
The derivational complexity of string-rewriting
systems

YUJI KOBAYASHI

Department of Information Science
Toho University, Funabashi 274-8510, Japan

1 Derivational complexity
Let Σ be a (finite) alphabet and let $\Sigma^{*}=\bigcup_{n\geq 0^{\Sigma^{n}}}$ be the free monoid generated
by Σ . A (string)-rewriting system R is a nonempty subset of $\Sigma^{*}\cross\Sigma^{*}$. An
element $r=(u, v)$ in R is called a rule of R and written $uarrow v$. Suppose that a
word $x\in\Sigma^{*}$ contains u as a subword, that is, $x=x_{1}ux_{2}$ with $x_{1},$ $x_{2}\in\Sigma^{*}$, then
we can apply the rule r to x and x is rewritten to the word $y=x_{1}vx_{2}$. In this
situation we write as $xarrow_{r}y$. If there is some rule $r\in R$ such that $xarrow_{r}y$, we
write $xarrow Ry$, and we call the relation $arrow R$ the one-step derivation on Σ^{*} by R .

A rewriting system R is teminating on $x\in\Sigma^{*}$ if there is no infinite sequence
of derivation:

$xarrow R^{X}1arrow R\ldotsarrow R^{X}narrow R\ldots$

starting with x . R is teminating (or noetherian), if it is terminating on every
$x\in\Sigma^{*}$.

The maximal length of a derivation sequence starting with x is denoted by
$\delta_{R}(x)$. For x on which R is not terminating, we set $\delta_{R}(x)=\infty$. The function
d_{R} : $\mathbb{N}arrow$ NU $\{\infty\}$ defined by

$d_{R}(n)= \max\{\delta_{R}(x)|x\in\Sigma^{n}\}$

for $n\in N$ is the derivational complexity of R .
We are interested in what functions can be derivational complexities of ter-

minating finite rewriting systems.
Let $\mathbb{R}+=\{x\in \mathbb{R}|x\geq 0\}$. For two functions $f,$ g : $\mathbb{N}arrow \mathbb{R}+\cup\{\infty\}$, if there

is a constant $C>0$ such that $f(n)\leq C\cdot g(n)$ for any sufficiently large $n\in N$,
we write as $f\leq O(g)$. If moreover $g\leq O(f),$ f and g are called equivalent, and
written as $f=O(g)$.

A function f : $Narrow \mathbb{R}+\cup\{\infty\}$ is super-additive if

$f(m+n)\geq f(m)+f(n)$

holds for any $m,$ $n\in$ N. A super-additive function is non-decreasing. It is easy
to see that the derivational complexity of a rewriting system is super-additive.

数理解析研究所講究録
第 1712巻 2010年 140-147 140

For an integer $k\geq 1$, a rewriting system R has polynomial (derivational)
complexity of degree k , if $d_{R}(n)=O(n^{k})$. Any (nonempty) rewriting system R

has at least linear complexity, that is, $d_{R}(n)\geq O(n)$.

Example 1.1. Let $k\geq 2$ and let $\Sigma_{k}=\{a_{1}, a_{2}, \ldots, a_{k}\}$. For $2\leq\ell\leq k$ let

$C_{\ell}=\{a_{1}a_{\ell}arrow a_{\ell}a_{l-1}, a_{2}a_{\ell}arrow a_{l}a_{\ell-1}, \ldots, a_{\ell-1}a_{\ell}arrow a_{\ell}a_{1}\}$.

Define a system P_{k} on Σ_{k} inductively as follows.

$P_{2}=C_{2}=\{a_{1}a_{2}arrow a_{2}a_{1}\}$,

and
$P_{k}=P_{k-1}\cup C_{k}$

for $k\geq 3$. Then, P_{k} has polynomial complexity of degree k .

A rewriting system R has exponential complexity, if there are constants $C\geq$

$D>1$ such that
$D^{n}\leq d_{R}(n)\leq C^{n}$

for sufficiently large $n\in \mathbb{N}$. The one-rule system $\{abarrow b^{2}a\}$ has an exponential
derivational complexity.

