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Abstract. This paper is related to the authors’ talk at the RIMS conference 2010 on:
Automorphic forms, automorphic representations and related topics in Tokyo. We mainly study
holomorphic Siegel modular forms on $Sp_{2}(\mathbb{Z})$ obtained as Borcherds lifts and the connection
with the Witt and Siegel $\Phi$-operator. As a direct consequence we obtain for example that Siegel
Eisenstein series are not Borcherds lifts.
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1 Introduction and the main results

1.1 Introduction

In this note we mainly summarize the results presented at the RIMS conference 2010 on: Au-
tomorphic forms, automorphic representations and related topics in Tokyo. A Borcherds lift
([Bol],[Bo2],[Bo3]) on $\Gamma_{2}=Sp_{2}(\mathbb{Z})$ is a meromorphic automorphic form $F$ on $\Gamma_{2}$ (with a mul-
tiplier system of finite order) whose divisor is of the form $\sum_{d}A(d)H_{d}$ , where $d$ runs over the
positive integers congruent to $0$ or 1 modulo 4, $A(d)\in \mathbb{Z}(A(d)=0$ except for a finite number
of d) and $H_{d}$ is the Humbert surface of discriminant $d$ . Since every Borcherds lift is a quotient
of holomorphic Borcherds lifts, we mainly consider the holomorphic case in this paper.

We employ our previous result on the multiplicative symmetries for Borcherds lifts ([HM]; see
Theorem 3.1). We obtain that the image of a holomorphic Borcherds lift on $\Gamma_{2}$ under the Siegel
operator is proportional to a power of $\Delta$ , the Ramanujan discriminant function. This implies
that the Siegel Eisenstein series is never a Borcherds lift. Then we show that a holomorphic
Borcherds lift on $\Gamma_{2}$ with trivial character is proportional to $\chi_{10}^{a}\chi_{35}^{b}F’$ , where $\chi_{10}$ and $\chi_{35}$ are
Borcherds lifts of weight 10 and 35, respectively, $a\in \mathbb{Z}_{\geq 0},$ $b\in\{0,1\}$ and $F’$ is a Borcherds lift of
weight divisible by 12 such that the image of $F’$ under the Witt operator is nonzero (Corollary

1.5).

1.2 Siegel modular forms

To explain our results more precisely, let

$\gamma\in GL_{2n}(\mathbb{Z})|t_{\gamma}(\begin{array}{ll}0_{n} 1_{n}-1_{n} 0_{n}\end{array})\gamma=(\begin{array}{ll}0_{n} 1_{n}-1_{n} 0_{n}\end{array})\}$$\Gamma_{n}:=\{$
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be the Siegel modular group of degree $n$ and $fl_{n}$ $:=\{Z\in M_{n}(\mathbb{C})|{}^{t}Z=Z, {\rm Im}(Z)>0\}$ be
the upper half space of degree $n$ , where $0_{n}$ (respectively $1_{n}$ ) is the zero (respectively identity)

matrix of degree $n$ .
Let $M_{k}(\Gamma_{n})$ denote the space of holomorphic automorphic forms of weight $k$ on $\Gamma_{n}$ and

$S_{k}(\Gamma_{n})$ be the subspace of cuspforms.
In the case $n=2$ which we are mainly interested in we often write $(\tau_{1}, z, \tau_{2})$ for a point

$(\begin{array}{ll}\tau_{1} zz \tau_{2}\end{array})\in fl_{2}$ .

For $F\in M_{k}(\Gamma_{2})$ , we put

$\Phi(F)(\tau)$ $:= \lim_{yarrow\infty}F(\tau, 0, iy)$
$(\tau\in \mathfrak{H}_{1})$ ,

$\mathcal{W}(F)(\tau_{1}, \tau_{2}):=F(\tau_{1},0, \tau_{2})$ $(\tau_{1}, \tau_{2}\in \mathfrak{H}_{1})$ .

