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1 Derivational complexity
Let $\Sigma$ be a (finite) alphabet and let $\Sigma^{*}=\bigcup_{n\geq 0^{\Sigma^{n}}}$ be the free monoid generated
by $\Sigma$ . A (string)-rewriting system $R$ is a nonempty subset of $\Sigma^{*}\cross\Sigma^{*}$ . An
element $r=(u, v)$ in $R$ is called a rule of $R$ and written $uarrow v$ . Suppose that a
word $x\in\Sigma^{*}$ contains $u$ as a subword, that is, $x=x_{1}ux_{2}$ with $x_{1},$ $x_{2}\in\Sigma^{*}$ , then
we can apply the rule $r$ to $x$ and $x$ is rewritten to the word $y=x_{1}vx_{2}$ . In this
situation we write as $xarrow_{r}y$ . If there is some rule $r\in R$ such that $xarrow_{r}y$ , we
write $xarrow Ry$ , and we call the relation $arrow R$ the one-step derivation on $\Sigma^{*}$ by $R$ .

A rewriting system $R$ is teminating on $x\in\Sigma^{*}$ if there is no infinite sequence
of derivation:

$xarrow R^{X}1arrow R\ldotsarrow R^{X}narrow R\ldots$

starting with $x$ . $R$ is teminating (or noetherian), if it is terminating on every
$x\in\Sigma^{*}$ .

The maximal length of a derivation sequence starting with $x$ is denoted by
$\delta_{R}(x)$ . For $x$ on which $R$ is not terminating, we set $\delta_{R}(x)=\infty$ . The function
$d_{R}$ : $\mathbb{N}arrow$ NU $\{\infty\}$ defined by

$d_{R}(n)= \max\{\delta_{R}(x)|x\in\Sigma^{n}\}$

for $n\in N$ is the derivational complexity of $R$ .
We are interested in what functions can be derivational complexities of ter-

minating finite rewriting systems.
Let $\mathbb{R}+=\{x\in \mathbb{R}|x\geq 0\}$ . For two functions $f,$ $g$ : $\mathbb{N}arrow \mathbb{R}+\cup\{\infty\}$ , if there

is a constant $C>0$ such that $f(n)\leq C\cdot g(n)$ for any sufficiently large $n\in N$ ,
we write as $f\leq O(g)$ . If moreover $g\leq O(f),$ $f$ and $g$ are called equivalent, and
written as $f=O(g)$ .

A function $f$ : $Narrow \mathbb{R}+\cup\{\infty\}$ is super-additive if

$f(m+n)\geq f(m)+f(n)$

holds for any $m,$ $n\in$ N. A super-additive function is non-decreasing. It is easy
to see that the derivational complexity of a rewriting system is super-additive.
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For an integer $k\geq 1$ , a rewriting system $R$ has polynomial (derivational)
complexity of degree $k$ , if $d_{R}(n)=O(n^{k})$ . Any (nonempty) rewriting system $R$

has at least linear complexity, that is, $d_{R}(n)\geq O(n)$ .

Example 1.1. Let $k\geq 2$ and let $\Sigma_{k}=\{a_{1}, a_{2}, \ldots, a_{k}\}$ . For $2\leq\ell\leq k$ let

$C_{\ell}=\{a_{1}a_{\ell}arrow a_{\ell}a_{l-1}, a_{2}a_{\ell}arrow a_{l}a_{\ell-1}, \ldots, a_{\ell-1}a_{\ell}arrow a_{\ell}a_{1}\}$ .

Define a system $P_{k}$ on $\Sigma_{k}$ inductively as follows.

$P_{2}=C_{2}=\{a_{1}a_{2}arrow a_{2}a_{1}\}$ ,

and
$P_{k}=P_{k-1}\cup C_{k}$

for $k\geq 3$ . Then, $P_{k}$ has polynomial complexity of degree $k$ .

A rewriting system $R$ has exponential complexity, if there are constants $C\geq$

$D>1$ such that
$D^{n}\leq d_{R}(n)\leq C^{n}$

for sufficiently large $n\in \mathbb{N}$ . The one-rule system $\{abarrow b^{2}a\}$ has an exponential
derivational complexity.