Due to [4], a derivational complexity exists in each level of the Grzegor-
czyk hierarchy of primitive recursive functions. Even the Ackermann‘s function
is attained ([5]). Actually, a derivational complexity can excess any recursive
function (see Section 2). Many studies have been done about the derivational
complexity of term rewriting systems under specific termination techniques (see
[7] and the references cited there). Here we shall discuss the derivational com-
plexity of string rewriting systems under a general situation.

2 Q-systems and Turing machines
In this article we only consider deterministic Turing machines. Let

$M=M(\Sigma, Q, q_{0}, F, \delta)$

be a k-tape Turing machine, where Σ is a tape alphabet, Q is a set of states, q_{0}

is an initial state, F is a set of final states and δ is a transition function. We
assume that the tapes are one-way infinite and each head never moves to the
left of the initial position.

Let $\Sigma_{b}=\Sigma\cup\{b\}$, where b denotes the blank symbol. The transition function
δ is a mapping from $(Q\backslash F)\cross\Sigma_{b}^{k}$ to $Q\cross(\Sigma_{b}\cup\{L, R\})^{k}$, where L and R are the
symbols for the right and left moves of the heads respectively. If for each i with
$1\leq i\leq k,$ $x_{i}y_{i}$ is a word written on the i-th tape and the machine is looking at
the leftmost letter of y_{i} in state q , then the k-ple

$c=(x_{1}qy_{1}, x_{2}qy_{2}, \cdots, x_{k}qy_{k})$ (2.1)

141

is a configumtion of M . The size $|c|$ of a configuration c in (2.1) is defined by

$|c|=|x_{1}y_{1}x_{2}y_{2}\cdots x_{k}y_{k}|$.

For $x\in\Sigma^{*}$, let $\tau_{M}(x)$ be the number of steps taken until M halts when it
runs with input x written in the first tape of M . The time function t_{M} : $Narrow$

$\mathbb{N}\cup\{\infty\}$ of M is defined by

$t_{M}(n)= \max\{\tau_{M}(x)|x\in\Sigma^{n}\}$.

For a configuration c , let $\tau_{M}’(c)$ be the number of steps taken until M halts
when it starts with c . In particular, $\tau_{M}(x)=\tau_{M}(q_{0}x, q_{0}, \ldots, q_{0})$ for $x\in\Sigma^{*}$.
Define the total time function function $t_{M}’$: $Narrow$ NU $\{\infty\}$ of M by

$t_{M}’(n)= \max$ { $\tau_{M}’(c)|c$: configuration of size n }

Clearly,
$t_{M}’(n)\geq t_{M}(n)$

for any $n\in$ N.
A Q-system is a finite rewriting system R over an alphabet

$\Sigma=Q\cup\Sigma_{1}\cup\Sigma_{2}\cup\{}$ (disjoint union)

consisting of rules only of the form

vqu $arrow$ $v’q’u’$, or
vqu$ $arrow$ $v’q’u’$,

where $q,$ $q’\in Q,$ $u,$ $u’\in\Sigma_{1}^{*}$ and $v,$ $v’\in\Sigma_{2}^{*}$.
A word $x\in\Sigma^{*}$ is admissible (resp. weakly admissible), if it is of the form

vqu with $q\in Q,$ $v\in\Sigma_{2}^{*}$ and $u\in\Sigma_{1}^{*}$ $($ resp. $u\in\Sigma_{1}^{*}\cup\Sigma_{1}^{*}$.
For a Q-system R and for $n\in N$, define

$ad_{R}(n)= \max$ { $\delta_{R}(x)|x$ is admissible and $|x|=n+2$ }

Lemma 2.1. For a Q-system R , we have

$ad_{R}(n)\leq d_{R}(n+2)$

for any $n\in$ N. If ad_{R} is super-additive, then

$d_{R}(n+1)\leq ad_{R}(n)$

for any $n\in$ N. If ad_{R} is equivalent to a non-zero super-additive function, then

$d_{R}(n+1)\leq O(ad_{R}(n))$.