Then $\Phi(F)\in M_{k}(\Gamma_{1})$ and $\mathcal{W}(F)\in Sym^{2}(M_{k}(\Gamma_{1}))$ . The operator $\Phi$ (respectively $\mathcal{W}$ ) is called
the Siegel (respectively Witt) operator. Then $S_{k}(\Gamma_{2})=\{F\in M_{k}(\Gamma_{2})|\Phi(F)=0\}$ is the space
of cusp forms. A Siegel modular form $F\in M_{k}(\Gamma_{2})$ admits the Fourier expansion

$F( \tau_{1}, z, \tau_{2})=\sum_{n,r,m\in Z}A_{F}(n, r, m)e(n\tau_{1}+rz+m\tau_{2})$
,

where we put $e(z)=\exp(2\pi iz)$ for $z\in \mathbb{C}$ . Note that $A_{F}(n, r, m)=0$ unless $n,$ $m,$ $4nm-r^{2}\geq 0$ .
For $k\geq 4$ let $E_{k}(Z)$ denote the Siegel Eisenstein series on $\Gamma_{2}$ of weight $k$ . Due to Igusa

([Ig]), the graded ring $\oplus_{k\geq 0}M_{k}(\Gamma_{2})$ is generated by $E_{4},$ $E_{6},$ $\chi_{10},$ $\chi_{12}$ and $\chi_{35}$ , where

$\chi_{10}$
$:=-43867\cdot 2^{-12}\cdot 3^{-5}\cdot 5^{-2}\cdot 7^{-1}\cdot 53^{-1}(E_{4}E_{6}-E_{10})\in S_{10}(\Gamma_{2})$,

$\chi_{12}$ $:=131\cdot 593\cdot 2^{-13}\cdot 3^{-7}\cdot 5^{-3}\cdot 7^{-2}\cdot 337^{-1}(3^{2}\cdot 7^{2}E_{4}^{3}+2\cdot 5^{3}E_{6}^{2}-691E_{12})\in S_{12}(\Gamma_{2})$

and $\chi_{35}$ is a unique element of $S_{35}(\Gamma_{2})$ up to constant multiples. Note that we follow Igusa’s
normalizations of $\chi_{10}$ and $\chi_{12}$ so that

$A_{\chi_{10}}(1,1,1)=-1/4$ ,

$A_{\chi_{12}}(1,1,1)=1/12$ .

We also recall that van der Geer ([Gel]) defined a Siegel modular form

$G_{24}$ $:=(\chi_{12}-2^{-12}\cdot 3^{-6}(E_{6}^{2}+E_{4}^{3}))^{2}-E_{4}(2\cdot 3^{-1}\chi_{10}-2^{-11}\cdot 3^{-6}E_{4}E_{6})^{2}\in M_{24}(\Gamma_{2})$,

whose divisor is the Humbert surface of discriminant 5 (for the definition of Humbert surfaces,
see 2.2). It is known that $\chi_{10},$ $\chi_{35}$ and $G_{24}$ are Borcherds lifts (see [GNl] and [GN2]), but $\chi_{12}$

is not a Borcherds lift (see [HM]).
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1.3 Main results

Employing our previous result on the multiplicative symmetries for Borcherds lifts ([HM]; see
Theorem 3.1), we give several necessary conditions for $F\in M_{k}(\Gamma_{2})$ to be a Borcherds lift.

Theorem 1.1. Assume that $F\in M_{k}(\Gamma_{2})$ is a Borcherds lift. Then $\Phi(F)$ is proportional to a
power $\Delta^{r}$ of the modular discriminant $\Delta$ with $r\geq 0$ .

Corollary 1.2. If $F\in M_{k}(\Gamma_{2})\backslash S_{k}(\Gamma_{2})$ is a Borcherds lift, then the weight $k$ is divisible by 12.

We note that $\chi_{10}\in S_{10}(\Gamma_{2})$ is a Borcherds lift, and hence that the assumption of noncuspi-
dality is necessary.

Corollary 1.3. The Siegel Eisenstein senes $E_{k}$ is not a Borcherds lift.
Moreover we have the following result:

Theorem 1.4. If $F\in M_{k}(\Gamma_{2})$ is a Borcherds lift and $\mathcal{W}(F)\neq 0$, then the weight $k$ is divisible
by 12 and greater than 12.