Due to [4], a derivational complexity exists in each level of the Grzegor-
czyk hierarchy of primitive recursive functions. Even the Ackermann‘s function
is attained ([5]). Actually, a derivational complexity can excess any recursive
function (see Section 2). Many studies have been done about the derivational
complexity of term rewriting systems under specific termination techniques (see
[7] and the references cited there). Here we shall discuss the derivational com-
plexity of string rewriting systems under a general situation.

2 Q-systems and Turing machines
In this article we only consider deterministic Turing machines. Let

$M=M(\Sigma, Q, q_{0}, F, \delta)$

be a k-tape Turing machine, where $\Sigma$ is a tape alphabet, $Q$ is a set of states, $q_{0}$

is an initial state, $F$ is a set of final states and $\delta$ is a transition function. We
assume that the tapes are one-way infinite and each head never moves to the
left of the initial position.

Let $\Sigma_{b}=\Sigma\cup\{b\}$ , where $b$ denotes the blank symbol. The transition function
$\delta$ is a mapping from $(Q\backslash F)\cross\Sigma_{b}^{k}$ to $Q\cross(\Sigma_{b}\cup\{L, R\})^{k}$ , where $L$ and $R$ are the
symbols for the right and left moves of the heads respectively. If for each $i$ with
$1\leq i\leq k,$ $x_{i}y_{i}$ is a word written on the i-th tape and the machine is looking at
the leftmost letter of $y_{i}$ in state $q$ , then the k-ple

$c=(x_{1}qy_{1}, x_{2}qy_{2}, \cdots, x_{k}qy_{k})$ (2.1)
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is a configumtion of $M$ . The size $|c|$ of a configuration $c$ in (2.1) is defined by

$|c|=|x_{1}y_{1}x_{2}y_{2}\cdots x_{k}y_{k}|$ .

For $x\in\Sigma^{*}$ , let $\tau_{M}(x)$ be the number of steps taken until $M$ halts when it
runs with input $x$ written in the first tape of $M$ . The time function $t_{M}$ : $Narrow$

$\mathbb{N}\cup\{\infty\}$ of $M$ is defined by

$t_{M}(n)= \max\{\tau_{M}(x)|x\in\Sigma^{n}\}$ .

For a configuration $c$ , let $\tau_{M}’(c)$ be the number of steps taken until $M$ halts
when it starts with $c$ . In particular, $\tau_{M}(x)=\tau_{M}(q_{0}x, q_{0}, \ldots, q_{0})$ for $x\in\Sigma^{*}$ .
Define the total time function function $t_{M}’$ : $Narrow$ NU $\{\infty\}$ of $M$ by

$t_{M}’(n)= \max$ { $\tau_{M}’(c)|c$ : configuration of size $n$ }

Clearly,
$t_{M}’(n)\geq t_{M}(n)$

for any $n\in$ N.
A Q-system is a finite rewriting system $R$ over an alphabet

$\Sigma=Q\cup\Sigma_{1}\cup\Sigma_{2}\cup\{}$ (disjoint union)

consisting of rules only of the form

$vqu$ $arrow$ $v’q’u’$ , or
vqu$ $arrow$ $v’q’u’$ ,

where $q,$ $q’\in Q,$ $u,$ $u’\in\Sigma_{1}^{*}$ and $v,$ $v’\in\Sigma_{2}^{*}$ .
A word $x\in\Sigma^{*}$ is admissible (resp. weakly admissible), if it is of the form

$vqu$ with $q\in Q,$ $v\in\Sigma_{2}^{*}$ and $u\in\Sigma_{1}^{*}$ $($ resp. $u\in\Sigma_{1}^{*}\cup\Sigma_{1}^{*}$ .
For a Q-system $R$ and for $n\in N$ , define

$ad_{R}(n)= \max$ { $\delta_{R}(x)|x$ is admissible and $|x|=n+2$ }

Lemma 2.1. For a Q-system $R$ , we have

$ad_{R}(n)\leq d_{R}(n+2)$

for any $n\in$ N. If $ad_{R}$ is super-additive, then

$d_{R}(n+1)\leq ad_{R}(n)$

for any $n\in$ N. If $ad_{R}$ is equivalent to a non-zero super-additive function, then

$d_{R}(n+1)\leq O(ad_{R}(n))$ .
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There is a natural way to simulate one-tape Turing machines by string-
rewriting systems ([3]).

