rule ln the Iollowl$ng$ manner. Choosing an
acceptable sentence and putting points between each connected compoments and
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making circles surrounding each connected components succesively. We can give its
generation rule in the fo]lowing two types:

General rule (Type 1)

$\mathscr{Z}$ $(\hat{\cdot e\backslash \sim^{\underline{\mathfrak{B}}\sim \mathcal{D}\mathscr{C})}\#_{:\#}\zeta_{\vee}^{ff}}\cross$

$\backslash ’\hat{\S:^{i*}\otimes\cdot \mathscr{D}^{\sim},\sim}$

$\cross(6\mathscr{X}^{\text{�_{})}}$

where the square implies the candidates whose acceptability will be determined in the
further steps and the circle implies the acceptable sentences. The sentence with $\cross$

implies that the sentences can not be acceptable. Hence we see that we have three
possible sentences by the first type and three possible sentences by the second type.
We give the generations in the first three steps:

$N\cdot t$

$(\bullet)\overline{J\mathscr{Z}}\sim$

険 $2(1)\llcorner-\bullet 1(\bullet.)--\neg\lrcorner$

$l^{-\wedge-}\bullet Y\bullet J_{\searrow}\overline{.}L_{\gamma\bullet)\cross}$

.. $-$

匝動匝$(_{\bullet)}^{-}-J$

$\iota\bullet(\bullet|(l’i\bullet’------’\vee\cdot$

$–$
$\cross$ $—$.

$\{(\bullet^{1}\}\bullet|\bullet 1-.\cdot.\cdot.-$

$—’\cross$
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