Corollary 1.5. Let $F\in M_{k}(\Gamma_{2})$ be a Borcherds lift. We let $b=0$ if $k$ is even and $b=1$

otherwise. Define $a\in \mathbb{Z}_{\geq 0}$ such that the coefficient of $H_{1}$ in the divisor of $F$ is equal to $2a+b$ .
Then there exists a Borcherds lift $F’\in M_{k’}(\Gamma_{2})$ with $\mathcal{W}(F’)\neq 0$ such that $F$ is proportional to

$\chi_{10}^{a}\chi_{35}^{b}F^{f}$ . In particular, the weight $k$ of $F$ is of the form
$10a+35b+12c(a\in \mathbb{Z}_{\geq 0}, b\in\{0,1\}, c\in \mathbb{Z}_{\geq 0}, c\neq 1)$ .

2 Borcherds lifts

2.1 Jacobi forms

For $k\in \mathbb{Z}$ , let $J_{k,1}^{wh}$ denote the space of holomorphic functions on $\mathfrak{H}\cross \mathbb{C}$ satisfying the following
conditions:

(i) $\phi(\frac{a\tau+b}{c\tau+d},$ $\frac{z}{c\tau+d})=(c\tau+d)^{k}e(\frac{cz^{2}}{c\tau+d})\phi(\tau, z)$ $((\begin{array}{ll}a bc d\end{array})\in\Gamma_{1},$ $\tau\in \mathfrak{H},$ $z\in \mathbb{C})$ .

(ii) $\phi(\tau, z+\lambda\tau+\mu)=e(-\lambda^{2}\tau-2\lambda z)\phi(\tau, z)$ $(\lambda, \mu\in \mathbb{Z})$ .

(iii) Let $\phi(\tau, z)=\sum_{n,r\in \mathbb{Z}}a_{\phi}(n, r)e(n\tau+rz)$ be the Fourier expansion of $\phi$ . Then $a_{\phi}(n, r)=0$

if $4n-r^{2}$ is sufficiently small.

We call $J_{k,1}^{wh}$ the space of weakly holomorphic Jacobi forms of weight $k$ and index 1. The Fourier
coefficient $a_{\phi}(n, r)$ depends only on $N=4n-r^{2}$ and is often denoted by $a\phi(N)$ . We put
$a\phi(N)=0$ if $N\equiv 1$ or 2 $(mod 4)$ . We then have

$\phi(\tau, z)=\sum_{N\mathbb{Z}}a_{\phi}(N)\sum_{m\in r\in \mathbb{Z},r^{2}\equiv-Nod4}e(\frac{N+r^{2}}{4}\tau+rz)$ .

For $\phi\in J_{0,1}^{wh}$ , we call $\{a_{\phi}(N)|N<0\}$ the principal part of $\phi$ , which determines $\phi$ since the
space of holomorphic Jacobi forms of weight $0$ and index 1 vanishes.
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2.2 Humbert surfaces

Let

$Q:=(l 1 -2 1 l)$ .

Put $Q(X, Y)$ $:={}^{t}XQY$ and $Q[X]$ $:=Q(X, X)$ for $X,$ $Y\in \mathbb{C}^{5}$ . For $Z=(\tau_{1}, z, \tau_{2})\in fl_{2}$ put
$\tilde{Z}:={}^{t}(-\tau_{1}\tau_{2}+z^{2},$

$\tau_{1},$ $z,$ $\tau_{2},1)\in \mathbb{C}^{5}$ . Note that $Q[\tilde{Z}]=0$ and $Q(\tilde{Z},\overline{\tilde{Z}})=4\det({\rm Im}(Z))>0$ . There

exists a homomorphism $\iota:Sp_{2}(\mathbb{R})arrow O(Q)_{\mathbb{R}}$ such that $g\langle Z\rangle=j(g, Z)^{-1}\iota(g)\tilde{Z}$ for $g\in Sp_{2}(\mathbb{R})$

and $Z\in fl_{2}$ .
Let $L:=\mathbb{Z}^{5},$ $L^{*}$ $:=Q^{-1}L$ and $L_{prim}^{*}$ $:=$ { $\lambda\in L^{*}|n^{-1}\lambda\not\in L^{*}$ for any integer $n>1$ }. For an

integer $d\in \mathbb{Z}$ , let
$\mathcal{H}_{d}:=\sum_{X\in \mathcal{L}_{d}}\{Z\in \mathfrak{H}_{2}|Q(X,\tilde{Z})=0\}$

