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UNDECIDABLE INFINITE TOTALLY REAL
EXTENSIONS OF Q

KENJI FUKUZAKI

Abstract

Every number fields are known to be undecidable. Nevertheless the only
known undecidable infinite algebraic extensions of the rationals are fields whose
descriptions depend on non-recursive sets. No ‘natural’ such fields seem to be
known until now.

Let [ be a prime such that [ = —1 (mod 4) and let K; = |J, Q(cos(27/I"™)).
Furthermore let [ be a prime such that 2 is a prime element of the ring of
algebraic integers in K;. There are many such primes. We prove that such K
is undecidable.

1 Previous results

Let F,, = Q(cos(2w/I™)), where [ is an odd prime , and let K; = |J, Q(cos(27/I™))
(Fo = Q). Then K; is an infinite totally real algebraic extension of Q. We say that
an algebraic number a is totally real iff a and its conjugates are all real.

In [5] we proved the following theorem. We denote by O, the ring of algebraic
integers in F,, and by Ok, the ring of algebraic integers in K. Then Ok, =, On.

Theorem 1 Let ¢(s,u,t) be
Jz,y, 2(1 — abt! = 22 — sy? — u2?)
and P(t) be
Vs, u(Ve(e(s,u,¢) = o(s,u,c+ 1)) = (s, u, ),

then the solution set of ¥(t) in K;, Y(K)), includes Z but excludes non-algebraic
integers, that is, Z C ¢(K;) C Oy,

In this paper we will prove that 1(t) defines a subring of Ok, if { is a prime such
that | = —1 (mod 4) and that furthermore if | is a prime such that 2 is a prime
element of Ok,, then N is definable in ¥(K;). In order to prove these facts, we will
prove some facts on quadratic characters with polynomial arguments in section 2.

First of all we need the following remark.
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Remark 2 We can easily show the following.
Let 0 <n <m and a,b,a € F,, with ab+# 0. Then

Fol=o(a,ba) iff Fn = o(a,b,a).

For if F, = =¢(a, b, a), then (1 —aba*)/(—ab) € (Fy);? for some p a place of F, such
that (a,b), = —1. Let *B be a place of F, lying above p. Then we have (a,b)y = —1
and (1 — aba*)/(—ab) € (Frn)32. Note that for an Archimmedean place p C B, it is
also true that (a,b), = 1 iff (a,b)qp = 1.

Thus we have

F, E=¢(a,b,0) T K E p(a,b, ).

Note that if we let [ be a prime such that [ = —1 (mod 4), then above statemants
hold for 0 < n < m since every [F, : Q] is odd.
Note also that it is not necessarily true that

F, EVe(p(a,b,c) = o(a,b,c+ 1) iff F, | Ve(p(a, b, c) = ¢(a,b,c+1).
Therefore it is also not necessarily true that
F, = Ve(p(a,b,¢) = p(a,b,c+ 1) iff K; = Ve(p(a, b, c) — p(a,b,c+1).

Remark 3 The result for K| holds also for towers of cyclotomics similarly. Let
M, = Q({;»), where ! is an odd prime and (;» is a primitive [”-th root of unity, and
let Ny =, Q(¢») (Mo = Q). We denote by Oy, the ring of algebraic integers in N;.
Then, Z Q ’tp(Nl) Q DN[-

2 quadratic characters with polynomial arguments

In this section, we will prove some facts on some character sums of finite fields, which
we will use later. We let IF, be a finite field with ¢ elements, and q = p/ where p is
an odd prime. We let n be the quadratic character of F,, that is, 7(0) = 0,7(c) = 1
if ¢ € F? and n(c) = —1 otherwise.

We consider the following character sum

I(a) = ) n(c" +a),
ceF,
where a € F;. Moreover we use the following character sum
H,(a) = Z n(c™** + ac),
celF,

which is called a Jacobsthal sum. Using these character sums, we will first show that
if n(d) = —1, p = —1 (mod 4) and p > 3, then there are b € F, and i € F,, such that
n(* + d)n((b+9)* +d) = —1.
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Lemma 4 Let p= —1 (mod 4), ¢ =p’, and a € F,. Then:
1. If f is odd, then I4(a) = —1.
2. If f is even and n(a) = —1, then I4(a) = —1.

Proof. We first note that ¢ = —1 (mod 4) if f is odd and ¢ =1 (mod 4) if f is even.
For 1., it is proved in [9, pp. 231-232] that Iy(a) = —1 for all a € Fy, Ia(a) =
I.(a) + H,(a), and if the largest power of 2 dividing ¢ — 1 also divides n, then
H,(a) = 0. Therefore we get that Hy(a) = 0 and I4(a) = —1 for all a € F,.
For 2., we use the following formula (9, p. 231].

= n(a) Y- N(-a)J(¥,7)

where ) is a multicative character of F, of order d = (n,g¢—1) and J(N,n) is a Jacobi
sum, that is, ~

J(N,n) = Z N (c1)n(ca)-

cy+cp=1
C1,C2€Fq

Letting n = 4, we see that ) is a multiplicative character of order 4, hence n = A?.
Therefore we see by [9, p. 207] that

( 177) ; (77,X1)>

where G(n, x1) is a Gaussian sum. Furthermore we know by [9, p. 199] that
G(mx1) = (=1) 71l g2,
Therefore we get
Is(a) = n(a) (M=a)J(\,n) = N(=a)(=1)) + X(=a)J(X*,m)) .

It is easy to see that (¢ — 1)/4 is even, and A(—1) = —1 iff (¢ — 1)/4 is odd, hence we
see that A(—1) = 1. Together with n(—1) = (—1)@1/2 = 1 and A3 = }, we have

Ii(a) = X(@)J (A, m) + (=1)"*! + Xa) J(\, ).
Here we have that A(a) = =% since n(a) = —1. Then we have

Ii(a) = =1 £ 2ImJ (A, n).
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We now calculate ImJ(A,7n) of F,. Let J(A,n) = A+ Bi. A and B are rational
integers since A assumes only the values 0, £1 and +i. By [9, p. 209], we know that
|J(\,m)| = ¢'/2, hence we have that A% + B? = p/. It is well-known that for p/ with
p = 3 (mod 4) and f even, it is the case that A = £p/2 and B = 0, or vice versa.
However we can show that A = pf/? if f/2 is odd, A = —pf/? if f/2 is even, and
B = 0 by the similar way in [9, p. 233], from which I;(a) = —1 follows.

It is proved in [9, p. 232] that
Hn( Z )\2’+1(a /\2J+1 )

where d = (n,q — 1) and A is a multiplicative character of I, of order 2d. From this
formula we get :

Hy(1) = N=1) (JOun) + IO, m) = A=1) (JO,m) + T, m)) = 2ReJ (A, ),

hence ReJ(\,7) = $Ha(1).
We will now show that 3 H,(1)
and let ¢ =4k + 1. Since n(-1) =

= —1 (mod 4) Let g be a primitive element of F,
1 and —1 = ¢g?*, we can write

Hy(1) = Zn n((¢")" +1)
= Z n(g)n((g*)* + 1) + Zﬂ(_gi)n((“gi)z +1)

= 2.}:77(9")?7((9")2 +1),

so that

—Hz (1) = ZU +1).

From I5(1) = —1 we get

4k 2k
“1=1+ Zﬂ((g")2 +1)=1+2 Zn((g")2 +1),

hence

-1 =Zn((9 2 +1
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By subtraction, we obtain

2k
%ng) +1=) (n(g) = 1)n((s")}* + 1).

