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Abstract

We introduce the homotopy category of unbounded complexes with
bounded homologies. We study a recollement of its a quotient by the
homotopy category of bounded complexes. This leads to the existence of
quotient categories which are equivalent to a homotopy category of acyclic
comlpexes, that is a stable derived category. In the case of a coherent ring
R of self-injective dimension both sides, we show that the above recollement
are triangulated equivalent to a recollement of the stable module category
of Cohen-Macaulay R-modules.

1 Introduction

We study two types of triangulated categories in this paper. One
is the categories of homotopy classes of chain complexes, equipped
with triangles induced by chain maps and mapping cones. The other
is stable module categories that are module categories mod projec-
tive modules. A stable module category is not triangulated in gen-
eral. Suppose that the module category is Frobenius; it has enough
projectives and injectives, and the class of projectives coincide with
that of injectives. Then it’s projective stabilization is triangulated.
This type of triangulated categories are called algebraic triangulated
categories. A well-known example is the stable module category of
Cohen-Macaulay modules over Gorenstein rings.

Let R be a two-sided noetherian ring. The catogories of right
R-modules, of finitely generated right R-modules and of finitely gen-
erated projective right R-modules are denoted by ModR and modR,
and proj R respectively. Let K = K(projR) be the category of homo-
topy classes of complexes of finitely generated R-projective complexes.
The following triangulated subcategories of K are of our concern.

K** = {C € K| H(C) = 0 (except for finite 7's)}

*This is joint work with Osamu Iyama and Jun-ichi Miyachi.




K= = {C € K*®* | C* = 0 (for sufficiently large i)}
Ko® = {C e K> |HC) =0 (i € Z)}
Kb = {C € K| C* = 0 (except for finite ’s)}

Those triangulated categories are all thick, so we have quotient cate-
gories which are triangulated.

Definition 1.1 ([Iw]) A two-sided noetherian ring is called Iwanaga-
Gorenstein if idgR < 00 and idgr R < 00.

If R is an Iwanaga-Gorenstein ring, we define a subcategory CM(R)
of modR as CM(R) = {X € modR | ExtR(X,R) =0 (i>0)}.

Theorem 1.2 (Buchweitz [Bu]) Assume R is Iwanaga-Gorenstein.
The quotient category K™°/K® is triangle equivalent to the stable mod-
ule category CM(R).

On the other hand, we observe the following.

Lemma 1.3 If R is Iwanaga-Gorenstein, the category Kob/K—b is
equivalent to the stable module category CM(R).

Naturally, the question arises: What is K=?/K®? Is it realizable
as a stable module category? As an answer, we get the following
Buchweitz-type theorem.

Theorem 4.7 Assume R is Iwanaga-Gorenstein. The quotient
category K= /K® is triangle equivalent to the stable module category
CM(T2(R)) where T5(R) is the ring of 2 x 2 upper triangular matrices
over R.

2 The category K®?

For an object A of K, define objects X4 and T4 of K as follows.
Let  be the smallest integer such that H;(A*) # 0. Then Cok d';
is a maximal Cohen-Macaulay module. Define X4 € K®? as

TQXA = TSIA

and
o XNV o X 5 (CokdTH =0
is exact. Then X, is totally acyclic and id doe induces a canonical
chainmap £4: X4 —» Aaséy=id (1 <1).
Similarly, let r be the largest integer such that H"(A) # 0. Then
Ker d7, is a maximal Cohen-Macaulay module. Define T,y € K®? as

TETXA = TZTA
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and
e Tyt T, — (Kerdy) = 0

is exact. Then T, is totally acyclic and id Kerar, induces a canonical
chainmap (4 : A—>Tpas 4, =id (i >r).
Set a chain maps l4: Ly - Aand rp, : Ly — Ry, as follows:

TgoLA = TSOXA,TZILA = 7'21/4,
T<ola = T<ofa, T>1la = T>1id 4,
T<oRr, = T<oLa, 751R, = 751711,

T<oTL, = T<oldp,, T>171, = T>1(A

Obviously C(l4) and C(rr,) belongs to Kb hence as an object of
K> /Kb, A is isomorphic to the complex

Ri,:- = Xs ' X T 5 T2 -

We may assume Ay = H(7<0€4C4) : Cokdy’ — Kerd}, to be sur-
jective by adding some split exact sequence of projective modules if
necessary.