142

There is a natural way to simulate one-tape Turing machines by string-
rewriting systems ([3]).

Let $M=M(\Sigma, Q, q_{0}, F, \delta)$ be a one-tape Turing machine. Here, δ is a
mapping from $(Q\backslash F)\cross\Sigma_{b}$ to $Q\cross(\Sigma_{b}\cup\{L, R\})$. We define a Q-system R_{M}

associated with M as follows. R_{M} is a rewriting system on the alphabet

$\Omega=Q\cup\Sigma_{b}\cup\overline{\Sigma}_{b}\cup$ $\{$ $ $\}$ (disjoint union),

where $\overline{\Sigma}_{b}=\{\overline{a}|a\in\Sigma_{b}\}$ is a copy of Σ_{b} , and consists of the rules:

$qaarrow\overline{a}q’$ for
$\overline{a}’qaarrow q’a^{f}a$ for
$qaarrow q’a’$ for
q$ $arrow$ bq’$ for
aq$ -$arrow$ qa$ for
$q\arrow q’a$ for

$\delta(q, a)=(q’, R)$,
$\delta(q, a)=(q’, L)$,
$\delta(q, a)=(q’, a’)$,
$\delta(q, b)=(q’, R)$,
$\delta(q, b)=(q’, L)$,
$\delta(q, b)=(q’, a)$.

for $a,$ $a’\in\Sigma_{b},$ $q\in Q\backslash F$ and $q’\in Q$.
For a word $x\in\Sigma_{b}^{*},\overline{x}$ denotes the word obtained from x by replacing every

letter a in x by \overline{a} . Since one step of the Turing machine M just corresponds to
one rewriting by R_{M} we have

Lemma 2.2. It holds that

$\delta_{R_{hI}}(q_{0}x=\tau_{M}(x),$ $\delta_{R_{\Lambda I}}(\overline{x}qy=\tau_{M}’(xqy)$

for $x,$ $y\in\Sigma_{b}^{*}$ and $q\in Q$.

Corollary 2.3. We have

$d_{R_{1\mathfrak{t}I}}(n+2)\geq ad_{R_{I\backslash I}}(n)=t_{M}’(n)\geq t_{M}(n)$

for $n\geq 0$.

If R is finite and terminating, then we can compute d_{R} by tracing all the
derivation sequences (see Section 4), and it is a recursive function. Actually it
can exceed any recursive function.

Corollary 2.4. For any recursive function f , there exists a finite terminating
rewriting system R such that

$d_{R}(n)\geq f(n)$

for any positive $n\in \mathbb{N}$.

3 Time functions and derivational complexity

As we have seen in the last section, derivational complexity is related to the
time functions of Turing machines.

143

Lemma 3.1. (cf. [2], [6]) For any k-tape Turing machine M with time function
$f(n)\geq O(n)$, there exists a one-tape Turing machine M^{f} such that $t_{M’}(n)=$

$O(t_{M’}’(n))=O(f(n)^{2})$.
Suppose that f is the time function of a k-tape Turing machine M such that

$f\geq O(n)$ and f^{2} is equivalent to a super-additive function g . Let $M’$ be the
one-tape Turing machine Lemma 3.1. We have

$t_{\Lambda I’(n)}^{f}=O(f(n)^{2})=O(g(n))$.

Let R be the Q-system associated with $M’$, then by Lemma 2.1 and Corollary
2.3, we see

$d_{R}(n+2)\geq t_{M’}’(n)=ad_{R}(n)\geq O(d_{R}(n+1))$.
It follows that

$O(f(n-2)^{2})\leq d_{R}(n)\leq O(f(n-1)^{2})$.

Thus, we have

Theorem 3.2. Let $f(n)$ be a time function of a Turing machine such that
$f\geq O(n)$ and $f(n)^{2}$ is equivalent to a super-additive function. Then there
exists a finite rewriting system R such that

$O(f(n-2)^{2})\leq d_{R}(n)\leq O(f(n-1)^{2})$.