=1

For 1 < i < 2k, we have
(n(g") = D(n((¢")* +1) ~1) =0 (mod 4) whenever n((g")* + 1) # 0.
Thus,
(n(g") = Dn((¢")* +1) =n(g") =1 (mod 4) whenever n((g")* + 1) # 0.

Now n((¢*)? + 1) = 0 if and only if i = k or 3k. Consequently,

2k
L+ = (e - 1) - () - 1)

2k
Zn(g") — (2k = 1) = n(g*) (mod 4).

Furthermore,

4k 2%
0="> nlg)=2> nlg")
i=1 i=1
and n(g*) = A\%(g*¥) = A(—1) = 1, so that
%qu) +1=-2 (mod 4).
Since k is even, we see that
—;—Hz(l) +1=0 (mod 4),

as claimed. a

Remark 5 Let p = —1 (mod 4),g = p/, f even, and n(a) = 1. Then from the
proof of the above lemma, we see that Iy(a) = —1 + 2ReJ()\,n) if order of a in F;
is 0 mod 4, I4(a) = —1 — 2ReJ(\, ) if order of a is 2 mod 4. Note that the value of
I4(a) is independent of the choice of A. Therefore I(a) = —1 + 2pf/2,



55

Lemma 6 Let p be an odd prime such that p= —1 (mod 4), and q =p’. Leta € F,
and n(a) = —1. Then:

1. If f is even, there are b € Fy and j € F, such that n(b*+a)n((b+5)* +a) = —1.

2. If f is odd and p > 3, there are b € F, and j € F, such that n(b* + a)n((b +
i) +a)= -1

3. If f > 1is odd and p = 3, there are b € F, and j € F, such that n(b* + a)n((b+
i)t +a) = -1.

Proof. For 1., we first note that z* +a = 0 has no solutions in F, since n(—1) = 1 and
n(—a) = —1. Suppose not. Then, for any ¢ € F,, n(z* + a) assumes the same value
for {c,c+1,...,c+p— 1}. Therefore, I;(a) must be 0 mod p, a contradiction.

For 2., we first note that z* + a = 0 has exactly two solutions in F,, say, e, since
n(—1) = -1 and n(a) = —1.

Suppose not. Then, for any ¢ € F, such that ¢+ e € F,, n(z* + a) assumes the
same value for {c,c+1,... ,c+p—1}.

If e—(—e) = 2e ¢ F,, then n(z* + a) assumes the same value for {e,e+1,... ,e+
p — 1} except e, and similarly for {—e,—e+1,...,—e + p — 1} except —e. Noting
that n(—e + j) = —n(e — j), I4(a) must be 0 mod p. Thus we get a contradiction
since I4(a) = —1.

If 2e € Fp, then it follows that +e,a € F,. Let 1’ be the quadratic character of
F,. Then we see that n(c) = n'(c) for all ¢ € F, since f is odd. Therefore we have

Zn(c‘1 +a) = zn'(c4+a) = -1

cefF, ceFp

So it is not the case that n(z* + a) assumes the same value for {0,1,... ,p—1} except
+e since p > 7. Hence there are b € F, and ¢ € F, such that n(b* +a)n((b+1i)*+a) =
1. .

For 3., we first note that there are no elements b, j € Fs such that n(b* + a)n((b+
j)* +a) = -1, for 2 is the only element such that p(2) = —1 and n(1* +2) =
n(2* +2) = 0. And note that (2) = —1 also in Fa;.

For the case a & IF3, noting that +e ¢ F3, we can prove the assertion.

For the case a = 2, suppose not. Since I4(2) = —1, n(2) = —1, and n(1* + 2) =
n(2* + 2) = 0, we have Zcem‘af\m‘sn(c4 +2) = 0. Let ¢ = 37. Since the solution of
z* +2 = 0 in F, are {1,2}, the number of the elements of the set {c € F, \ F; :
n(ct +2) = 1} is (¢ — 3)/2.

Now we consider the following system of inequations.

y¥—z'4+1 #£ 0
Z2—(z+1)*4+1 £ 0
wr—(z+2)*+1 # 0
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We consider the number of common solutions of these inequations in ]Fz. By as-
sumption we have n(c* +2) = n((c+ 1)* +2) = n((c+2)* +2) = 1 or n(c* +2) =
n((c + 1)* + 2) = n((c + 2)* + 2) = —1 for any ¢ € F, \ Fs. Therefore the number of

common solutions is (g — 3)/2 x ¢% + 3g(q — 1)?, where 3¢(g — 1)? is the number of
common solutions for z =0, 1, 2.

On the other hand, it is proved in [9, p. 275] that if f € Fy[z, ... ,z,] is of degree
d, then f(zi,...,Za) = 0 has at most dg"~" solutions in Fy. Thus the equation

-zt + 1) -+ 1)+ D)W - (@ +2) +1) =0

has at most 12¢° solutions in F2. Hence we get 12¢> > ¢* — ¢*(¢ — 3)/2 + 3¢(q - 1)?,
a contradiction since q > 33 = 27. 0

We cannot establish an explicit formula for ¢ = p/ with p = 1 (mod 4). For
example, in Fs, 7(2) = —1 and I4(2) = -5, n(3) = —1 and I4(3) = 3. Nevertheless

we will prove that for ¢ = p/ with p = 1 (mod 4) and f odd, the similar result as
above lemma holds.

Lemma 7 Let p =1 (mod 4), q a power of p and f be an odd integer. Let a € F,

and n(a) = —1. We denote by I4(a) and I;(a) the character sum in Fy and F,
respectively. Then

Ii(a) =0 (modp) iff Ij(a)=0 (mod p).

Proof. Let ¢ = p". We again use the formula

In(a) = n(a ) N (=a)J(N,n),

mM&

Letting n = 4, we have that

1
J(Az) T’) = _EG("?) Xl)z,
as before. But this time we have by [9, p. 199] that

G(n,x1) = (1) 1¢*2.

Therefore we get
4(a) = 1(a) (\(=a)J (1) — N(=a) + X(~a)T(¥%,m)).
Since n = A? and n(—1) = 1, we have
Ii(a) = X(=a)J(A\,n) = 1+ A(—=a)J (A, 7).
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Here we have that A(—a) = =i since n(—a) = —1. Then

-1+ 2ImJ(A, if AM(—a) =
Ii(a) = { ~1- 21mJ§A,Z§ if AE a; = —

We can show that ReJ ()\ 1) = 3A(—1)H,(1) in the same way as before. We also can
show that ImJ(X,7) = 3A(—1)Ha(d) for any d € F, with n(d) = —1 similarly. Note
that A(—1) = %1 since 77( 1) = 1. We see that )\( 1) =1if g =1 (mod 8), and
AM-1)=-1if ¢g=5 (mod 8)

At the same time We can show that ;H,(1) = —1 (mod 4) in the similar way
as before. Further we can show that ;Hy(d) = —2k (mod 4) with k = (g — 1)/4
similarly.

It is proved in [9, p. 210] that

J()\€l7 R} ;c) = (—1)(f—1)(k—1)J(A1a ey )‘k)fa
where A, ..., A; are multiplicative characters of Fy, not all of which are trivial, and
which are lifted to characters A}, ..., A, respectively, of F;.