3 A functor to the category of morphisms

We define category Mor(R) as follows: objects of Mor(R) are the
morphisms o : X, = T, of Mod(R). For a, € Mor(R), we define
the set of morphisms from o t0 3 as

{(fx, fr) € Homg(Xa, Xp) x Homg(Ta, Tp) | fra = Bfx}.

And the subcategory mor(R) of Mor(R) consists of the objects o :
Xa = Ty of CM(R) that are surjective. The structure of mor™ (R)
is obtained by the next lemma.

Lemma 3.1 Let T,(R) be the category of 2 x 2 upper triangular ma-
trices with entries in R. Then Mod(T,(R)) is equivalent to Mor(R).
And mor®™(R) is equivalent to the category CM(Ty(R)).

proof. An object f : X; — Ty of Mor(R) corresponds to an Ty(R)-
module My = X; x T} where (zt) (Z b) = (za f(z)b+tc). This

0
correspondence gives an equivalence between CM(T,(R)) and
mor{™(R) consisting of injective maps o : X, — T, with

Xa,Ta,Cokf € CM(R). Obviously mor{™(R) is equivalent to
mor§™(R). (q.e.d.)

Thus mor (R) is a Frobenius category together with projective-
injective objects consisting of p € morS(R) that X, and T, are



projective modules. Hence the stable category mor¢™(R) is triangu-

lated.

We shall construct a functor between K**/K® and mor¢™ (R). Let
a: X, — T, be an object of mor®™ (R) and let Fx_ and Fr, be acyclic
projective complexes such that H*(1<oFx,) = X, and H(7<oFr,) =
To. Set natural maps p : Fy — X, and € : T, — Fr,. Make a
projective complex F, as

T<oFa = T<0Fx,, T>1Fa = T51F1,, dF, = €ap.

Lemma 3.2 1) A morphism f € mor®(R)(a, 8) induces a chain
map Fy: Fy — Fpg.

2) For morphisms f € mor’™(R)(a,8) and g € mor’™(R)(8,7),
For = FyFy. '

3) An ezact sequence 0 - a 4, B3 v —= 0 in mor®™(R) induces an

ezact sequence 0 — Fy -3 Fp il F, = 0 in C=b,
4) An object p of morS™(R) is projective if and only if F, is a bounded
complez.

Lemma 3.3 The operation F gives a functor morM(R) — K®?,

And F induces a functor F : mor’™(R) — K=?/K®.

Proposition 3.4 The functor F : mor$™(R) — K¢ /Kb is triangu-
lated.

We state that F is a triangle equivalence. It leads us to the answer
to our question together with Lemma 3.1.

Theorem 3.5 The category K™°/Kb is triangle equivalent to
morM(R).

To prove the equivlence of F', we have already seen that F' is dense
from the previous section. For the proof of fully faithfulness, we use
some torsion structure in our category.

4 Stable t-structures

Definition 4.1 ([Mil)]) For full subcategories U and V of a trian-
gulate category C, (U, V) is called a stable t-structure in C provided
that

e U and V are stable for translations.
L] Homc(u, V) =0.

o For every X € C, there exists a triangle U - X -V — XU
withU elU andV € V.
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Proposition 4.2 ([BBD], [Mi3]) Let C be a triangulated category.
The following hold.

1 Let (U, V) be a stable t-structure inC, 1, :Ud = C and j, : V = C
the canonical embeddings. Then there are a right adjoint i’ :
C — U of ix and a left adjoint j* : C — V of j. which satisfy the
following.

(a) j*i, =0, i'j, = 0.

(b) The adjunction arrows i,i' = 1l¢ and 1l¢ = j.j* imply a
triangle i,i' X — X = j,5*X — Ti,i'X for any X € C.

