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Commutation and Centralizers in Clone Theory

Hajime Machida*

Abstract

Commutation theory is one of the central areas of research in universal algebra and clone
theory. After giving the definitions of commutation, centralizers and endoprimal monoids, we
present some of the results in this field which the author obtained during the past decade as
the joint work with Ivo G. Rosenberg.
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1 Introduction

What we need for constructing clone theory is simple and elementary: A fixed set A and a set of

(multi-variable) functions
f: A" — A

defined on A. In universal algebra, an n-variable function on A is called an operation on A of arity
n. We denote by Off) the set of all n-variable functions on A, i.e., Off) = A4". We also denote
by O4 the set of all functions defined on A4, i.e.,

04 = |JOP.
n=1

For 1 <1 < n, the i-th projection el of n variables is defined by el'(x1,...,Zi,...,Zn) = z; for
any (Z1,...,%n) € A" J4 denotes the set of all projections e (1 <i < n) on A.

We consider (functional) composition among functions defined on A, and define a clone on A as
follows:

Definition 1.1 For a subset C C O4, C is a clone if C satisfies the following:
(1) C is closed under (functional) composition.
(2) C contains all the projections, i.e., J4 C C.

N.B. In order to avoid confusion, we remark that our clone has no relation to biology !!

For a fixed set A, £, denotes the set of all clones on A. It is known and easy to see that for
any setA, L4 forms a lattice with respect to inclusion.
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In this paper, we let A be a (non-empty) finite set Ex where By = {0,1,...,k—1} for k > 1.
Then we write O,(c"), Ok, Ji and Ly, instead of 0(”), O4, Ja and L 4, respectively.

For the case where k = 2, that is, the case of Boolean functions, things are, in a sense, already
settled.

Theorem 1.1 (E. Post)
The structure of Ly is completely determined. In particular, the cardinality of Lo is countable.

On the other hand, the structure of £, for each k > 2 is still largely unknown, remains mysterious
and waits for further investigations. The following is one of few facts that we know up to now.

Theorem 1.2 (Janov and Muchnik)
For any 2 < k < w , Ly has the cardinality of the continuum.

In this paper we focus our attention on commutation theory of clones. Commutation theory
is one of the central areas of research in universal algebra and clone theory, which attracts many
researchers in these fields. After giving the definitions of those terms such as centralizers and
endoprimal monoids, we present some of the results that were obtained during the past decade as
the joint work of the author with Ivo G. Rosenberg (Montréal). For most of the results presented
here the proofs are omitted. (For the proofs refer to the references given at the end of this
manuscript.)

2 Commutation
The main concept of this paper is commutation between two functions in Q4.

Definition 2.1 For f € Oim) andg € O,(c") we say that f commutes with g (or, f and g commute)
if the following holds

f(g(bllv'"vbln)v"')g(b‘mla--'1bmn)) = g(f(bll)---,bml)a---,f(bln,“-abmn))

for every m x n matrix B = (b;;) over E.

The definition may be better understood by the following picture.

b11 b2 bin gy brjyonn)

b21 b22 e ban g(ee, bzj, -.)

bn.':.l br;ﬂ b,,;n g(...,b;m, )
f(...,b,;l,...) f(...,biz,...) f(...,bin,...) f(g,) =g(f,)

We use the notation f L g to mean that f commutes with g. It is clear that f L g is equivalent
togL f.
Example

(1) Let f € C’),(cl) be any constant function and g € O,(cn) be any idempotent function. Then it is
clear that f and g commute, i.e., f L g. Here, by definition, g is idempotent if g(z,...,z) = z for
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all z € Ey.

(2) Fork=3 let f,g€ (’)gf) be defined as follows:

_ 2 if 2¢€{z,y}
flz,y) = { 0 otherwise

and
Then it is easily verified that f and g commute, i.e., f L g.

Definition 2.2 For F C Oy define
F* = {geO, | gl fforall feF}

F* is called the centralizer of F.

Lemma 2.1 For any F C Oy, the centralizer F* of F is a clone.
The following properties of centralizers are easy but important.
Lemma 2.2 Forany F, G C O we have :
iy FCF*
(i) FCG = F*DG*
(iii) F***=F*

3 Centralizers of Monoids

For unary functions f, g € (91(41) the composition f o g is defined by setting

(fog)(z) = fl9(z))

for all z € A. The operation o is associative and the identity function s; is the neutral element.
Hence the algebra (C’)ﬁll); o, 51) is a monoid. A subset M of (9541) is a submonoid of OS) ifsy e M
and M is closed under the operation o.

In this section, we determine centralizers of monoids of unary functions containing the symmetric

group Sy of Ej.

3.1 Results

Some years ago we posed the following problem.

Problem: For every k > 3, determine centralizers of all submonoids of O,(cl) which contain the
symmetric group Sg.