We say that ); is lifted to A if X' (c) = A(N]Fq ;/F,(c)) for all ¢ € Fys. The quadratic
character of I, is lifted to the quadratic character of F,s, and characters of order 4
of Fy are lifted to characters of order 4 of F,s, since Ng o /R, (€) = P

cl@’=0/te=1) and (¢ —1)/(g—1) is odd. Furthermore we see that for ¢ € Fy, n'(c) = n(c)
where 7' is the quadratic character of F s, so we use the same letter 7. Now we consider
characters of order 4. Let A be a character of order 4 of F, and let A be lifted to X' of
F,s. Note that there are two characters of order 4 which are conjugate. Obv1ously, for
c € F, with A(c) = £1, we have that X'(c) = +£1, respectively. And wealso have that, -
for ¢ € Fy with A(c) = &4, N(¢) = &1 if f =1 (mod 4) respectively, and N (c) = Fi
if f = —1 (mod 4) respectively.

Consequently, we have that J(X,n) = J(\, )/, and that X(—a) = AM(—a)if f=1
(mod 4), and N (—a) = A(—a) if f = -1 (mod 4).

On the other hand, also in F,, we have

—1+2ImJ(X,n) if X(—a)
I4(a) ={ ~1 —21mJ(X,7r7;) if X(-a)=

similarly.

Suppose tha I;(a) = 0 (mod p). We first let f = —1 (mod 4). Let J(\,n) =
A+Bi,J(X,n) = A'+B'i. If \(—a) = +i, then I4(a) = —14+2B and I;(a) = —1F28/,
respectively. Since J(N,n) = J(A,n)/, we have A’ + B'i = (A + Bi)?. Hence we get

f - / - i f (25— i
I — Af-ip — f=3g3 4 ... —1\U-1) Af-@-1)pg%-t 4 .. _ gf
B (1> B <3>A B+ 4+ (-1) 2 — 1 B + B
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Let A(—a) = i. By the assumption that I;(a) = 0 (mod p), we have B ='1/2
(mod p). On the other hand, by |J(),7)| = ¢*/?, we have A*> = —1/4 (mod p).
Hence we get B' = —1/2 (mod p) and Ij(a) = —1 — 2B’ = 0 (mod p). In case of
A(—a) = —i, we have that B = 1/2 (mod p) and Ij(a) = —1 —2B' =0 (mod p).

Secondly, we let f = 1 (mod 4). Then, if A(—a) = %4, I4(a) = —1 £ 2B and
I'(a) = —1 £ 2B’, respectively. Similarly, we have I3(a) =0 (mod p).

Conversely let I;(a) # 0 (mod p). In case that f = —1 (mod 4) and A(—a) =1,
we have that B = s (mod p) with s # 1/2 and B’ = —2/~!s/ (mod p). We easily see
that —2/~1s/ # —1/2 (mod p) and I3(a) # 0 (mod p). Similarly for other cases. O

In F5, there is a € F5 with n(a) = —1 such that I;(a) = 0 (mod 5) : take a = 2,

then n(2) = n(1 +2) = n(2* +2) = --- = n(4* + 2) = —1. Thus we have I4(2) =0
(mod 5) in Fss with f odd. For primes greater than 5, we have the following:

Lemma 8 Let p be a prime greater than 5, then I4(a) # 0 (mod p) in F, for any
a €.

Proof. From the formula
d-1
In(a) =n(a) Y_ N (~a)J (¥, ),
i=1

we get |I,(a)] < (d — 1)p/?, where d = (4,p — 1). Hence |L4(a)] < 3\/pifp =1
(mod 4), and |I4(a)| < /p if p = —1 (mod 4). Therefore |I4(a)] < p — 2, and the
assertion follows since z* + a has possively two solutions in case of p = —1 (mod 4)
and 1'(a) = —1 where 7’ is the quadratic character of IF,. O

Lemma 9 Let p be an odd prime such that p = 1 (mod 4) with p # 5, and q = p’
with f odd. Let a € F, and n(a) = —1. Then I4(a) # 0 (mod p).

Proof. Suppose that I4(a) = 0 (mod p). First we recall

~1+2ImJ(\,n) if M—a) =1
La(a) = { ~1- ZImJE)\,Z) if ,\(—Zg = Z—i.

This formula shows that the value I4(a) depends only on the value of A(—a). We easily
see that there is a ¢ € F, such that A\(c) = A(a). Then we have I4(c) =0 (mod p) in
F,. It follows that I4(a) = 0 (mod p) in F, since f is odd, a contradiction. D

Lemma 10 Let p # 5 be an odd prime such that p = 1 (mod 4), and q¢ = p/ with
f odd. Let a € F, and n(a) = —1. Then there are b € Fy and j € F, such that
n(b* +a)n((b+5)* +a) = -1.
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Proof. We first note that z* + a = 0 has no solutions in F, since n(~1) = 1 in F,,
The assertion follows from the above lemma. 0

For p = 5 we have I4(2) = 0 (mod 5) in all F5; with f odd. However it is true
that there are b € F5s and j € Fs such that n(b* + a)n((b + j)* + a) = —1 for any
a € Fys with n(a) = —1if f is odd and f > 1.

Lemma 11 Let f > 1 be odd. Let a € Fys; and n(a) = —1. Then there are b € Fys
and j € Fs such that n(b* + a)n((b+ j)* +a) = —1.

Proof. We again use the same letter 7 for the quadratic characters of F5 and Fss. Let
Ao be the multiplicative character of of order 4 in F5 such that A\o(2) = i and let \g
be lifted to A of Fsy.

We first note that A(—1) = —1 and A(a) = =1 since n(a) = —1. Suppose that
A(a) = —i. Then we see that I4(a) # 0 (mod p) since I4(3) = —i and I4(3) = 3. The
assertion follows similarly.

Suppose that A(a) = i. We now evaluate I4(a). We easily see that J()\g,n) = 1421,
hence J(X,n) = (1 + 2i)7. Letting J(\,n) = A+ Bi, we have

Hence we have —(3/ +1)/2 < B < (3/+1)/2. We know that I;(a) = —1+2ImJ(A,n)
since A(—a) = —i. Thus we see that =3/ —2 < I;(a) < 3/. Let C = {c € Fys : p(c* +
a) = —1} and let N be the number of elements of C. We see that N < (57 +3/+1)/2
since [I4(a)| < 3f. Suppose that the assertion does not hold for a. Then it follows that
n((c+i)*+a) = 1(: =0,1,2,3,4) for ¢ € F5r\C and n((c+1)*+a) = —1(: = 0,1,2,3,4)
for ¢ € C. Therefore the equation

[T (wi—2*—a)=0

0<i<4

has at least 5%/ — 5%/ (57 + 3/ 4 1) /2 solutions in FS,. We know that this equation has
at most 20(5/)° solutions by [9, p. 275]. Thus we have

20 - 57 > 58 _ 55 (57 1 3f 4 1)/2.

It follows that 5/ — 3/ — 41 < 0, a contradiction since f > 3. 0
For ¢ = p/ with f even, we can show that If I4(a) = 0 (mod p), then Ij(a) = -2
(mod p) but we can say no more. Note that there is no ¢ € F, such that A(c) = A(a).
However we are interested in residue fields of completions of F,, = Q(cos(2x/I")
where [ odd prime and [ = —1 (mod 4).
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Lemma 12 Let! > 3 be an odd prime such thatl = —1 (mod 4) and F, = Q(cos(27/I™)
withn > 0. Let p be a prime of f. lying above a rational prime p withp 2. We
denote by F,, the residue field of (F,),. Let a € F, and n(a) = —1. Then there are
beF, andj € {1,2,...,p— 1} such that n(b* + a)n((b+ j)* +a) = —1.