In this case, j*(resp., i') implies the triangulated equivalence

C/U=V (resp., C/V~U).

2 If {C,C"; 5%, 3.} (resp., {C,C";j1,3*}) is a localization (resp., a
colocalization) of C, that is, j. (resp., 1.) 1s a fully faithful right
(resp., left) adjoint of ', then (Kerj*,Imj,) (resp., (Imj), Kerj*))
is a stable t-structure. In this case, the adjunction arrow 1, —
J«3* (resp., ji7* = 1c) implies triangles

U->X->5j'X->%U
(resp., 17* X = X -V = Zj5ij* X)

with U € Kerj*, j,j*X € Imj, (resp., 1i5*X € Imj, V € Kerj*)
for all X € C. :

Definition 4.3 Let Dy, D, be triangulated categories. Let (U;,V;) be
stable t-structures in D; (i = 1,2). A triangule functor F : D; — D,
sends a stable t-structure (U, V1) to a stable t-structure (Us, Vo) if
F(Lll) C Z/{2 and F(Vl) - Vg.

Lemma 4.4 If a triangle functor F : D; — D, sends a stable t-
structure (Uy, V1) in D to a stable t-structure (Uy,Vs) of Dy. Then
we have the following:

1 If F |y, is full (faithful), then Homp, (U, X) — Homp,(FU, FX)
is surjective(injective) for U € U, and X € D,.

2 If F |y, is full (faithful), then Homp, (X, V) — Homp,(FX, FV)
is surjective(injective) for X € Dy and V € V.

8 If F is fully faithful and F |y, and F |y, are equivalences, then
F 1s an equivalence.

Corollary 4.5 Let Dy, D, be triangulated categories. Let (U,,V,)
and (Vn, Wy) be stable t-structures in D, (n = 1,2). Assume a tri-
angle functor F : D; — D, sends (U, V1) and (Vi, W) to (U, Vs)
and (Vo, Ws) respectively. If F |, F |y, and F |w, are fully faithful
(equivalent), so is F.
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proof For given X,Y € D, there are triangles
Ux > X - VX 5 SUx

Uy -Y 5 VY 53Uy

where Ux,Uy € U; and VX, VY € V,. These triangles induce a
diagram of abelian groups with exact rows and columns:

Homp, (VX,Uy) — Homp,(X,Uy) — Homp,(Ux,Uy)

\J \J \)
Homp, (VX,Y) — Homp,(X,Y) — Homp, (Ux,Y)
} ] \J

Homp, (VX,VY) — Homp,(X,VY) — Homp, (Ux,V?Y)

Since Homp, (U,Z) — Homp,(FU,FZ), Homp,(Z,V) —
Homyp,(FZ,FV), and Homyp, (V, Z) = Homp,(FV, FZ) are bijective
by Lemma 4.4 1) 2), so is

Homp, (X,Y) = Homyp, (FX, FY) from five-lemma. In the case that |

F |y, F |y, and F |, are equivalences, F is dense by Lemma 4.4 3).
(q.ed.)

Proposition 4.6 Let D;, D, be triangulated categories. Let (U;,V;),
(Vi, W;) and (W;,U;) be sable t-structures in D; (i = 1,2). Assume
a triangle functor F : Dy — D, sends stable t-structures (U, V),
(V1, W) and Wy, Uy) to (Ua, Vs), (Vo, Wa) and (Ws,U,) respectively.
If F |y is fully faithful (equivalent) k, so is F.

Proposition 4.7 Let R be a coherent ring. Then we have the follow-
ng.

o (Kb, K®®) is a stable t-structure of K=®. Hence (K~ /Kb K*®)
is a stable t-structure of K®®/K®.

o (KHP/K® K=t /K®) is a stable t-structure of K=?/K®.

e If R is Iwanaga-Gorenstein, then (K®9/Kb K+t/K®) is a stable
t-structure of K™t /K®.