The complete solution to this problem was given in Machida and Rosenberg [MR. 05]. It turned
out that most of the centralizers of monoids containing the symmetric group are the same. This
makes a clear contrast to the fact that, for any subgroups Gi1, G2 of Sk, Gi # G5 whenever
G # Ga.

First we note a simple fact. Let M, denote the set of submonoids of unary functions in (’),(cl).
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Lemma 3.1 For any submonoid M € My,
Ss C M = S,UCONST C M
Here, CONST denotes the set of all unary constant functions in ('),(cl) .

We present the results from smaller submonoids.

Case1: M = S,
For n-tuples (z1,...,2,) and (y1,...,ys) € EY we say that (z1,...,Z,) is similar to (Y1, -1 Yn)
if '
Ti=Tj <= Yi=Y;

forall1< i, j<n.

Proposition 3.2 (Marczewski)
The centralizer Sy, of Sk is the set of functions f (€ (9,(6")) satisfying the following conditions.

(1) If [{z1,...,zn}| # k =1 then
(i) f(z1,...,2n) = x¢ for some 1 <€ <n and

(%) (Y1, ¥n) = Yo for ¥V (y1,...,yn) € (Ex)™ which is similar to (z1,...,2,).
(2) If [{x1,...,z.} =k =1 and f(z1,...,%n) = u for some u € E) then

(1) u=x¢ for some 1 < € < n implies f(y1,-..,yn) = ye forV(ys,... yYn) € (Ex)™ which
is similar to (zy,...,2,) and

(i) v € Ex \ {z1,...,2.} implies f(y1,...,¥n) =v where v € Ej \ {y1,..-,yn} for
V(y1,---,Yn) € (Ex)™ which is similar to (z1,...,%Tn).

Case 2. M = S, UCONST
Proposition 3.3 (1) For k =2, the centralizer (So U CONST)* is the clone

{f€82"|f:idempotent }.

(2) For every k > 3, the centralizer (Sx U CONST)* is the clone Sk *.

Case 3: M D S, UCONST
As an exceptional case for k = 4, we need to consider a submonoid which we call M.
Foru e O,(cl) the kernel of u is defined by

keru = {(z,y) € k? | u(z) = u(y)}.

Clearky, ker u is an equivalence relation on Ej. An equivalence class is called a block.
Let k = 4. We define M, as the submonoid consisting of u € Ogl) satisfying one of the following
conditions:

(i) B4/ keru has four singleton blocks, i.e., u is a permutation on Ej.
(ii) E4/ keru has one block, i.e., u is a constant function on Ej.

(iii) B4/ keru has two blocks of size 2, i.e., u sends two elements in E,4 to an element in E,
and the other two to another element in E;.
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Here, E4 / keru is the quotient set over F4 induced by the equivalence relation keru. It is clear
that My D S4 UCONST,.

Proposition 3.4 If M O S, UCONST then the following holds.
(i) Fork=3: M*=J;
(i) Fork=4: If M # M, then M* = J,
(i) Fork>5: M*=J;

Note: As mentioned below, the centralizer M3 of M, for k = 4 is not equal to Js.

3.2 A Sufficient Condition for a Trivial Centralizer
We start with two properties of functions.

I. (Separation Property)
For all a,b,¢,d € Ey, if {a,b} # {c,d} and ¢ # d then M contains f (= f2) which satisfies

fla)=f(b) and f(c)# f(d).

II. (Fixed-Point-Free Property)
For every i € Ey, M contains g; which satisfies g;(i) # 1.

The following fact appears in Machida and Rosenberg [MR 04a] and [MR 04b].
Lemma 3.5 For any M € My, if M satisfies the above conditions I and II then M* = Jj.
It is an easy task to verify Proposition 3.4 from Lemma 3.5.

For the submonoid M, in the case k = 4, we can show that the centralizer of My is not the least
clone. Let the ternary function m(zy,zz,z3) (€ 04(13) ) be defined as follows:

I if X1 =2 =1T3
I if 21 #x9=13
m(zy, z2,23) = o if x9#x1 =213
T3 if x3# 21 =29
Yy if {z1,22,23,y} = Eq4

It is readily verified that m commutes with every member in Mo, i.e., m € M5. Hence, we have:

Lemma 3.6 M is not the least clone J;.

4 Kuznetsov Criterion

Kuznetsov Criterion was discovered by Kuznetsov in 1960’s, and is an extremely useful tool
([Da 77)).