Proof. Let f be the residue degree of p. Then F, = F,s and f is odd since [F, : Q] is
odd. The assertion follows from Lemma 6, 8, 10, 11. O

3 The structure of ¥(K;).

In this section we let [ be an odd prime. We begin with the following lemma.

Lemma 13 Let p be a rational prime other than . Then p decomposes into only
finitely many factors in Ok,, the ring of algebraic integers of K; = |, Q(cos(27/I™)).
And p is unramified in K;. Furthermore there is ng such that forn > ng, p decomposes
into the same number of factors in O, as in Ok,.

Proof. Take p,, such that p,, is a prime of F}, and p C p; C ps C p3 C -+, and denote
by f. the residue_degrge of F,, at p,. Then Fyprm = On/p,. We denote Fpr. by F,.
Obviously, ]Fp - F1 g F2 c.--.

Let p’ be a prime of M, = Q({) lying above a rational prime p and let f, be
the residue degree of p’. Then f! is the smallest positive integer f such that pf =1
(mod I*). Let pfi = 1+ kl. We easily see that if ged(k,l) = 1, then f. = fji~!
for all n, and if k = I°¢ with ged(q,l) = 1 and b > 1, then f] = f; = -+ = fi 4
and f;., = fil* 1 if h > 1. In either case, there is ny such that f ., = f/.l for all
m > ng. Let flg, =1""'(l — 1). There are exactly g; extensions of p to M,. We see

that gi, = Ghoy1 = Gnesz = - Let fogn = 1"71(1 = 1)/2. Then there are exactly
gn extensions of p to F,,. We see that f,|f, and gn|g;,. If fn, = f7,,/2, then we have
Gho = Gno = Gno+1 = Gno+z = - and frnyy = frl for all m > ne. If f, = f}, then
we have gp /2 = gny = gno+1 = Gnot+2 = *+* and fmy1 = fml for all m > ny. Thus in

either case, we have f,,4+1 = fn! and p has exactly g,, factors in F;, for all m > n,.

Let (p) = p%lo)p%) e pfﬂ,’m) in F,, and let B; = pﬁng k, for each i. Then PB; are
unramified prime factors of p in Ok,. O

We will prove that 1(t) defines a subring of Ok, in K; if l = —1 (mod 4).

We note that if n(c) = 1 in F,, with n > 1, then n(c) = 1 in F,, for all m > n, and
similarly for n(c) = —1 in F,,. So we use the same symbol n for quadratic characters
of all F,, with n > 1. We denote by 7’ the quadratic character of F,. Note that if
| = —1 (mod 4), then n'(c) = n(c) for all ¢ € F, since [F; : Q] = (I — 1)/2 is odd.
Note also that in case of I =1 (mod 4), n(c) =1 for all c € F, if f; is even.
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We recall that 1(t) is a formula
Vs, u(Ve(p(s,u,c) = @(s,u,c+ 1)) = (s, u,t)),
and ¢(s,u,t) is a formula
3z, y, 2(1 — abt* = 2% — sy® — u2?).
Furthermore we let 6(s, u) be a formula
Ve(p(s,u,c) = o(s,u,c+ 1).

For a,b € F,, we denote by S,(a,b) the set of places p of F, such that (a,b), = —1.
By the proof of Theorem 1, we know that there are a,b € K such that

K, E Vc(e(a,b,c) = ¢(a,b,c+ 1)) and
K, E 3z,y,2(1 - aba* = z? — sy? — uz?) for any a € Oy,

and such that if a,b € F,,, then v,(—ab) =1 for all p € S,(a,b) with p /.

We will prove that almost a,b € K} with K, |= 6(a,b) satisfy K; = ¢(a,b, @) for
all o € Dk[.

From now on the ring of integers of (F,), is denoted by (0y),, its maximal ideal is
also denoted by p, its residue field (0,),/p by (F.),, and the group of units in (o0,),
by (Uv)p. For o € F,,, we denote by & its residue class in (F,),. Furthermore we let
p lie above a rational prime p. Note that (Fy,), ~ On/p ~ F,s where f is the residue
degree of F;, at p.

We note that for a,b € Fy, F, = —p(a,b,a) iff o' —1/ab € (F,)}? for some
p € Sn(a,b).

Lemma 14 Let a,b € F such that
Kl }:: ‘V’c(cp(a, b) C) — (P(a, ba C+ 1))
holds. Then every p € S,(a,b) is not Archimedean.

Proof. Let p € Sy(a,b). Suppose that p is Archimedian. Then there is m € N such
that m* — 1/ab € (F,,)?. We can take n, > n such that F,, = ¢(a,b,m) since K, =
¢(a,b,m). Let p’ be a place of Fy,, lying above p. Then we have m* —1/ab € (Fy,,);?.
Since (F)p = (Fn,)w ~ R, we have (a,b)y = —1. Hence we have F,, &= —y(a,b,m),
a contradiction. Therefore p is not Archimedean. O

Lemma 15 Letn > 1. Let a,b € F;;, a € O, and po € Sy(a,b) with py 2 such that
1. K; =Vc(o(a,b,c) = p(a,b,c+ 1)) and



62

2. o' — 1/ab € (Fo);2 hold.
Then vy, (—ab) = 0.

Proof. We note that —ab & (Fy,);2 since (a,b)p, = (a, —ab)p, = —1. We have that by
Remark 2, F, | ¢(a,b,1) since K; = ¢(a,b,1). Then we have

(1 —ab)/(—ab)=1—1/ab & (F,);2.

It is known that 1+ p = (1 + p)? for p /2 in p-adic fields ([10, p. 163]). Hence we
have v, (—1/ab) <0, so v,,(—ab) > 0. On the other hand, we have

(1 — abat)/(—ab) = a* — 1/ab € (F,);2

If vpo(—ab) > 0, then 1 — aba* € (F,);Z since a € O,, hence —ab € (F,);2, a

contradiction since (a, b),, = —1. Therefore we have v,,(—ab) = 0. O

Lemma 16 Let | > 3 be an odd prime such that | = —1 (mod 4). Let a,b € F.
Suppose that S,(a,b) contains a po such that py 2, and v,(—ab) = 0.
Then K, = —Ve(p(a, b, c) = p(a,b,c+1)).

Proof. Using ¢(a, b, c) < ¢(a,b, —c), we see that for any j € Z,
K, EVc(p(a,b,c) = @(a,b,c+ 1)) iff K, |=Ve(o(a,b,c) & o(a,b,c+ 3)).

It is known that for & € (U,), with p 2, a € (F,)3? iff n(&) =1 in (F,),. Hence
we see that n(—1/ab) = —1 in (F, )"2 since (a,b)y, = —1.

Let po|p and d = —1/ab. By Lemma 12, there are b € (Fy),, and jo € {1,... ,p—
1} such that n(b* +d)n((b+7J0)* +d) = —1 in (Fy)p,. We may assume that n(b*+d) =
—1 and n((b + jo)* + d) = 1 without of loss of generality.

We can take 8 € O, such that 8 = b since Op,/po =~ (04)p,/Po- Let Sn(a,b) =
{po, - .. ,px}. By the Chinese Remainder Theorem, there is v € 9, such that

v = B (mod po)
v = 0 (mod p;) ifi #0.