Let R be an Iwanaga-Gorenstein ring. Let CM, (resp., CM;,

CM.,) be the full subcategory of mor®(R) consisting of objects of

the form X — 0 (resp., S = S, P — T, with P being projective).
Proposition 4.8 The following are stable t-structures of mor® (R).
(CMo,CM,), (EM,,CMy), (CM,,CM,).
Proposition 4.9 The triangulated functor F induces equivalences
F leaty: CMy — K#/KC,
Flem,: CM; — K22,
and F lep,: CM, — KTP/K®.
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proof. It is well-known that 'CM(R) is equivalent to K®? by the
correspondence P : X — Py where Py is the complete resolution
of X; P! > P} - X -+ 0and 0 = X — P, — P2 are exact.
The functor F |cu, is the composite of P and the obvious equiva-
lence CM;) — CM(R)) : (X = X) — X, hence is an equivalence.
(g.e.d.)

The proof of Theorem 3.5. We easily see F(CM,) C K—¢/K?,
F(CM,;) € K=?, and F(CM,) C K+¥/K®. Propositions 4.6 and 4.9
imply the equivlence of F.

Together with lemma 3.1, we obtain a Buchweitz-type theorem:

Theorem 4.10 If R is Iwanaga-Gorenstein, then K= /Kb is triangle
equivalent to CM(T3(R)).

5 Polygon of Recollements

Definition 5.1 Let C be a triangulated categories and let Uy, U,, - - - ,
Un be full subcategories of C. (Uy,Us,- - ,Un) is an n-gon of rec-
ollements in C if (Uy, Ua), (U1, Us),*++ , (Un-1,Uy), (Un, Ur) are stable
t-structures in C.

‘The n-gon of recollements is not bizarre. The property of the cate-
gory C often naturally induces an n-gon of recollements. For instance,
let k be a field, and let C be a m/n-Calabi-Yau category. That is, C
is a k-linear triangulated category with a Serre functor S : C — C,
which satisfies Hom¢(X,Y) 2 DHom¢(Y, SX). and £™ & S”. Then
we have the following.

Proposition 5.2 For any functorially finite thick subcategory U of C,
o, ut, su, (suy*,--. , sy, (S"’ll/{)l) 1S a 2n-gon of recollements
in C.

Since D’( mod T, (k)) is an n — 1/n + 1-Calabi-Yau category, Ap-
plying the previous lemma, we have the following.

Lemma 5.3 The bounded derived category D®( mod T,(k)) of
mod T,,(k) has a 2(n+1)-gon of recollements @ (U,U*, SU, (SU)™,
oo, S™U, (S"U)L) where U is a functorially finite thick subcategory.

In the case n = 2n' is even, there is an (n+1)-gon of recolle-
ments (U, S~ U, SU, S"HY, - -, S7 ", S™U, ST -1U) by a suit-
able choice of U. :

'This induces the following, which includes our case.

Corollary 5.4 Let R be an Iwanaga-gorenstein ring. Then,
CM(T,(R)) has a 2(n + 1)-gon of recollements. If n is even, then

CM(T,(R)) has an (n + 1)-gon of recollements.
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Finally, we give a definition of "recollement” appeared in the title.

Definition 5.5 ([BBD]) A nine-tuple {C',C,C";j*,js, 5", 51,5% 84}
consisting of triangulated categories and functors

J* 8
Cl Js C s* C/I
j! Sa
—

1s called a recollement if it satisfies the following:
® j,, 81, and s, are fully faithful.
o (5*,34), (4u, 7)), (81,8*), and (s*,s.) are adjoint pairs.
¢ j*si =0, s*j, =0, and j's, = 0.

e For each object C of C has triangles

§uj'C = C = 5158*°C = £4,5'C,
8,8°C = C = 3,7°C — Ls,s*C.

As a recollement implies two consecutive stable t-structures as a
localization does one stable t-structure.

Proposition 5.6 ([BBD], [Mil]) 1) If (U,V) and (V, W) are sta-
ble t-structures of C, then the canonical embedding j. : V — C produces
a recollement

,*

Lo
VNN 1Y
Je

2) If {C',C,C";5* jurjr51,5% 8.} 1is a recollement, then
(Imj,,Ims,) and (Ims),Imyj,) are stable t-structures.
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