,

where $\mathcal{L}_{d}:=\{X\in L_{prim}^{*}|Q[X]=-d/2\}$ . Note that $\mathcal{H}_{d}=0$ unless $d>0$ and $d\equiv 0$ or 1 (mod

4$)$ . Since $L_{d}^{*}$ is $\iota(\Gamma_{2})$-invariant, $\mathcal{H}_{d}$ is $\Gamma_{2}$-invariant. Denote by $H_{d}$ the image of $\mathcal{H}_{d}$ in $\Gamma_{2}\backslash fl_{2}$ by

the natural projection $fl_{2}arrow\Gamma_{2}\backslash \mathfrak{H}_{2}$ . The divisor $H_{d}$ of $\Gamma_{2}\backslash \mathfrak{H}_{2}$ is called the Humbert surface of

discriminant $d$ . It is known that $H_{d}$ is nonzero and irreducible if $d\equiv 0$ or 1 $(mod 4)$ (see [Ge2],

page 212, Theorem 2.4; see also [GH], Section 3). Note that

$\mathcal{H}_{1}=\bigcup_{\gamma\in\Gamma_{2}}\gamma\{(\tau_{1},0,\tau_{2})|\tau_{1},\tau_{2}\in \mathfrak{H}\}$

$\mathcal{H}_{4}=\bigcup_{\gamma\in\Gamma_{2}}\gamma\{(\tau, z,\tau)|\tau\in fl, z\in \mathbb{C}\}$
.

Let $v$ be the unique nontrivial quadratic character of $\Gamma_{2}$ and $M_{k}(\Gamma_{2}, v)$ the space of Siegel

modular forms on $\Gamma_{2}$ of weight $k$ with character $v$ . The following result of Igusa is quite useful

(see [GNl], Corollary 1.4).

Lemma 2.1. Let $F\in M_{k}(\Gamma_{2}, v)$ . If $k$ is odd, $\chi_{5}^{-1}F\in M_{k-5}(\Gamma_{2})$ . If $k$ is even, $\chi_{30}^{-1}F\in$

$M_{k-30}(\Gamma_{2})$ .

2.3 Borcherds lifts on $\Gamma_{2}$

As a special case of Borcherds theory ([Bol] and [Bo2]; see also [GN3], \S 2.1), we have the

following result:
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Theorem 2.2. Let $\phi\in J_{0,1}^{wh}$ and write $a(N)$ for $a\phi(N)$ . Assume that $a(N)\in \mathbb{Z}$ if $N<0$ .

(i) Set

$\delta:=\sum_{r\in \mathbb{Z}}a(-r^{2})$
,

$\rho:=\frac{1}{2}\sum_{r\in \mathbb{Z},r>0}a(-r^{2})r$,

$\nu:=\frac{1}{4}\sum_{r\in \mathbb{Z}}a(-r^{2})r^{2}$

and
$\Lambda$ $:=\{(m, r, n)\in \mathbb{Z}^{3}|m>0$ $or$ $m=0,$ $n>0$ $or$ $m=n=0,$ $r>0\}$ .

Then

$\Psi_{\phi}(\tau_{1}, z, \tau_{2}):=e(\frac{\delta}{24}\tau_{2}-\rho z+\nu\tau_{1})\prod_{(m,r,n)\in\Lambda}(1-e(m\tau_{1}+rz+n\tau_{2}))^{a(4mn-r^{2})}$

converges absolutely if $\det({\rm Im}(Z))$ is sufficiently large, and is meromorphically continued
to S72.

(ii) The function $\Psi_{\phi}$ is a meromorphic modular form on $\Gamma_{2}$ of weight $k_{\phi}=a(O)/2$ and char-
acter $v^{\alpha}(\alpha\in\{0,1\})$ .

(iii) The divisor of $\Psi_{\phi}$ is

$\sum_{d}a(-d)H_{d}^{*}$
,

where $d$ runs over the positive integers congruent to $0$ or 1 modulo 4 and

$H_{d}^{*}:= \sum_{f>0,f^{2}|d}H_{f^{-2}d}$
.

The meromorphic modular form $\Psi_{\phi}$ is called the Borcherds lift of $\phi$ .