Since ¥ = B in (F,),,, we have that 7* — 1/ab = B* — 1/ab (mod po). Let
A =~*—1/ab and B = 3* — 1/ab. Noting that 8 — 1/ab is a unit at po since
n(B* —1/ab) # 0, we have A/B =1 (mod po). Since (1+p)? = 1+pif p J2 in p-adic
fields, we have v* — 1/ab & (Fy,);2. Let ¢ # 0. Since (a,b),, = (a, —abd),, = —1, we
have —1/ab & (F,);2. Since

v* —=1/ab= —1/ab (mod p})
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and v, (—1/ab) = 0, we have ¥* — 1/ab & (F,);? as before. Consequently we have
that F, = ¢(a,b,), hence K, | ¢(a, b, 7).

Now since 7((b+jo)*+d) = 1in (F,),,, we see that (y+jo)*—1/ab € (F,):2, hence

Po?

we have that F,, = —~p(a,b,v+jo). Then by Remark 2, we have K; = —p(a, b, v+ jo).
Thus we have K = ¢(a,b,v) A —p(a, b,y + Jo). O

Lemma 17 Let | = 3. Let a,b € E*. Suppose that S,(a,b) contains a py such that
po A2 and v,,(—ab) = 0.
Then K| = —Ve(p(a, b, c) = ¢(a,b,c+ 1)).

Proof. In case that py /3, we can prove the assertion as before by Lemma 6, since

= —1 (mod 4). Next we let pg|3. This time we cannot use Lemma 8. Let ¢+ =
2 —2cos(2m/3™). Then pg = [ = (). Let ' =2 —2cos(27/3"*!). Then I = (/') is the
only one prime of F,,,, lying above [ and [ = [®. We know that the residue field of
(Fn) is F3 and that of (F,41)r is also Fs. Since vi(—ab) = 0 and —1/ab & (Fy,)i, we

have, as an element of (F,,); and of (Fp41)p,,

“1/ab = “1+01L+62L2+03L3+"'
—14 et

where c;,c, € {£1,0}. Let 8’ = 2. We easily see that 8’4 — 1/ab & (Fny41)v and
(6'+1)*—1/ab € (Fpy1)r. Similarly as before we have K; = ¢(a, b, 7' )A—p(a,b,v' +1)
for some ¥’ € Dy 41. O

The similar result for { = 5 fails to hold; we can construct a,b € F; C K5 such
that S,(a,b) contains po = (2—2cos(27/5")), Vp,(—ab) = 0 and K5 = Ve(p(a, b, c) —
©(a,b,c+ 1) holds.

By the above lemmas and Remark 2, we see that, letting [ be an odd prime such
that [ = —1 (mod 4), for a,b € Ey, if S,(a,b) contains no primes dividing 2, then

K, =Vc(p(a,b,c) = p(a,b,c+ 1)) = p(a,b,a) for all @ € O,.
Lemma 18 Letn > 1. Let a,b € F}, a € O, and pg € Sp(a,b) with po|2 such that
1. K, = Vce(p(a,b,c) = ¢(a,b,c+ 1)) and
2. a* —1/ab € (F,);2 hold.
Then vyy(—ab) = £2.

Proof. We first note that 1,,(2) = 1 since py is unramified. We have

_l/ab ¢ (Fn);g (1)
(1-ab)/(-ab) = 1-1/ab¢ (Fu)iq (2)
(1—aba*)/(—ab) = o' —1/abe (F,):2 (3)
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It is known that (14 p7)? = 1+ 2p” if p~ C 2p in p-adic fields([10, p. 163]). So
we have 1+ p3 = (1 + p3)?. Hence we have y,,(—1/ad) < 3 by (2) and v,(—ab) < 3
by (3). It follows that —3 < vpo(—ab) < 3. Further we see that 0 < yy,(a) < 2 by
(3). If vp,(—1/ab) = —1, then we have vp(a* — 1/ab) = —1, a contradiction since
at — 1/ab € (Fp,);2. Therefore we have vy, (—1/ab) = -2,0,1 or 2.

Let C be the group of (Np — 1)** roots of unity in (Fy)p,. Every elements of
C are squares in (F,)p,. Let C' = C U {0}. Let 6 € (Un)p,. We can wright § =
Co + €12 + 222 + - - -, for some ¢; € C' with ¢y # 0. We easily see that § € (Fy)?2 iff
c1 = 0 and cy/co = c(c+ 1) (mod py) for some c € C'.

Let vp,(—1/ab) = 1. In case v, () = 0, we have a* — 1/ab & (F,);2 since o* = c5
(mod p3) for some ¢y # 0 in C. Hence we see that v, (—1/ab) # 1 by (3). In case
po(@) = 1, we have v, (a* — 1/ab) = 1, a contradiction since o* — 1/ab € (Fy);2.
Accordingly vp,(—1/ab) = 0 or £2.

Now we will show that vj,,(—1/ab) # 0. Suppose that vy, (—1/ab) = 0.

We have v, (a) = 0 or 1. Suppose that vp,(a) = 1. Since

o' —1/ab= -1/ab (mod pg)
and v,(—1/ab) = 0, we have a* — 1/ab & (F,);2 as before. Hence we see that
Vpo (@) = 0.
Let v,,(a* — 1/ab) = s. We see that s > 0 and s is even since vy,(—ab) = 0 and
at —1/ab € (Fn)y.
Case 1: s =0.
We let v € O, such that

v = a (mod po)
v = -1 (modp) if p € S,(a,b), p # po.

Then we have v* = o* (mod p}) and that
o' —1/ab=~*-1/ab (mod p3).
Therefore we see that v* — 1/ab € (F, )32 similarly as before. We also have

—1/ab= (y+1)*=1/ab (mod p*) if p # po.

Thus we see that (v +1)* — 1/ab & (Fy);? for p # po.

We will show that (a + 1)* — 1/ab is not a square in (F,),,. Let C be the
group of (Npg — 1) roots of unity in (F,),, and let C' = C U {0}. Let —1/ab =
So+ 512+ 8922 + -+ with s; € C’ and sy # 0 and let o = ¢ + €12 + 322 + - -+ with
ci € C' and ¢y # 0. Note that —1/ab # sg since sp is a square. Let dy € C’ such that
dy = co + 1. Then we have

o' = ¢ (mod pd)

(a+ 1)4 dﬁ (mod pg)
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If co = 1, then we have o* = 1 (mod p3) and hence a*—1/ab = 1—1/ab (mod p}).
Noting s = 0, we have 1 — 1/ab € (F,)?, a contradiction. Thus we have ¢y # 1.

po?

We can show that for ¢,d € C, vy, (c + d) = 0 iff ¢ # d. It is enough to show that
Upo(14¢) =0iff ¢ # 1 for ¢ € C. Since C is the group of (Npo — 1)** roots of unity
in (F,)p, C \ {1} is a set of solutions of

_X2f—2+X2f_3+"“+X+1=0’

letting Np, = 2/. Hence we have

XY xS X+ 1=]](X ~o).
cgécl'

Letting X = —1, we have y,,(1 4+ ¢) = 0 for any ¢ # 1.

Thus we have c§ # so. We consider the carrying of c¢j + so. Let by € C be such
that bj = so. Note that Npy = 2/ with f > 2, thereby there is such by. We see that
co + bo #Z 0 (mod py) since ¢ # bg. Therefore there is eg € C such that co + b = €
(mod py). Since (co + bo)* = e (mod pd), we have

ch + b8 = ed — (cobo)?2 = ef + (cobo)?2  (mod p2).
Thus we have
s + 5o = ef + (cobo)?2  (mod p?).
and
o —1/ab = e} + ((cobo)® + 51)2  (mod p3).

