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1 Introduction

For a complex sequence a = {an}ner, the (zeta) regularized product of a is defined by

e = exx)(-% Cal(s) 520),

nel
where (a(s) :=Y_,c ;an® is the zeta function attached to a. Here, we assume that (a(s) converges
absolutely in some right half plane, admits a meromorphic continuation to some region containing
the origin and is holomorphic at the origin. This gives a kind of generalization of the usual product.
In fact, if @ is a finite sequence, then one can see that Hne [0n = Hne  @n. The most important
and fundamental example of the regularized product is the following Lerch formula;

(1.1) [Mn+2 =exp(—-(%((s,z) g_O) = -F-‘/(—z;—f-
n>0 o

where I'(z) is the gamma function and ((s, z) := Y, +¢(n + 2)7° is the Hurwitz zeta function. In
particular, letting z = 1, we have [, n (= oo!) = V27, Notice that, if [, (an + 2) exists, then,
as a function of z, it defines an entire function whose zeros are located at z = —ay,, for n € I.

Let {(s) := Y.,>;n~° be the Riemann zeta function and R the set of all non-trivial zeros of
¢(s). The following formula was obtained by Deninger [D, Theorem 3.3] (see also [SS, V]);

() TT(E7PY = 93 (2m) -2y (2 R O
(1.2) 2(z) = H( o )_z } (2m) "2 2F(2)§(2)z(z )= A,
pPER
where A(z) := %z(z — 1)I'($)¢(z) is the complete Riemann zeta function. The aim of this note

is to give “higher depth” generalizations of the formula (1.2) for Hecke L-functions. Namely, we
explicitly calculate “higher depth regularized products” for the zeros of Hecke L-functions.

We here explain the higher depth regularized products above. In [Mi], from the viewpoint of the
Kubert identity which plays an important role in the study of Iwasawa theory, Milnor introduced
a “higher depth gamma function” I';(2) defined by

s:l—r)

and studied, for examples, special values, a Stirling formula (that is, an asymptotic formula as
z — +oo) and functional relations among them (see also [KOW]). Notice that, by the Lerch

. : d
(1.3) T, (z):= exp(—J;g(s,z)
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formula (1.1), we have I';(2) = %%;), whence I';(z) indeed gives a generalization of ['(z). Based on
the study of Milnor, we define a higher depth (or depth r) regulalized product of the sequence a by

Hm“‘" = exp(—%@(s) 5:14)’

nel
where we further assume that (4(s) admits a meromorphic continuation to some region containing
s = 1 —r and is holomorphic at the point. It is clear that the case r = 1 reproduces the usual
regularized product; HL}']E 16n = [I,c; an. Note that it can be written as I ()71 = HE:])o("l + z)L.
To state our main result, let us recall Hecke L-functions. Let K be an algebraic number field
of degree n and of discriminant dg, Ok the ring of integers of K, and 7, and ry the number of real

and complex places of K, respectively. Let x be a Hecke grossencharacter with conductor f and

Li(six) == IpI(l _ NX((S)))_I _ Z ;f,‘ég& (Re (s) > 1)

the Hecke L-function associate with x. Here, p runs over all prime ideals of Ox and a over all
integral ideals of O (we understand that x(p) = 0 if p and f are not coprime). It is well known
that Lk (s; x) admits a meromorphic continuation to the whole complex plane C with a possible
simple pole at s = 1 and has a functional equation Ax (1 — 5;%) = Wk (x)Ak (s; x) where Wg(x)
is a constant with [Wx(x)| =1 and Ag(s; x) is the entire function defined by

(1.4) Ag(six) = (_‘1)_3(8_1»6\ (—————N;f,)zlifl) Le(sx) ] I‘(‘N"("”Li"‘;”)Hm”I)
- VESus (K) -

(S

Here, Soo(K) is the set of all archimedean places of K, e, = 1 if x is principal and 0 other-
wise. Moreover, for v € Se(K), Ny = 1 if v is real and 2 otherwise, and ¢, = ¢(x) € R with
Y veSa (K) Nypy = 0 and my = m(x) € Z are uniquely determined by

x(@) =TI leol™#(

'UGSoo(R’)

My
v ) (a € Ok with @ =1 mod”™ §),
laz:|

where mod”* indicates the multiplicative congruence and «, is the image of « with respect to the
embedding & < K, with K, = R or C. We remark that, if ¢, = m, = 0 for all v € S(K), then
v is called a class character.