Remark 2.3. It is well-known that the weight of Borcherds lifts is related to the Cohen numbers
$H(N)=H(2, N)$ . These are the coefficients of the Cohen Eisenstein series

$\sum_{N\geq 0}H(2, N)e(N\tau)$
,

of weight 5/2. For convenience we put $h(N)= \sum_{f^{2}|N}\mu(f)H(f^{-2}N)$ , where $\mu$ is the M\"obius

function. Moreover put $\hat{H}(N)=-60H(N)$ and $\hat{h}(N)=-60h(N)$ . Then we have

5



Theorem 2.4.

(i) For each positive integer $d$ with $d\equiv 0$ or 1 $(mod 4)$ , there exists an $F_{d}\in M_{k_{d}}(\Gamma_{2}, v^{\alpha_{d}})$

with $\alpha_{d}\in\{0,1\}$ satisfying $div(F_{d})=H_{d}$ .

(ii) We have $k_{d}=\hat{h}(d)$ .

(iii) We have $F_{1}\in M_{5}(\Gamma_{2},v),$ $F_{4}\in M_{30}(\Gamma_{2},v)$ and $F_{d}\in M_{k_{d}}(\Gamma_{2})$ if $d>4$ .

(iv) A Borcherds lift $F\in M_{k}(\Gamma_{2}, v^{\alpha})$ $(\alpha\in\{0,1\})$ is a constant multiple of $\prod_{d}F_{d}^{A(d)}$ , where
$d$ runs over the positive integers with $d\equiv 0$ or 1 $(mod 4)$ , and $A(d)$ is a nonnegative

integer ($A(d)=0$ except for a finite number of d) satisfying $A(1)+A(4)\equiv\alpha(mod 2)$ .
Furthermore we have

$k= \sum_{d>0}A(d)\hat{h}(d)$
.

Moreover we have

Theorem 2.5. The weight $k_{d}$ of $F_{d}$ is divisible by 24 if and only if $d>4$ and $d\neq 8$ .

Remark 2.6. The Borcherds lifts in $M_{k}(\Gamma_{2})$ with $k\leq 60$ are listed as follows:

The table shows that every Borcherds lift of weight less than or equal to 60 is a monomial
of $F_{1},$ $F_{4},$ $F_{5}$ and $F_{8}$ . We also see that there is no holomorphic Borcherds lift of weight 12. This
gives another proof of the fact that $\chi_{12}$ is not a Borcherds lift, which was proved in [HM] in a
different way.

2.4 The image of $\Psi_{\phi}$ under the Witt operator

For $m\in \mathbb{Z}_{>0}$ , let $\mathcal{M}_{m}$ be the set of matrices in $M_{2}(\mathbb{Z})$ of determinant $m$ . As is well-known,

there exists a polynomial $\Phi_{m}$ in $\mathbb{Z}[X, Y]$ , called the modular polynomial of degree $m$ , such that

$\prod_{M\in SL_{2}(\mathbb{Z})\backslash \mathcal{M}_{m}}(X-j(M\langle\tau\rangle))=\Phi_{m}(X,j(\tau))$
.
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The degree of $\Phi_{m}(X,$ $Y\}$ in $X$ is equal to $\sigma_{1}(m)=\sum_{0<d|m}d$ . Let

$\eta(\tau):=e(\tau/24)\prod_{n=1}^{\infty}(1-e(n\tau))$ $(\tau\in \mathfrak{H})$

be the Dedekind $s$ eta function.

Theorem 2.7. Let $\phi\in J_{0,1}^{wh}$ and suppose that $a(N)$ $:=a\phi(N)\in \mathbb{Z}$ if $N<0$ . Assume that the
Borcherds lift $\Psi_{\phi}$ of $\phi$ is holomorphic.

(i) We have $\mathcal{W}(\Psi_{\phi})=0$ if and only if $\sum_{r>0}a(-r^{2})>0$ .

(ii) Assume that $\sum_{r>0}a(-r^{2})=0$ . Then

(2.1)
$\mathcal{W}(\Psi_{\phi})=c(\eta(\tau_{1})\eta(\tau_{2}))^{b(0)}\prod_{n>0}\Phi_{n}(j(\tau_{1}),j(\tau_{2}))^{b(-n)}$

,

where $c\in \mathbb{C}^{\cross}$ and

$b(n):= \sum_{r\in \mathbb{Z}}a(4n-r^{2})$
.