Hence we must have (cob)? = s1.
If dj = so, then we have

(a+1)*—1/ab= (so+51)2 (mod p2).
Here we have
so + 51 = b + (cobo)? = bA(b2 + c3) £ 0 (mod po)
since by # ¢g. Thus we have
(a+1)* = 1/ab & (Fo):2.

Let dj # so. Then, similarly as before, we see that there is fo € C such that
do + by = fo (mod pg) and we have

dg + 50 = féi + (d0b0)22 (mod Dg)
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Then we have
(a+1)*—1/ab = f§ + ((dobo)® + 81)2 (mod p3).
But we have
(dobo)? + s1 = (dobo)® + (cobo)® = b3(dg +cf) # 0 (mod po)
since dy # ¢p. Thus we have
(a+1)*~1/ab ¢ (Fn);ﬁ.

Furthermore we see that (a+1)* —1/ab is in po \ p2 or in C(1 +po) \ C(1 +p?). Hence
we conclude that (y + 1)* — 1/ab is not a square in (Fy,),, since

(y+1)*=1/ab=(a+1)* —1/ab (mod pd).
Therefore we have
Ki = —p(a,b,7) A p(a,b,v + 1),

a contradiction.

Case 2: s > 0.
This time we let v € £, such that

v = a (mod pit)
v = -1 (modyp) if p € Sy(a,b), p # Po.

Then we have v* = o* (mod p3*3) and that
27°(a* — 1/ab) = 27°(y* — 1/ab) (mod p3).

Therefore we see that v* — 1/ab € (F,);? similarly as before.
Since

(y+1)*-1/ab=—1/ab (mod p*)

for p # po, we also have (y + 1)* — 1/ab & (Fy);? for p # po similarly.
We see that (@ + 1)* — 1/ab is a unit at po since

(a+1)*—1/ab=1+2*+4(a+a® +a®) +a* — 1/ab.

Therefore if (o + 1)* — 1/ab & (F,.);2, then we have (y+1)* — 1/ab & (Fy);2 similarly
and have F, = —(a,b,7) Ap(a,b,v+1). So we have K, = —p(a,b,v) Ap(a,b,v+1),
a contradiction. Thus we see that (o + 1)* — 1/ab € (F,)32.



67

We again let —1/ab = sp + 812 + 5322 + -+ with s; € C" and sy # 0 and let
a=cy+c2+c22+--+ with ¢ € C' and ¢ # 0.-This time we see that co # 1 since
Vpo(ar+ 1) = 0. We let again dy € C such that dy = ¢g + 1. Then we have

a' = ¢} (mod pd)

(a+1)* = di (mod p3)

as before. On the other hand, we have df = (¢ + 1)* (mod pd) since dy = ¢y + 1.
Then we can wright '

(a+1)* =145+ c22+ (co+ 2 +c3)2% +

We claim that cj # so, from which it follows that a* — 1/ab is a unit in (0,,)eg,,
a contradiction. Suppose that c§ = so. Then a* — 1/ab = (s + $1)2 + 5222 +
Thus we must have sp = s; and a* — 1/ab = (5o + $2)2? (mod p3). Hence we have
cg— 1/ab = (sp + 52)2* (mod p3) and

(@+1)*—1/ab=1+4c22+ (co+c2+ ¢+ 50+ 52)2>  (mod p3),

a contradiction, since an element in (1+pg)\ (1 + p2) is not a square in (F,)p,. Thus
we have c§ # So. O

Lemma 19 Let | = —1 (mod 4). Let a,b € F*. Suppose that S,(a,b) contains a po
such that po|2 and vp,(—ab) = —2.

Then K| = =Ve(p(a,b,c) = ¢(a,b,c+ 1)),

Proof. Suppose not. Let m > n and Py is a prime of O,, lying above po. We note
that Po € Sm(a,b), —1/ab & (Frn)iz and 1 —1/ab & (F,)32. Now we will prove that
for a € O, with vy, (a) =0,

o~ 1/ab € (Fn)2 if (a+1)* — 1/ab € (Fu)i,

Suppose that a* —1/ab € (Fn )3, . We have vy, (o — 1/ab) = 0 since vp,(—1/ab) = 2.
This time we let v € O,, such that

v = o (mod ‘Bo)
v = —1 (mod PB?) if B € Sin(a,d), B # Po.

Noting that o* — 1/ab is a unit at P, we have v* — 1/ab € (Fin)is..

Furthermore we have (v +1)* — 1/ab & (F.)i for P € Sm(a,b), P # Bo also in
this case.

We claim that I/gpo(Ol + ) # 0, for if not, we would have o* = 1 (mod P3), and
would have 1—1/ab € (Fi)i2 since a*—1/ab = 1-1/ab (mod B}) and since 1-1/abis
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a unit at Po. Hence if (a+1)*—1/ab & (F):2 , then we have (y+1)*—1/ab & (Fn)3,,
and have K, = —¢(a,b,7) A ¢(a,b,v + 1). Thus we have (a + 1)* — 1/ab € (Fn o
The converse follows similarly.

Let C and C' be as before and again let & = ¢o + 12 + 22 + .-+ with¢; € C'
and ¢y # 0. Let dg € C' be as before and let —1/ab = $,2% 4 532° + -+ with s; € C'
and sy # 0. Then we have

a* —1/ab
(a+1)*—1/ab

b+ 5222 (mod PB3)
di + 5522 (mod PB})

‘Therefore we have for ¢g # 1,

sa/ch = clc+1) (mod Po) iff a* ~ 1/ab € (F)ii,
so/(ch+1) = d(d+1) (mod PBo) iff (¢ +1)* —1/ab € (Fn)ys,

for some ¢, ¢ € C', since df = c§ + 1 (mod Po).

Let NPy = 2f. Then the residue field (F,,)yp, is the finite field Fys;. Let Tr :
F,s — F, be the absolute trace function from Fys to F; and let x; be the canonical
additive character of Fys, that is, x;(C) is defined to be e*™T(®/2 for ¢ € Fys. Then
we know that for c € C',

c=c(d+1) (mod Po) for some ¢’ € C' iff Tr(¢) =0 iff xa(¢) = 1.

Then we see that x1(32/¢%) = 1 iff x1(32/(¢* +1)) = 1 for any c € (C\ {1}). Note
that vg,(1 +¢) =0if c # 1.

Let g be a primitive root of By in Fr,, that is, g is a primitive element of Om/PBo.
Let S be the set {ag + a19 +azg® + -+ +as_19' ! 1 a; € {0,1}}. S forms a complete
representative set in (Fi,)q, of the residue field (Fin)p,. Let

D={ceC:c=ag+ag®+---+a;19""" (mod po) for some a;}.

Then the set DU {c+1:c € D}U{0,1} forms a complete representative set of the
residue field (Fin)gp,. Since 2/ > 4, there is ¢’ € C such that ¢ = c* for any ¢ € C.
Let D' = {c' =¢* =c, ce D}.

We consider x;(¢* + 52/¢%) + x1(€* + 1 + 83/(c* + 1)) for c € (C'\ {1}). We see
that f is odd since ! = —1 (mod 4). It follows that x1(1) = —1. Hence we have
x1(8 4+ 5/ + xa(@ + 1+ 8/(@ + 1)) =0forall c € (C\ {1}).