Let Rx(x) be the set of all non-trivial zeros of Ly(s;x) and &x(s,2:x) the zeta function
attached to the sequence {52} e ()- that is?,

Ex(s.zx) = Z (z _ p)—s (Re(s) > 1, Re(z) > 1).

27
PERK(X)

Moreover, let

Sxr(z%) = Hm (Z2‘;r/’) - eXp(—(%fK(s’ Z;X)‘szl—»r)'

PERK(X)
Remark that, when Re(z) > 1, the function Zk,(z;x) can be defined because it will be shown
that £k (s, z;x) admits a meromorphic continuation to the whole plane C as a function of s and,
in particular, is holomorphic at s = 1 —r for any r € N (Proposition 2.2). Now our main result is

given as follows.

'For r > 2, if ]]Ejé,(a., + 2) exists, then it defines in general a multivalued function with branch points at z = —an
for n € I. See [KWY] for more precise discussions. In particular, [',(z) is a multivalued function with branch points
at = = —n for n > 0 or defines a holomorphic function in C \ (—o0,0].

2From now on, the sum EPGRK(X) means Imzsoc X ,c g, (1) Where Rr(T;x):={p€Rx(x)||Im(p)| < T}
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Theorem 1.1. For Re(z) > 1, it holds that

~ 2=z — Iyea () e vyl
(15) Zxe(zx) = (5;) R ( - )* L) (2 )7 -tz

o _Wem)TT p  Ny(etive)bme] Ny(z + igy) + Imy|\ (Nem)!
X H (Nym) B ( 5 )Fr( vz + 9‘0)1) | vl)

&

V€S (K)

Here, B,(2) is the rth Bernoulli polynomial, Tr(z) is the Milnor gamma function defined by (1.3)
and L%)(z; x) is a holomorphic function in Re(z) > 1 defined by the following Euler product;

(1.6) L (six) = Hm(%%f“"gwn 7 (Re(s)> 1),
L

where Hy(z) := exp(—Li,(2)) with Li,(2) := " being the polylogarithm of degree 7.

m'-l m'

We call L% (3;%) a “poly-Hecke L-function” of degree r. Remark that this is a genelahzamon
of Li(s;x). Actually, since Li;(2) = —log (1 — z) and hence Hi(2) =1 — z, we have L V(s; X) =
L (s;x). Some analytic properties of this new “L-" function are given in the last section.

As a corollary of this theorem, letting r = 1 with noting that B1(2) =z — 3 L Ti(z) = Hﬁi—}; and

L(Al- (z; x) = Lr(z; x), we obtain the following regularized product expressions of Hecke L-functions.

Corollary 1.2. It holds that

I (z—p>= N (el 2 Ak (2 %),

2 :)sx—}—.,n +z,%+5mq, 2ex+m
PER K (X) - .

where ¢ =3 ,,. complez Oyy T =Y. complez Imy| and m =3 g (K) lmy|. In particular, if x is
a class character, that is, @, = my = 0 for all v € Sc(K), then we have

(1.7) II (zg;p) = ();dl‘n—% Ax (2 X)-

£y + 71
PERK(X) 2 e

a

Furthermore, letting x = 1 (of course 1 is a class character) and writing ¢ x(s) := Lg(s;1),
that is, Cx(s) is the Dedekind zeta function of K, Rg := Rg(1) and Ag(s) == Ag(s;1) in (1.7),
respectively, one obtains the regularized product expression of the Dedekind zeta function.

Corollary 1.3. It holds that

(1.8) II (z;ﬂp) = ‘)Iii‘l;z Ak (2).

PERK

Now we immediately obtain the equation (1.2) from (1.8) by letting K = Q.