Definition 4.1 For f € O,gm and ¥ C Oy, f is parametrically expressible (p-expressible) by T if
there exist m > 1, £ >0 and g;, h; € (’),(C"HH) (i=1,...,m) such that g;,h; € (£) and

fD = {(xl,---axm:rn+1) i 3xn+2a---,xn+€+1 EEka VZE{].,,m},
9i(T1, - Tnter1) = hi(T1, ... Tnres1) }

Here, f° means the graph of f, i.e., f© = {(z1,-..,Zn, Tns1) | F(T1,-- -, Tn) = Tnt1}
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Kuznetsov criterion states as follows:

Theorem 4.1 (Kuznetsov criterion)
For f € O and £ C Ok, f is p-expressible by ¥ if and only if £* C {f}".

Equivalently, it can be expressed as:

Corollary 4.2 (Kuznetsov criterion)
For f € Ox and £ C Ok, f is p-expressible by & if and only if f € L**.

Example. Let unary functions jp, j1, 53 € Ogl) be given below.

Jo | J1 | s3

1 0 1
1ff0f[11}10
00| 2

From jp and j; we get s3 in the following sense:
s5 = {(z,y) € (E3)?| jo(z) = 51(¥), j1(2) = jo(y) }
Hence s3 is p-expressible by {jo, j1}. Then, due to Kuznetsov Criterion, we have

s3 € {Jo, 1}

4.1 Centralizers of Subgroups of Si

Lemma 4.3 For any subgroup H of Sy and any s € Sk, s is p-expressible by H if and only if
seH.

Proof (<) Trivial

(=) Suppose that s is p-expressible by H. Then, by definition, s° = {(z,y) | t(z) = u(y)} for
some t,u € H. This is equivalent to s° = {(z,y) | (u=*¢)(z) = y} for some t,u € H, which implies
that s=u"1t € H. o

Theorem 4.4 (Machida and Rosenberg)
The x-operator is injective over Sk, that is, for subgroups H, and Hy of Sk,

Hi=H} = H,=H,

Proof Suppose H} = H3 and H; # H». Then, w.l.o.g., we may take s € Hy — H;. Now H{ = H;

implies that
H; C {s}"(= Pols®)

since Hy = ﬂ Polt”. By Kuznetsov criterion, s is p-expressible by H;. Hence, by Lemma 4.3,

te Hy

we have s € H;. Contradiction. 0O
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5 Endoprimal Monoids

In this section, we consider “endoprimal monoids”, that is, the unary part of the centralizer of
some set. Most of the results which will be presented in this section appeared in Machida and
Rosenberg [MR 09] and [MR 10].

Definition 5.1 Let A= (A; F) be an algebra. For a map ¢ : A — A, ¢ is an endomorphism of
A if

flp(@1),. .- 0(@n)) = @(f(z1,-- - 2n))
holds for any f € F and all (x1,...,2,) € A™.
(1)
k

An endomorphism is naturally connected to commutation. Remember that for f € O’ and

F C O, the fact that f commutes with F, i.e., f L F, means that

9(f(@1)s. ., flzn)) = f(g(xla"'?xn))
for any g € F.

Lemma 5.1 For a map ¢ : A — A, the following are equivalent.
(1) ¢ is an endomorphism of A.
(2) ¢ LF, thatis, o L f forall f€F.
(3) perF

Definition 5.2 For a submonoid M C (’),(cl), M is an endoprimal monoid if there exists F C O
which satisfies M = F*N O,(CD.

In other words, M is an endoprimal monoid if M is the unary part of a centralizer of some set
FC Ok.

Lemma 5.2 For a submonoid M C O,(cl), M is an endoprimal monoid if and only if M =
M oW,

Proof

(«) : Trivial.

(=)-: Suppose M = F*ﬂO,(cl) for some F C ©Of. Then, since M C F*, we have M** C F*** = F*.
Taking the unary part, M** N O,(cl) CF*N O,gl) = M. On the other hand, from M C M** it
follows that M = M N O,(cl) C M*n O,(cl). Therefore, M = M** N O,(cl) as desired. i

For a submonoid M C O\ we sometimes write M+ to mean M+ = M** N O,(cl).

Lemma 5.3 For a submonoid M C O,(cl), M™ satisfies the following properties.
(1) M is an endoprimal monoid.
(2) Mc M+
(8) M is the largest submonoid consisting of “endomorphisms” of the algebra (Ex; M)

Up to now, not many examples of endoprimal monoids are known. In the sequel, we shall mostly
concentrate on the ternary case, that is, the case where the base set is F3 = {0,1,2}.
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Jo|J1|J2|J3|Ja|Js |l wo|wr|ux|us|ug|us| vol|vi|ve|vs|vs]|us
0 1 0}]0]|1 1 0 2 0 0 2 2 0 2 1 1 2 2 1
1 0 1 0|10 1 0 2 0 2 0 2 1 2 1 2 1 2
200101110711 1 0 0 2 0 2 2 1 1 2 1 2 | 2
Co | C1 | Co S1 | 82| 83 | S4 | S5 | S6
0 0 1 2 0 0 0 1 1 2 2
11011 2 1 1 210 2 01
2100 1 2 2 2 1 2 0 1 0

Table 1: Unary Functions in Oél)

5.1 Unary Functions and Submonoids on {0, 1,2}

As is well-known, the number of unary functions over E3 is 27. They are shown in Table 1. Much
less known is the number of submonoids of unary functions over E3. Due to D. Lau ([La 84],
[La 06]), the number of submonoids of unary functions over Ej3 is 700.