We say that a function f : $\mathbb{N}arrow N$ is computable in time $O(g(n))$, if there
exists a (deterministic) algorithm computing $f(n)$ within time $O(g(n))$, more
precisely, if there exists a multi-tape TUring machine which computes binary
$f(n)$ for given binary n with time function $t_{M}(n)\leq O(g(n))$.

Lemma 3.3. If f : $\mathbb{N}arrow \mathbb{N}$ is a function such that $f(n)\geq O(n^{2})$ and the
binary $f(n)$ is computable in time $O(\sqrt{f(n)})$ for binary $n\in N$, then $\lfloor\sqrt{f(n)}\rfloor$

is equivalent to a time function of a Turing machine.

Combining this lemma with Theorem 3.1 we have

Theorem 3.4. Suppose that a function $f(n)\geq O(n^{2})$ is computable in time
$O(\sqrt{f(n)})$ in binary and equivalent to a super-additive function. Then, there
exists a finite rewriting system R such that

$O(f(n-2))\leq d_{R}(n)\leq O(f(n-1))$.

4 Computing the derivational complexity

Let R be a rewriting system on Σ . Consider a derivation sequence of length 2:

$x=x’ux”arrow_{R}x’vx’’=y=y’u’y’’arrow Ry’v^{f}y’’=z$,

where $uarrow v,$ $u’arrow v’\in R$. This sequence is left canonical, if

$|x’|<|y’u’|$.

A sequence is left canonical, if every subsequence of length 2 of it is left canonical.
In particular, a sequence of length ≤ 1 is left canonical.

144

Lemma 4.1. For a derivation sequence of length n from $x\in\Sigma^{*}$ to $y\in\Sigma^{*}$,
there is a left canonical sequence from x to y of the same length n .

For a derivational sequence

$p:x_{0}arrow R^{X}1arrow R^{X}1arrow R\ldotsarrow R^{X}n$,

we define a number $L(p)$ by induction on n as follows. When $n=1$ and
$p:x_{0}=x_{0}’ux_{0}’’arrow_{r}x_{0}’vx_{0}’’$ with $r=(uarrow v)\in R$, define

$L(p)=|x_{0}’u|=|x_{0}|-|x_{0}’’|$.

Suppose that $n\geq 2$ and

$x_{n-2}=x_{n-2}’u’x_{n-2}^{\prime/}arrow_{r’}x_{n-2}’v’x_{n-2}’’=x_{n-1}=x_{n-1}’ux_{n-1}’’arrow_{r}x_{n-1}’vx_{n-1}’’=x_{n}$

with $r=(uarrow v),$ $r’=(u’arrow v’)\in R$. Then, define

$L(p)=L(p’)+|x_{n-1}’|-|x_{n-2}’|+|u|+K-1$,

where $p’$ is the subsequence

$x_{0}arrow R^{X}1arrow R\ldotsarrow R^{X}n-1$

of p and
$K= \max$ $\{ |u|, |v||uarrow v\in R\}$.

Lemma 4.2. For any derivation sequence p of length $n(\geq 1)$ starting with
$x\in\Sigma^{*}$ we have

$L(p)\leq(2K-1)(n-1)+|x|$.

Lemma 4.3. A left canonical derivation sequence p can be found by tracing at
most $L(p)$ letters in the words appearing in p .

Theorem 4.4. Let R be a finite rewriting system on Σ with derivational com-
plexity f . Then, given $n\in \mathbb{N},$ $f(n)$ can be computed deterministically in time
$C^{f(n)}$ for some constant $C>1$.

5 Complexities of the forms n^{α} and α^{n}

In this section we give the results that there are finite rewriting systems with
derivational complexities equivalent to n^{α} (and α^{n}), if the computational com-
plexity of the real number α is relatively low, but there are no such systems if
the complexity of α is high. The author has been inspired by the discussions in
[8].