(iii) Assume that $\sum_{r>0}a(-r^{2})=0$ . The automorphic form $\mathcal{W}(\Psi_{\phi})$ belongs to Sym2 $(S_{b(0)/2}(\Gamma_{1}))$

if and only if $\sum_{r\in \mathbb{Z}}a(-r^{2})r^{2}>0$ .

Remark 2.8. The degree of $\mathcal{W}(\Psi_{\phi})$ in $q_{1}=e[\tau_{1}]$ is equal to

$b(0)/24- \sum_{n>0}\sigma_{1}(n)b(-n)$ .

Corollary 2.9. Let $d>4$ . Then $F_{d}\in S_{k_{d}}(\Gamma_{2})$ if and only if $d=\square$ .

3 Multiplicative symmetries and the main theorems

3.1 The multiplicative symmetries

For $F\in M_{k}(\Gamma_{2})$ and a prime number $p$ , we put

$F| \mathcal{T}_{p}^{\uparrow}(\tau_{1}, z, \tau_{2})=F(p\tau_{1},pz, \tau_{2})\prod_{a=0}^{p-1}F(\frac{\tau_{1}+a}{p},$ $z,$ $\tau_{2})$ ,

$F| \mathcal{T}_{p}^{\downarrow}(\tau_{1}, z, \tau_{2})=F(\tau_{1},pz,p\tau_{2})\prod_{a-rightarrow 0}^{p-1}F(\tau_{1},$ $z,$ $\frac{\tau_{2}+a}{p})$ .

We say that $F$ satisfies the multiplicative symmetries if the condition

$(MS)_{p}$ $F|\mathcal{T}_{p}^{\gamma}=\epsilon_{p}(F)F|\mathcal{T}_{p}^{\downarrow}$

holds with $\epsilon_{p}(F)\in \mathbb{C}^{\cross},$ $|\epsilon_{p}(F)|=1$ for any prime number $p$ . Denote by $A_{F,p}^{\uparrow}(n, r, m)$ (respec-
tively $A_{F,p}^{\downarrow}(n, r, m))$ the coefficient of $e(n\tau_{1}+rz+m\tau_{2})$ in the Fourier expansion of $F|\mathcal{T}_{p}^{\uparrow}(\tau_{1}, z, \tau_{2})$

(respectively $F|\mathcal{T}_{p}^{\downarrow}(\tau_{1},$

$z,$ $\tau_{2})$ ). If $F$ satisfies $(MS)_{p}$ , then we have

$A_{F,p}^{\uparrow}(m, r, n)=\epsilon_{p}(F)A_{F,p}^{\downarrow}(m, r, n)$

for any $(m, n, r)$ . As a special case of [HM], we have the following result.
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Theorem 3.1. Suppose that $F\in M_{k}(\Gamma_{2})$ is a Borcherds lift. Then $F$ satisfies the multiplicative

symmetries.

3.2 A characterization of powers of the modular discriminant

Let $k$ be a positive integer greater than or equal to 4. Denote by $M_{k}(\Gamma_{1})$ (respectively $S_{k}(\Gamma_{1})$ )

the space of holomorphic automorphic (respectively cusp) forms on $\Gamma_{1}=SL_{2}(\mathbb{Z})$ of weight $k$ .
Recall that $S_{12}(\Gamma_{1})=\mathbb{C}\cdot\Delta$ and that $\Delta$ has no zeros in $\mathfrak{H}$ .

For $f\in M_{k}(\Gamma_{1})$ and a prime number $p$ , we define the multiplicative Hecke operator by

$(f| \mathcal{T}_{p})(\tau)=f(p\tau)\prod_{c=0}^{p-1}f(\frac{\tau+c}{p})$ .

Then $f|\mathcal{T}_{p}\in M_{(p+1)k}(\Gamma_{1})$ . The following property plays a crucial role in the proof of Theorem

1.1.