Let $M=M(\Sigma, Q, q_{0}, F, \delta)$ be a one-tape Turing machine. Here, $\delta$ is a
mapping from $(Q\backslash F)\cross\Sigma_{b}$ to $Q\cross(\Sigma_{b}\cup\{L, R\})$ . We define a Q-system $R_{M}$

associated with $M$ as follows. $R_{M}$ is a rewriting system on the alphabet

$\Omega=Q\cup\Sigma_{b}\cup\overline{\Sigma}_{b}\cup$ $\{$ $ $\}$ (disjoint union),

where $\overline{\Sigma}_{b}=\{\overline{a}|a\in\Sigma_{b}\}$ is a copy of $\Sigma_{b}$ , and consists of the rules:

$qaarrow\overline{a}q’$ for
$\overline{a}’qaarrow q’a^{f}a$ for
$qaarrow q’a’$ for
q$ $arrow$ bq’$ for
aq$ -$arrow$ qa$ for
$q\arrow q’a$ for

$\delta(q, a)=(q’, R)$ ,
$\delta(q, a)=(q’, L)$ ,
$\delta(q, a)=(q’, a’)$ ,
$\delta(q, b)=(q’, R)$ ,
$\delta(q, b)=(q’, L)$ ,
$\delta(q, b)=(q’, a)$ .

for $a,$ $a’\in\Sigma_{b},$ $q\in Q\backslash F$ and $q’\in Q$ .
For a word $x\in\Sigma_{b}^{*},\overline{x}$ denotes the word obtained from $x$ by replacing every

letter $a$ in $x$ by $\overline{a}$ . Since one step of the Turing machine $M$ just corresponds to
one rewriting by $R_{M}$ we have

Lemma 2.2. It holds that

$\delta_{R_{hI}}(q_{0}x=\tau_{M}(x),$ $\delta_{R_{\Lambda I}}(\overline{x}qy=\tau_{M}’(xqy)$

for $x,$ $y\in\Sigma_{b}^{*}$ and $q\in Q$ .

Corollary 2.3. We have

$d_{R_{1\mathfrak{t}I}}(n+2)\geq ad_{R_{I\backslash I}}(n)=t_{M}’(n)\geq t_{M}(n)$

for $n\geq 0$ .

If $R$ is finite and terminating, then we can compute $d_{R}$ by tracing all the
derivation sequences (see Section 4), and it is a recursive function. Actually it
can exceed any recursive function.

Corollary 2.4. For any recursive function $f$ , there exists a finite terminating
rewriting system $R$ such that

$d_{R}(n)\geq f(n)$

for any positive $n\in \mathbb{N}$ .

3 Time functions and derivational complexity

As we have seen in the last section, derivational complexity is related to the
time functions of Turing machines.
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Lemma 3.1. (cf. [2], [6]) For any k-tape Turing machine $M$ with time function
$f(n)\geq O(n)$ , there exists a one-tape Turing machine $M^{f}$ such that $t_{M’}(n)=$

$O(t_{M’}’(n))=O(f(n)^{2})$ .
Suppose that $f$ is the time function of a k-tape Turing machine $M$ such that

$f\geq O(n)$ and $f^{2}$ is equivalent to a super-additive function $g$ . Let $M’$ be the
one-tape Turing machine Lemma 3.1. We have

$t_{\Lambda I’(n)}^{f}=O(f(n)^{2})=O(g(n))$ .

Let $R$ be the Q-system associated with $M’$ , then by Lemma 2.1 and Corollary
2.3, we see

$d_{R}(n+2)\geq t_{M’}’(n)=ad_{R}(n)\geq O(d_{R}(n+1))$ .
It follows that

$O(f(n-2)^{2})\leq d_{R}(n)\leq O(f(n-1)^{2})$ .