This note is a survey of the paper [WY]. For the readers who are interested in this topic or
want to know more precise proofs, please refer the paper above (see also [KWY, Y] where “higher
depth determinants” of Laplacians on compact Riemannian manifolds are similarly studied).



2 Sketch of the proof of Theorem 1.1

In this section, we give a brief proof of Theorem 1.1. Remark that the proof is completely based on
that of the equation (1.2) due to Deninger [D]. To do that, we first recall the Weil explicit formula
refined by Barner [Ba). For a function F of bounded variation (i.e., Vg(F) < +oc where Vg(F) is
the total variation of F on R), we define the function ®p(s) (s € C) by

oe 1
Dp(s) :=/ F(z)el~3)%dz.

—oC

Moreover, for a Hecke character x and v € Soc(K), we put F,(z;x) := F(z)e™"#*®. Then, the Weil
explicit formula is given as follows.

Lemma 2.1 ([Ba, Theorem1]). Let x be a Hecke character and F : R — C a function of bounded
variation satisfying the following three conditions®:

(a) There is a positive constant b such that VR(F(x)e(%“”x!) < 400,
(b) F is “normalized”, that is, 2F (z) = F(z + 0) + F(z — 0) (z € R).
(c) For any v € Sxo(K), it holds that F,(z;X) + Fy(—2;x) = 2F(0) + O(|z|) as |z| = 0.

Then, the following equation holds:

(2.1) D> ®r(p) = ex(@r(0) + 2r(1)) + F(0) log —Jﬂl
PERK ()
S l‘f Al T (O Qo N ) + X06)F (=l N5))
p =1 * -
+ ) Wu(Fix)
VESao (K)

where

2—|myi_ 1
- - o0 .N;F 0 " . e( Nv —5):17 _ 2z
Woo(F' x) ;:/0 (—1—(“) ~ (Fo(@%) + Fo(—g; x))——:,;——)e * da.

z 1—e ™

For Re(z) > 1 and Re(s) > 1, let

s—1,—(2~1)z
F(z) := vl ’
0 (z <0).

—_

z > 0),

Then, one can easily check that the function F(z) satisfies the conditions (a), (b) and (c) in
Lemma 2.1 and see that ®p(w) = ?*—%)F’ whence ®r(0) = rff and ®r(1) = lsl)F Therefore,
using the explicit formula (2.1) with this F (together with the integral representations of (s, 2)

and the gamma function), we obtain the following expression of £k (s, 2; ).

Proposition 2.2. For Re(z) > 1, we have

2.2) Ex(s, zix) = ax((gz)s + ( 2m )5) 4 ) /L_ %(z — t; x)t ™t

z z—1 2ms

- Z (N,m)*¢ (S, Ny(z + i(;;;) + ]m1,|)’

VESse (K)

3These are called the “Barner conditions”.
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where L_ is the contour consisting of the lower edge of the cut from —oo to —4, the circle t = set?
for —m < ¢ < 7 and the upper edge of the cut from —d to —oo. This gives a meromorphic
continuation of £x(s,z;x) as a function of s to the whole plane C with a simple pole at s =1. 0

As stated below, the theorem is obtained by directly calculating the derivatives of {x (s, z; X)
at s = 1 — r from the expression (2.2).

Proof of Theorem 1.1. Write £x (s, z;x) = A1(s, z) + Aa(s, 2) + As(s, z) where

i) =a () + (57))

) [ L
= (27) /L —K—(z -t x)t7%dt,

,
b
)
—
[
N
~

27 _ Ly
Ny(z + ipy) + Mo
Az(s,z) = — Z (Nm)sg(s, - )
vES(K) 2
At first, it is easy to see that
(i . _ r—1 ~ z — r—1 z — 1
dSAl(s, z) T sx(zﬂ) log 5 + &4 ( 5 )" log 5