Proposition 3.2. Let $f$ be a nonzero element of $M_{k}(\Gamma_{1})$ . Then $f$ satisfies
$(*)_{p}$ $f|\mathcal{T}_{p}(\tau)=\epsilon_{p}(f)f(\tau)^{p+1}$ $(\tau\in \mathfrak{H})$ .

for any prime number $p$ with $\epsilon_{p}(f)\in \mathbb{C}^{x},$ $|\epsilon_{p}(f)|=1$ if and only if $f$ is a constant multiple of
$\Delta^{r}(r\in \mathbb{Z}_{\geq 0})$ .

Remark 3.3. If $f\in M_{k}(\Gamma_{1})$ satisfies $(*)_{2},$ $f$ is a constant multiple of $\Delta^{r}$ .

3.3 Multiplicative symmetries for $Sym^{2}(M_{k}(\Gamma_{1}))$

For $\varphi\in Sym^{2}(M_{k}(\Gamma_{1}))$ and a prime number $p$ , we define the multiplicative Hecke operators by

$( \varphi|\mathcal{T}_{p}^{\uparrow})(\tau_{1}, \tau_{2})=\varphi(p\tau_{1}, \tau_{2})\prod_{c=0}^{p-1}\varphi(\frac{\tau_{1}+c}{p},\tau_{2})$ ,

$( \varphi|\mathcal{T}_{p}^{\downarrow})(\tau_{1}, \tau_{2})=\varphi(\tau_{1},p\tau_{2})\prod_{c=0}^{p-1}\varphi(\tau_{1},$ $\frac{\tau_{2}+c}{p})$

We say that $\varphi$ satisfies the multiplicative symmetry for $p$ if there exists an $\epsilon_{p}(\varphi)\in \mathbb{C}^{\cross},$ $|\epsilon_{p}(\varphi)|=1$

such that

$(ms)_{p}$ $\varphi|\mathcal{T}_{p}^{\eta}=\epsilon_{p}(\varphi)\varphi|\mathcal{T}_{p}^{\downarrow}$

holds. For $\varphi\in$ Sym2 $(M_{k}(\Gamma_{1}))$ , put $\Phi’(\varphi)(\tau)=\lim_{yarrow\infty}\varphi(\tau, iy)$ . Then $\Phi’(\varphi)\in M_{k}(\Gamma_{1})$ . The

following facts can be verified.

Lemma 3.4. If $\varphi\in Sym^{2}(M_{k}(\Gamma_{1}))$ satisfies $(ms)_{p}$ and $f=\Phi’(\varphi)\neq 0$ , then $f$ satisfies $(*)_{p}$ . In

particular, $f$ is a constant multiple of $\Delta^{r}$ and $k$ is divisible by 12.

Proposition 3.5. If $\varphi\in Sym^{2}(M_{k}(\Gamma_{1}))\backslash \{0\}$ satisfies $(ms)_{2},$ $k$ is divisible by 12.

Proposition 3.6. Suppose that $F\in M_{k}(\Gamma_{2})$ satisfies $(MS)_{p}$ for a prime $p$ . Put $f=\Phi(F)$ and
$\varphi=\mathcal{W}(F)$ . Then, for any prime number $p,$ $f$ (respectively $\varphi$) satisfies $(*)_{p}$ (respectively $(ms)_{p}$)

and $\epsilon_{p}(F)=\epsilon_{p}(f)=\epsilon_{p}(\varphi)$ .
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3.4 Proof of Theorem 1.1

By Proposition 3.6 and Proposition 3.3, we obtain the following result, from which Theorem 1.1
follows.

Proposition 3.7. Assume that $F\in M_{k}(\Gamma_{2})$ satisfies $(MS)_{2}$ and $f=\Phi(F)\neq 0$ . Then $f=$

$c\Delta^{r}(c\in \mathbb{C}^{\cross}, r\in \mathbb{Z}_{\geq 0})$ . In particular, the weight $k$ is divisible by 12.

3.5 Proof of Theorem 1.4

Theorem 1.4 is a direct consequence of Theorem 3.1 and the following result.

Proposition 3.8. If $F\in M_{k}(\Gamma_{2})$ satisfies $(MS)_{2}$ and $\mathcal{W}(F)\neq 0$ , then $k$ is divisible by 12.

PROOF. Let $\varphi=\mathcal{W}(F)$ . Then $\varphi\neq 0$ and $\varphi$ satisfies $(ms)_{2}$ . The proposition now follows from
Proposition 3.5. $\square$
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