Thus, we have

Theorem 3.2. Let $f(n)$ be a time function of a Turing machine such that
$f\geq O(n)$ and $f(n)^{2}$ is equivalent to a super-additive function. Then there
exists a finite rewriting system $R$ such that

$O(f(n-2)^{2})\leq d_{R}(n)\leq O(f(n-1)^{2})$ .

We say that a function $f$ : $\mathbb{N}arrow N$ is computable in time $O(g(n))$ , if there
exists a (deterministic) algorithm computing $f(n)$ within time $O(g(n))$ , more
precisely, if there exists a multi-tape TUring machine which computes binary
$f(n)$ for given binary $n$ with time function $t_{M}(n)\leq O(g(n))$ .

Lemma 3.3. If $f$ : $\mathbb{N}arrow \mathbb{N}$ is a function such that $f(n)\geq O(n^{2})$ and the
binary $f(n)$ is computable in time $O(\sqrt{f(n)})$ for binary $n\in N$ , then $\lfloor\sqrt{f(n)}\rfloor$

is equivalent to a time function of a Turing machine.

Combining this lemma with Theorem 3.1 we have

Theorem 3.4. Suppose that a function $f(n)\geq O(n^{2})$ is computable in time
$O(\sqrt{f(n)})$ in binary and equivalent to a super-additive function. Then, there
exists a finite rewriting system $R$ such that

$O(f(n-2))\leq d_{R}(n)\leq O(f(n-1))$ .

4 Computing the derivational complexity

Let $R$ be a rewriting system on $\Sigma$ . Consider a derivation sequence of length 2:

$x=x’ux”arrow_{R}x’vx’’=y=y’u’y’’arrow Ry’v^{f}y’’=z$ ,

where $uarrow v,$ $u’arrow v’\in R$ . This sequence is left canonical, if

$|x’|<|y’u’|$ .

A sequence is left canonical, if every subsequence of length 2 of it is left canonical.
In particular, a sequence of length $\leq 1$ is left canonical.
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Lemma 4.1. For a derivation sequence of length $n$ from $x\in\Sigma^{*}$ to $y\in\Sigma^{*}$ ,
there is a left canonical sequence from $x$ to $y$ of the same length $n$ .

For a derivational sequence

$p:x_{0}arrow R^{X}1arrow R^{X}1arrow R\ldotsarrow R^{X}n$ ,

we define a number $L(p)$ by induction on $n$ as follows. When $n=1$ and
$p:x_{0}=x_{0}’ux_{0}’’arrow_{r}x_{0}’vx_{0}’’$ with $r=(uarrow v)\in R$ , define

$L(p)=|x_{0}’u|=|x_{0}|-|x_{0}’’|$ .

Suppose that $n\geq 2$ and

$x_{n-2}=x_{n-2}’u’x_{n-2}^{\prime/}arrow_{r’}x_{n-2}’v’x_{n-2}’’=x_{n-1}=x_{n-1}’ux_{n-1}’’arrow_{r}x_{n-1}’vx_{n-1}’’=x_{n}$

with $r=(uarrow v),$ $r’=(u’arrow v’)\in R$ . Then, define

$L(p)=L(p’)+|x_{n-1}’|-|x_{n-2}’|+|u|+K-1$ ,

where $p’$ is the subsequence

$x_{0}arrow R^{X}1arrow R\ldotsarrow R^{X}n-1$

of $p$ and
$K= \max$ $\{ |u|, |v||uarrow v\in R\}$ .

Lemma 4.2. For any derivation sequence $p$ of length $n(\geq 1)$ starting with
$x\in\Sigma^{*}$ we have

$L(p)\leq(2K-1)(n-1)+|x|$ .

Lemma 4.3. A left canonical derivation sequence $p$ can be found by tracing at
most $L(p)$ letters in the words appearing in $p$ .