Let us search for an endoprimal monoid containing both j, and j;. Repeated applications of
“Kuznetsov Criterion” imply the following. (We omit the details here.)

Lemma 5.4 If M (C Oél)) is an endoprimal monoid and {jo, j1} € M then
P, CM(=M")

where P2 = {cp,c1,¢c2} U{ Jo, j1, Ja» Js} U{ o, u1,us,us} U{ vo,v1,ve,vs} U{ 51,53}

Actually, P, is the submonoid #1227 in Lau’s list. At this point, we do not know if P, is
endoprimal or not. The following “witness lemma” will tell us that, in fact, P, is endoprimal.

5.2 Witness Lemma
The following lemma wa given in Machida and Rosenberg [MR 10].

Lemma 5.5 (Witness Lemma)
For a submonoid M C OO of unary functions and a subset S C O, suppose the following

conditions (i) and (i) hold:

(i) Forany fe M and any u € S it holds that f L u.

(ii) For any g € O\ M there exists w € S such that g L w.
Then M is endoprimal.

Definition 5.3 S in the lemma will be called a witness for an endoprimal monoid M.

The proof is straightforward, but, for the reader’s sake, we give it below.

Proof of Lemma Condition (i) implies S € M*, from which it follows that M** C S*.
Condition (ii) asserts that, for all g € (O)\ M), it holds that g & S*. Then it follows that, for all
g€ (OM\M), g ¢ M**, because we have M** C S* as stated above. Hence (OMW\M)NM** = 0.

On the other hand, M C M**, in general. Therefore M = M*NOW ie, M = M+. O
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Corollary 5.6 (Special Case where S is a singleton)
For a submonoid M C OW) of unary functions and a function f € O,if f L M and f L ((9(1)\M)
then M is endoprimal.

5.3 Some Endoprimal Monoids on {0, 1,2}

We show two applications of the witness lemma.

5.3.1 Application of Witness Lemma (1)

Let m € O:(,,S) be a witness, which is defined as follows:

x if z=yorz=z2
m(z,y,z) = Y if y==2
2 if {z,y,2} ={0,1,2}

In other words, m is the majority and totally symmetric function satisfying the following.
(i) ma,a,b)=a forallabeckE;
(i) m(0,1,2) =2

Then it is easily verified that (1) the function m commutes with all functions in P, i.€.,m € Py *
and (2) m does not commute with any function in Ogl) \ P,. Therefore, the witness lemma implies:

Proposition 5.7 P, is an endoprimal monoid.

Moreover, we note that P, is shown to be a maximal endoprimal monoid.

5.3.2 Application of Witness Lemma (2)

For each subset S of unary functions, i.e., § C Ogl), one can construct an endoprimal monoid
which has S as its witness.

Example 1. For ¢y € (951) take S = {co} as a (singleton) witness. It is easy to check that the set
of unary functions which commute with ¢o is {co, 71, j2, 5, ©1, U2, Us, 81, S2 }. Hence, by the
witness lemma, we see that

M(CO) = { €o, jl’ j2, j5$ Uy, U2, Us, S1, S2 }

is an endoprimal monoid.

Example 2. Let S = {cp,j1} be a doubleton consisting of ¢y and j; € (’)gl). It is readily verified
that the set of unary functions which commute with j; is {co, c1, j1, ja, u2, s1 }. Together with
the result given in Example 1, we see that the set of unary functions which commute with both cg
and j; is {co, j1, u2, s1}. Hence, by the witness lemma, it follows that

M(co, j1) = { co, J1, U2, 51}
is an endoprimal monoid.
We have the complete list of the endoprimal monoids having subsets (C Ogl)) of unary functions

as their witnesses. Below we give the summary of this list. For more precise description the reader
is referred to [MR 10].
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Proposition 5.8 Over E3, there are 51 endoprimal monoids each having a subset of Ogl) as its
wilness.

(1) (Singleton witnesses) Out of 27 unary functions f in Ogl), there are 26 different endoprimal
monoids M(f) each having singleton witness {f}. An exception is for s4 and ss, where we
have M (s4) = M (ss).

(2) (Doubleton witnesses) There are 25 endoprimal monoids which have doubleton witnesses
(and have no singleton witnesses).

(3) (Larger witnesses) There is no endoprimal monoid over E3 which requires a witness, con-
sisting of unary functions, whose size is greater than 2.
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