The derivative of Ay(s, z) at s =1 — r is calculated as

(2m)t-" / LY 1 t
= “E(z—t;x)t" ! log —dt
— /. LK( $X)t7 log o

s=1-r 271

——d—Ag(.s, z)

ds

o0 rt
= (=1)"(2m)} " / %ﬁ(ww;x)z"-wx
0 K

= (=177 (r = )12m) " log LY (23 %)-
In the second equality, we have calculated the integral by dividing the contour L_ into three parts;

L_ = (—oce ™, —e~™) U {de?¥ | — 7 < o < 7} U (—oce™, —e™) (and letting § — 0) and, in the
last equality, we have used the formula

i eix) == S Y los M) xp) - NE)F (Re(2) > 1)
p I=1

and the Euler product expression (1.6) of the poly-Hecke L-function L(,\T,)(z; x). Finally, using the

well-known formula ¢(1 —r,2) = _Errﬁl’ we have

d v

——Az(s
ds 5(5,2) $=1-7r
- | log (Nym N, Dy Ny(z +1 .
== > (Nu?r)l‘r[ % (r - )B,‘< oz F “’;") ha lmvl) - logFT( oo+ “‘p)“) i |m7")}.
V€S0 (K) - -

Combining these three equations, one obtains the desired result. g

3 Poly-Hecke L-functions

The poly-Hecke L-functions, which are naturally appeared in the derivatives of the zeta function
£x (s, 2; X) at non-positive integer points, are mysterious functions at this moment. They are defined
by the Euler product (1.6) and, as we have seen before, give generalizations of Hecke L-functions.
Therefore one may expect that they satisfy similar properties which so-called L- or zeta functions
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have, for example, a meromorphic contiuation, a functional equation and a “Riemann hypothesis”.
In this section, as a closing remark, we give an analytic continuation of L(I::)(S? x) for » > 2 to (not
the whole plane C but) an infititely many slitted region in C.

Let Qr(x) be the set of all complex numbers which are not of the form of p — A where p is a
trivial or a non-trivial zero of Ly (s;x) or, if x is principal, 1 — X for A > 0 (we show the region
Qx(x) in Figure 1 in the case where x is a principal character). Notice that, from the expression

(1.4), all trivial zeros of Ly (s; x) are given by — ‘m‘,v;" 2 _ i, where v € Soc(K) and | € Zy.

Im
|
j

|

- Re

=
Wl
—

Figure 1: The region Qg (x) (if x is principal)

Now let r > 2. From the differential equation %Lir(z) = %Lir_l(z) of the polylogarithm, one
can see that the poly-Hecke L-function L(I\t)(s; x) satisfies the differential equation

-1
g LY (six) = (1) Mg Lie(six)  (Re(s) > 1).

Using this formula, by induction on r, we obtain the following result.

Theorem 3.1. Let Re(a) > 1. Then, we have

(r) (r) s e gl (=17~
L0 (s:x) = Q) (s, a) exp / / / log Lic(€1: x)déy -+ déy 1
a a a‘

r—1

g_l:k Q . . .
;x) (s-0)* 4nd the path for each integral is contained in Qx(x)-

Here Q(,\)(s a) :=[1323 L(r ") (a
The expression gives an analytu, continuation of L(,?(s; x) to the region 2 (x). O

It seems to be difficult to continue L%) (s: x) to the whole plane C as a single-valued holomorphic
(or meromorphic) function. In fact, from an easy observation, one can prove the following

Corollary 3.2. The extended Riemann hypothesis for Ly (s;x) is equivalent to say that the function
(s — 1)“5\(5‘1)[.-5,‘2,) (s:x) 1s single-valued and holomorphic in Re (s) > 3. O

Remark 3.3. Let
N(p)®

(recall that L%) s:x) = [T, Hr (R \(" —(log N(p))'"") " Then we have E%)(s;x) = Lg(s:x), whence

LY (%) = HHT(—'L(-’?—’—)” (Re(s) > 1)
p

L(K (s;x) also gives a genexa,hzatlon of Lg(s;x). It does not, however, seem to have an analytic
continuation to the whole plane C. In fact, in [KW], it was shown that ¢(")(s) := L( ) (s;1) has an
analytic continuation to the region Re (s) > 0 but has a natural boundary at Re(s ) 0.
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