A real number $\alpha>0$ is computable in time $f(n)$, if a binary rational approx-
imation $a/b(a, b\in \mathbb{N})$ of α such that $b\leq O(2^{n})$ and

$| \alpha-\frac{a}{b}|<\frac{1}{2^{n}}$

can be computed in time $f(n)$ (refer to [9] for computable real numbers). We
denotes this rational a/b by $\alpha[n]$.

145

Lemma 5.1. Let $\alpha>0$ be a real number computable in time $O(f(n))$. Then
for an integer ν , the function $g_{\alpha,\nu}(n)=2^{\lfloor\alpha[\lceil\log_{2}n\rceil-\nu]\cdot n\rfloor}$ is equivalent to $2^{\alpha n}$

and can be computed in time $O(f(\lceil\log_{2}n\rceil-\nu)+n)$.

Theorem 5.2. Let $\alpha\geq 2$ be a real number computable in time $(O(C^{2^{n}}))$ for
some constant $C>1$. Then, there is a finite rewriting system R with deriva-
tional complexity equivalent to n^{α} .

Next, we consider the exponential function α^{n} . Because it is not super-
additive, we need the following

Lemma 5.3. Let $\alpha>1$ be a real number, then the function f_{α} defined by

$f_{\alpha}(n)=\{\begin{array}{l}\alpha^{n}(e\log\alpha)\cdot n\end{array}$

is super-additive.

if $n\geq 1/\log\alpha$

if $0\leq n<1/\log\alpha$

The computational complexities of α and $\log_{2}\alpha$ are closely related.

Lemma 5.4. Let $\alpha(>1)$ be a real number computable in time $O(f(n))$. Then,
$\log_{2}\alpha$ is computable in time $O(f(n+2)+4^{n}n^{2})$, and 2^{α} is computable in time
$O(f(n+\lceil\alpha\rceil+2)+8^{n}n^{2})$.

If we use a faster algorithm to compute the product of two integers, for
example, Sch\"onhag-Strassen s algorithm (see [1]), we can improve Lemma 5.4,
but this is enough for our purpose.

Theorem 5.5. If a real number $\alpha>1$ is computable in time $O(C^{2^{n}})$ for some
constant $C>1$, then there is a finite rewriting system R with derivational
complexity equivalent to α^{n} .

By our results we see that, for example, the functions $n^{\alpha}(\alpha\geq 2),$ $\alpha^{n}(\alpha>1)$

and $2^{\alpha n}(\alpha>0)$ for a rational (or more generally an algebraic) number α are
equivalent to the derivational complexities of finite rewriting systems. For a
transcendental number α with low complexity such as π and e , they are also
equivalent to the derivational complexities.

Using Theorem 4.4, we can give the other direction as follows.

Theorem 5.6. Let $\alpha>1$ be a real number.
(1) If there is a finite rewriting system with derivational complexity equiva-

lent to n^{α} , then α is computable in time $C^{C^{2^{n}}}$ for some constant $C>1$.
(2) If there is a finite rewriting system with derivational complexity equiva-

lent to α_{f}^{n} then α is computable in time $C^{2^{n}}$ for some constant $C>1$.

146

References
[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley, MA, 1974.

[2] J.-C. Birget, Infinite rewriting systems and complexity, J. Symbolic Comp.
25 (1998), 759–793.

[3] R. V. Book and F. Otto, String-Rewriting Systems, Springer, New York,
1993.

[4] D. Hofbauer, Termination proofs by multiset path orderings imply primitive
recursive derivation lengths, Theoretical Computer Science 105 (1992), 129
-140.

[5] D. Hofbauer and C. Lautermann, Termination proofs and the length of
derivations, RTA1989, LNCS 355 (1989), 167-177.

[6] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, MA, 1979.

[7] G. Moser, Proof Theory at Work: Complexity Analysis of Term Rewrite
Systems, Habilitation thesis, Univ. Innsbruck, 2009.

[8] M. V. Sapir, J. -C. Birget and E. Rips, Isoperimetric and isodiametric func-
tions of groups, Annals Math. 156 (2002), 345-466.

[9] K. Weihrauch, Computable Analysis, Springer, Berlin Heidelberg, 2000.

147