Now we consider the following character sum of Fys

K(Xl) 11§2) = Z Xl(a + §2/6)7

= *
celef
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which is called a Kloosterman sum. Since 1 — 1/ab = 1 + 522 (mod 933), we have
X1(32) = —1. Therefore we see that K(x1;1,52) =1 in (Fn)p, = Fas, noting

K(x;1,5) =Y (a@*+5/¢%) +x1(@* + 1+ 5/(E* + 1)) + xa(l + 5).
¢'eD!

Therefore we see that K(x1;1,82) = 1 in (Fi)p = Fosr for all k > n and all B, a
prime of Fy, with P|po, where Npy = 27 and r = [(Fi)p : (Fy)p,)- There are Fy and
B such that » > 1. Fix such r. Note that r is odd.

On the other hand we know by [9, p. 226] that there exist numbers w; and w, that’
are either complex conjugates or both real, such that

K(x1;1,82) = —wi—w, in]FQ(J;
K(x1;1,52) = —w]—wj in Fyer.

So we have w; + wy = w] + wj = —1. Furthermore we know by [9, pp. 228-229] that
|wi] = |wo| = 2772, wiwy = 2%, Let a; = wt + wh and q = 2/0. Using the identity

w4 wh = (W W) (W we) = (Wi 4 W ww, for t > 2,
we can show by induction on k that, letting A; = 0 and A; = -2,

agk = 14 qAgk, Ao =—1— Age—1 — qAgk—2 (k>2)
Qok+1 = —1+4qAoskt1, A1 =1— Agp— qAg—1 (kK 2>1),

where for k > 1, Ay, = 0 (mod 2) and Agkyy = 1 (mod 2) hold. Thus we get a
contradiction since r is odd and a, = w] + wj = —1. O

Thus we see that, letting [ be an odd prime such that [ = —1 (mod 4) and 5
is a prime of K, for a,b € E*, if S,(a,b) contains no primes p such that p|2 and
Vp(—ab) = 2, then

K, = Ve(p(a,b,¢) = o(a,b,c+1)) = o(a,b,a) for all o € O,.

Let By, ... ,‘ﬂg be prime factors of 2 in Ok, and let ng be such that there are
exactly g extensions of 2 for all n > n,.
Note that for a,b with ab = 0,

Ky |=Ve(p(a,b,c) = ¢(a,b,c + 1)) = ¢(a,b, @)
for all a € Ok,.

Proposition 20 Let | be an odd prime such that | = —1 (mod 4). Then ¥(K;) =
(1 +Pi) UR).
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Proof. Let a € ,((1 + PB:) UP;). We will show that K; |= ¥(a). Take n such that

n > ny and a € F,. It is enough to show that for any a,b € F; with K; |= 6(a, b)
and for any p € Sa(a,b), if p|2 and y,(—ab) = 2,then o — 1/ab ¢ (Fa)i2.
Fix such a,b and p. Then p = P; N O, for some 7. We have

~1/ab & (Fo)?
(1—ab)/(~ab) = 1—1/abd (Fa)2.

Since a € ((1 + PB;) UP;), we see that a € ((1+p) Up).
Let a € 1 +p. Then we have

a*—1/ab=1-1/ab (mod p%),
hence
22(a* — 1/ab) = 2°(1 — 1/ab) (mod p°).

Noting that v,(—1/ab) = —2, we have o — 1/ab & (F,);2.
Let a € p. Then we have

o' —1/ab= —1/ab (mod p*),
hence
2 ~ 1/ab) = 2%(=1/ab) (mod p).

Noting that v,(—1/ab) = —2, we have o* — 1/ab & (F,);?.

Conversely, let a ¢ (),((1 + B;) UP;). We may suppose that o € Ok,. Then
a & ((14+P;)UP;) for some 5. Take n such that n > Ny and o € F,,. Let p = BiNO,.
We denote by f the residue degree of F;, at p. We see that f is odd. We may suppose
that f = —1 (mod 4) ; if f = 1 (mod 4), we consider F,;; in which the residue
degree of p’ = P; N Opyy is —1 mod 4.

We will construct a,b € F* such that K; |= 6(a,b) A —¢(a,b, o). Let C be the

group of (N, — 1)** roots of unity in (F,), and let C' = C U {0} as before. As an
element of (F,),, we can wright

a=Co+612+6222+"‘

with ¢; € C’ and with ¢g # 0, 1.
We will prove that there is s_; € C such that xi1(1/5-2) = 1 and x:1(5-2) =
x1(€3/5_2) = —1. We consider the following Kloosterman sum of Fx,

K(x;1,1) = Z x1(¢ +1/2).

ceFy,
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Let K*) be K(x1;1,1) of Fae. Then we have
K® = kb _ )k

for any k > 1, where w, + ws = —1 and wyw, = 2 since K = 1. Using again the
identity

wi +wp = (Wi + Wi ) (wy + wa) = (Wi + wE B wyw, for t > 2,
we can show by induction on &k that for m > 0,
K(4m+1) > 0, K(4m+2) S 0, K(4m+3) < 0, K(4m+4) < 0.

We consider the residue field of (F,),, which is Fys. Since f = —1 (mod 4), there are
more than 2/~! — 1 elements 3 of F}, such that x;(5 + 1/5) = —1. Therefore there
are more than 2/~! — 1 elements 5 of F}, such that x1(5) = —1 and x(1/3) = 1. Since

S xa(@fe) = -1,

EE]P‘;).

there is 8 € F;, such that x;(1/5') =1 and x1(5') = x1(¢5/§') = —1. Take s_, € C
such that 5_, = 3. Obviously s_5 # 1 since x;(1) = —1.

We take so € C such that x1(S0/5-2) = —1. Let 7’ € O,, such that 7/ = s_y + 5022
(mod p°). We can take such 7’ since O,/p* =~ (0,),/p*.

Take a prime p’ of F,, with p’|p’ where p is a rational prime other than 2 and !
and such that p’ =1 (mod 23). Let 7 € O, such that

/

r = 7 (mod p®)

= p (mod p?).

and let v = 272p'~%r. We have v € F,, 1,(y) = —2 and y,(y) = —1. We see that

7 is not a square of (Fy),. Furthermore we see that <y is not a square of (F,), since

v = 27%(s_2 + $02%) (mod p3) and x,(5p/5_2) = —1. Note that p’ = 1 (mod p3).
Therefore y~! is non-square of (F,), and (F,),.

Then we have by [10, p. 203], that there is a € F¥ such that S,(a,1/v) = {p,p'}.
Let b = —1/ay. We have b € F,. We see that (a,b), = (a, —ab), = (a,1/v), = -1
and (a, b)y = (a,—ab)y = (a,1/7)y = —1, hence S,(a,b) = {p,p'}. Since —1/ab =1,
we have

2°(a* — 1/ab) = 2*(a* +v) = s_y + (5o + c3)2%  (mod p3).

Then we have a* —1/ab € (F,);? since x1((S0 +¢§)/5-2) = x1(S0/5-2)x1(C/5-2) = 1.
Thus we have F, = —p(a,b, ), hence K, = —¢(a,b, a).
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We will prove that K |= 6(a,b), that is,
K, = Vc(p(a,b,¢) = ¢(a,b,c+1)).