Theorem 4.4. Let $R$ be a finite rewriting system on $\Sigma$ with derivational com-
plexity $f$ . Then, given $n\in \mathbb{N},$ $f(n)$ can be computed deterministically in time
$C^{f(n)}$ for some constant $C>1$ .

5 Complexities of the forms $n^{\alpha}$ and $\alpha^{n}$

In this section we give the results that there are finite rewriting systems with
derivational complexities equivalent to $n^{\alpha}$ (and $\alpha^{n}$ ), if the computational com-
plexity of the real number $\alpha$ is relatively low, but there are no such systems if
the complexity of $\alpha$ is high. The author has been inspired by the discussions in
[8].

A real number $\alpha>0$ is computable in time $f(n)$ , if a binary rational approx-
imation $a/b(a, b\in \mathbb{N})$ of $\alpha$ such that $b\leq O(2^{n})$ and

$| \alpha-\frac{a}{b}|<\frac{1}{2^{n}}$

can be computed in time $f(n)$ (refer to [9] for computable real numbers). We
denotes this rational $a/b$ by $\alpha[n]$ .
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Lemma 5.1. Let $\alpha>0$ be a real number computable in time $O(f(n))$ . Then
for an integer $\nu$ , the function $g_{\alpha,\nu}(n)=2^{\lfloor\alpha[\lceil\log_{2}n\rceil-\nu]\cdot n\rfloor}$ is equivalent to $2^{\alpha n}$

and can be computed in time $O(f(\lceil\log_{2}n\rceil-\nu)+n)$ .

Theorem 5.2. Let $\alpha\geq 2$ be a real number computable in time $(O(C^{2^{n}}))$ for
some constant $C>1$ . Then, there is a finite rewriting system $R$ with deriva-
tional complexity equivalent to $n^{\alpha}$ .

Next, we consider the exponential function $\alpha^{n}$ . Because it is not super-
additive, we need the following

Lemma 5.3. Let $\alpha>1$ be a real number, then the function $f_{\alpha}$ defined by

$f_{\alpha}(n)=\{\begin{array}{l}\alpha^{n}(e\log\alpha)\cdot n\end{array}$

is super-additive.

if $n\geq 1/\log\alpha$

if $0\leq n<1/\log\alpha$

The computational complexities of $\alpha$ and $\log_{2}\alpha$ are closely related.

Lemma 5.4. Let $\alpha(>1)$ be a real number computable in time $O(f(n))$ . Then,
$\log_{2}\alpha$ is computable in time $O(f(n+2)+4^{n}n^{2})$ , and $2^{\alpha}$ is computable in time
$O(f(n+\lceil\alpha\rceil+2)+8^{n}n^{2})$ .

If we use a faster algorithm to compute the product of two integers, for
example, Sch\"onhag-Strassen $s$ algorithm (see [1]), we can improve Lemma 5.4,
but this is enough for our purpose.

Theorem 5.5. If a real number $\alpha>1$ is computable in time $O(C^{2^{n}})$ for some
constant $C>1$ , then there is a finite rewriting system $R$ with derivational
complexity equivalent to $\alpha^{n}$ .

By our results we see that, for example, the functions $n^{\alpha}(\alpha\geq 2),$ $\alpha^{n}(\alpha>1)$

and $2^{\alpha n}(\alpha>0)$ for a rational (or more generally an algebraic) number $\alpha$ are
equivalent to the derivational complexities of finite rewriting systems. For a
transcendental number $\alpha$ with low complexity such as $\pi$ and $e$ , they are also
equivalent to the derivational complexities.

Using Theorem 4.4, we can give the other direction as follows.

Theorem 5.6. Let $\alpha>1$ be a real number.
(1) If there is a finite rewriting system with derivational complexity equiva-

lent to $n^{\alpha}$ , then $\alpha$ is computable in time $C^{C^{2^{n}}}$ for some constant $C>1$ .
(2) If there is a finite rewriting system with derivational complexity equiva-

lent to $\alpha_{f}^{n}$ then $\alpha$ is computable in time $C^{2^{n}}$ for some constant $C>1$ .
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