Let 8 € K, and suppose that K; = ¢(a, b, 3).
First we note that —1/ab & (F3,);?. On the other hand, we have

22(1 — 1/ab) = 2*(1 +7) = s_p + (s + 1)22  (mod p®).

Then we have 1 — 1/ab & (Fy,);? since x1((50 +1)/5-2) = x1(50/5-2)x1(1/3-2) = —1.
Therefore we suppose that 8 # 0. Take m > n such that a,b, 8 € F;,,. Then we have
Fr = ©(a,b,B). It follows that % — 1/ab & (F,)3? and 8* — 1/ab & (Fn);?.

We claim that yy(8) > 0 iff 8 — 1/ab & (Fn);?; if vw(B) > 0, then we have
v (B* — 1/ab) = —1, hence B* — 1/ab & (Fn);?, and if v (B) < 0, then applying
Newton’s method of iteration [8, p. 42] with z2 — h with h = 8* — 1/ab and z = 2,
we get that h € (Fn)37.

Therefore we have (8 +1)* — 1/ab & (Fn)*. We will prove that (64 1)*—1/ab ¢
()2

Let 8 = ¢, 2% + ¢}, ,25+! + - with ¢}, # 0. Then we have 8 € 2%(c} + p®). Let
k < —2. Since —1/ab = 27%(5_5 + 502%) (mod p®), we have B¢ — 1/ab € 2%(c + p3),
hence 8* — 1/ab € (F,);?. Thus we have k > —1, that is, 14,(8) > —1.

If v,(B) > 0, then we have

22((8 +1)* — 1/ab) = 22(1 — 1/ab) (mod p°),

since (1 + B)* € 1+ p®. Hence we have (8 + 1)* — 1/ab & (Frn);2.
Let v,(B) = —1. We can wright 8 =c¢_,27' + ¢p+ cj2' + -+ with ¢_, # 0. Then
we have

24(8* — 1/ab) = ¢4, + 5_52* (mod p*).

Thus we have x;(5_9/¢%) = —1. Since B+ 1=¢_,27  + (g + 1)+ 2t + -+, we
have

24((8 + 1)* — 1/ab) = ¢, + s_52° (mod p?).

Therefore we have (8 + 1)* — 1/ab & (Fr);? also in this case.
Let 14,(8) = 0. We can wright 8 = ¢f + 2! + - -+ with ¢j # 0. Then we have

2%(8* — 1/ab) = s_p + (50 + ¢;)2?  (mod p?).
Thus we have x1((50 + &g1)/5_2) = —1. Since B+ 1 = (cj + 1) +¢}2' + -, we have

22((8 4+ 1)* — 1/ab) = s_2 + (50 + (¢, +1))2® (mod p%).
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Then we have

x1((30 + (cp + 1)3)/5-2) = xa((5o + &' + 1)/5-2) = -1,

since x1(1/3-2) = 1. Therefore we have (8 + 1)* — 1/ab & (F»);? also in this case.
Thus we complete the proof of the proposition. 0
We easily see that ¥(K;) = ),((1+B:)UP;) is a ring since a € P(K;) iff @ = Oor1
(mod ;) for all 4.

Remark 21 From the above proof of the proposition, we see that, letting [ = —1
(mod 4), for a,b € F¥ such that S,(a,b) contains a py with pg|2 and vp,(a,b) =2, a
statement like Lemma 16 does not hold.

4 Defining N in K|

We say that a totally real algebraic number a is totally non-negative iff a and all
its conjugates are non-negative. We write a < b to indicate that b — a is totally
non-negative, following J. Robinson [13].

Kronecker [7] determined all sets of conjugate algebraic integers in the interval
c—2<z<c+?2, provided c is a rational integer; they have the form

z = c+ 2cos(2kn/m) with 0 < k <m/2 and (k,m) = 1.

Note that if m = 1,2, 3,4, then x = c+ 2,c — 2,c £ 1, ¢ respectively.

He started by showing that a set of conjugate algebraic integers lying on the unit
circle must be roots of unity, that is, he showed that if the absolute value of some
algebraic integer together with those of its conjugates are equal to 1, then it must
be roots of unity: suppose that there were an algebraic integer a(= a™) such that it
were not a root of unity, and its conjugate were a®,a®, ... a™ with |a®| =1 for
1,...,n. Then their infinitely many powers also would lie on the unit circle. They
must satisfy finitely many minimal polynomials of degree n over Z, since the absolute
value of the coefficients of those polymonials were < ([n72])’ which were impossible.

The unit circle |t| = 1 was then transformed into the initial segment -2 <z < 2
by the transformation z =t + 1/t.

Therefore we know that any algebraic integer satisfying ¢ — 2 < z < ¢+ 2
with ¢ € Z must have the above form. Furthermore it is known that an interval of
length less than 4 can contain only finitely many complete sets of conjugate algebraic
integers. (See [15].)

These facts are used by J. Robinson in [13]. Her results concerns the integral
closure of Z inside totally real fields, not necessarily finite over Q. She calls such a
ring a totally real algebraic integer ring. In 1962 she proved the following;:
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Theorem 22 The natural numbers can be defined arithmetically in any totally real
algebraic integer ring A such that there is a smallest interval (0,s) with s real or oo,
which contains infinitely many complete conjugate sets of numbers of A, i.e. infinitely
many z € A with 0 € z < s.

In particular such a ring is undecidable.

We know that ¢(K)) is a totally real algebraic integer ring if [ is a prime such that
| = —1 (mod 4). And we know that algebraic integers in K, satisfying 0 < z < 4
are {2 + 2cos(2kw/l"*) : 0 < k < m/2,(k,m) = 1,n € N}. Furthermore we know by
(15, p. 312], that 2 + 2 cos(2kn/I™) are units in Ok, and that 1 + 2cos(2kw/I™) are
units in Ok, if I # 3, and |Np,_,/0(1 + 2cos(2k7/3"))| = 3 for n > 2. Hence we
see that 2 4+ 2 cos(2kn/I™) are not in ¥(K;). On the other hand 4 + 4 cos(2kn/I*) are
in (), Bi, hence in ¥(K;). Thus we see that (0,8) contains infinitely many complete
conjugate sets of numbers of ¥(Kj).

Unfortunately we don’t know whether or not (0, 8) is the smallest such interval
in ¥(K;). Nevertheless if we let [ be a rational prime such that 2 is a prime of Ok,
then we can show that (0,8) is the smallest such interval in ¥(K;). Note that there
are many such primes; For example, 3,7, 11,19, 23, 43,47 are primes such that | = -1
(mod 4) and 2 is a prime of Og,. Sophie Germain primes seem to provide many such
examples. Note that then ¥(K;) = (1 +20g,) U20k,.

Lemma 23 Let | be a prime such that | = —1 (mod 4) and 2 is a prime of Dk,.
Then (0,8) is the smallest interval of the form (0,c) which contains infinitely many
complete conjugate sets of numbers of Y(K;).

Proof. Suppose not. Then some interval (0,§) with § < 8 contains infinitely many
complete conjugate sets of numbers of ¥ (K;). Then we have that either it contains
infinitely many complete conjugate sets of numbers of 14290, or it contains infinitely
many complete conjugate sets of numbers of 20,. In either case it follows that an

interval less than 4 contains infinitely many complete conjugate sets of algebraic
integers, a contradiction.

|
Theorem 24 Let | be a prime such thatl = —1 (mod 4) and 2 is a prime of Ok,.
Then N is definable in K;. Thus such K, is undecidable.
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