1

Borcherds Lifts, Symmetry Relations, and Applications

Bernhard Heim and Atsushi Murase

Abstract. This paper is related to the authors' talk at the RIMS conference 2010 on: Automorphic forms, automorphic representations and related topics in Tokyo. We mainly study holomorphic Siegel modular forms on $\text{Sp}_2(\mathbb{Z})$ obtained as Borcherds lifts and the connection with the Witt and Siegel Φ -operator. As a direct consequence we obtain for example that Siegel Eisenstein series are not Borcherds lifts.

Mathematics Subject Classification (2000): 11F41

Keywords: Siegel modular forms, Borcherds products, modular polynomials.

1 Introduction and the main results

1.1 Introduction

In this note we mainly summarize the results presented at the RIMS conference 2010 on: Automorphic forms, automorphic representations and related topics in Tokyo. A Borcherds lift ([Bo1],[Bo2],[Bo3]) on $\Gamma_2 = \operatorname{Sp}_2(\mathbb{Z})$ is a meromorphic automorphic form F on Γ_2 (with a multiplier system of finite order) whose divisor is of the form $\sum_d A(d)H_d$, where d runs over the positive integers congruent to 0 or 1 modulo 4, $A(d) \in \mathbb{Z}$ (A(d) = 0 except for a finite number of d) and H_d is the Humbert surface of discriminant d. Since every Borcherds lift is a quotient of holomorphic Borcherds lifts, we mainly consider the holomorphic case in this paper.

We employ our previous result on the multiplicative symmetries for Borcherds lifts ([HM]; see Theorem 3.1). We obtain that the image of a holomorphic Borcherds lift on Γ_2 under the Siegel operator is proportional to a power of Δ , the Ramanujan discriminant function. This implies that the Siegel Eisenstein series is never a Borcherds lift. Then we show that a holomorphic Borcherds lift on Γ_2 with trivial character is proportional to $\chi_{10}^a \chi_{35}^b F'$, where χ_{10} and χ_{35} are Borcherds lifts of weight 10 and 35, respectively, $a \in \mathbb{Z}_{\geq 0}, b \in \{0, 1\}$ and F' is a Borcherds lift of weight divisible by 12 such that the image of F' under the Witt operator is nonzero (Corollary 1.5).

1.2 Siegel modular forms

To explain our results more precisely, let

$$\Gamma_n := \left\{ \gamma \in \operatorname{GL}_{2n}(\mathbb{Z}) \mid {}^t \gamma \left(\begin{array}{cc} \mathbf{0}_n & \mathbf{1}_n \\ -\mathbf{1}_n & \mathbf{0}_n \end{array} \right) \gamma = \left(\begin{array}{cc} \mathbf{0}_n & \mathbf{1}_n \\ -\mathbf{1}_n & \mathbf{0}_n \end{array} \right) \right\}$$

The first author was partially supported by a grant of Prof. T. Ibukiyama (Grants-in-Aids from JSPS (21244001)). Part of the notes had been written at his stay in the summer of 2010 at the Max-Planck-Institut für Mathematik in Bonn. The second author was partially supported by Grants-in-Aids from JSPS (20540031).

be the Siegel modular group of degree n and $\mathfrak{H}_n := \{Z \in \mathrm{M}_n(\mathbb{C}) \mid {}^tZ = Z, \mathrm{Im}(Z) > 0\}$ be the upper half space of degree n, where $\mathbf{0}_n$ (respectively $\mathbf{1}_n$) is the zero (respectively identity) matrix of degree n.

Let $M_k(\Gamma_n)$ denote the space of holomorphic automorphic forms of weight k on Γ_n and $S_k(\Gamma_n)$ be the subspace of cuspforms.

In the case n = 2 which we are mainly interested in we often write (τ_1, z, τ_2) for a point

$$\left(\begin{array}{cc} \tau_1 & z \\ z & \tau_2 \end{array}\right) \in \mathfrak{H}_2.$$

For $F \in M_k(\Gamma_2)$, we put

$$\begin{split} \Phi(F)(\tau) &:= \lim_{y \to \infty} F(\tau, 0, iy) \qquad (\tau \in \mathfrak{H}_1), \\ \mathcal{W}(F)(\tau_1, \tau_2) &:= F(\tau_1, 0, \tau_2) \qquad (\tau_1, \tau_2 \in \mathfrak{H}_1). \end{split}$$

Then $\Phi(F) \in M_k(\Gamma_1)$ and $\mathcal{W}(F) \in \operatorname{Sym}^2(M_k(\Gamma_1))$. The operator Φ (respectively \mathcal{W}) is called the *Siegel* (respectively *Witt*) operator. Then $S_k(\Gamma_2) = \{F \in M_k(\Gamma_2) \mid \Phi(F) = 0\}$ is the space of cusp forms. A Siegel modular form $F \in M_k(\Gamma_2)$ admits the Fourier expansion

$$F(au_1, z, au_2) = \sum_{n,r,m \in \mathbb{Z}} A_F(n,r,m) \ \mathbf{e}(n au_1 + rz + m au_2),$$

where we put $\mathbf{e}(z) = \exp(2\pi i z)$ for $z \in \mathbb{C}$. Note that $A_F(n, r, m) = 0$ unless $n, m, 4nm - r^2 \ge 0$.

For $k \geq 4$ let $E_k(Z)$ denote the Siegel Eisenstein series on Γ_2 of weight k. Due to Igusa ([Ig]), the graded ring $\bigoplus_{k\geq 0} M_k(\Gamma_2)$ is generated by $E_4, E_6, \chi_{10}, \chi_{12}$ and χ_{35} , where

$$\chi_{10} := -43867 \cdot 2^{-12} \cdot 3^{-5} \cdot 5^{-2} \cdot 7^{-1} \cdot 53^{-1} (E_4 E_6 - E_{10}) \in S_{10}(\Gamma_2),$$

$$\chi_{12} := 131 \cdot 593 \cdot 2^{-13} \cdot 3^{-7} \cdot 5^{-3} \cdot 7^{-2} \cdot 337^{-1} \left(3^2 \cdot 7^2 E_4^3 + 2 \cdot 5^3 E_6^2 - 691 E_{12}\right) \in S_{12}(\Gamma_2)$$

and χ_{35} is a unique element of $S_{35}(\Gamma_2)$ up to constant multiples. Note that we follow Igusa's normalizations of χ_{10} and χ_{12} so that

$$A_{\chi_{10}}(1,1,1) = -1/4,$$

 $A_{\chi_{12}}(1,1,1) = 1/12.$

We also recall that van der Geer ([Ge1]) defined a Siegel modular form

$$G_{24} := \left(\chi_{12} - 2^{-12} \cdot 3^{-6} (E_6^2 + E_4^3)\right)^2 - E_4 \left(2 \cdot 3^{-1} \chi_{10} - 2^{-11} \cdot 3^{-6} E_4 E_6\right)^2 \in M_{24}(\Gamma_2),$$

whose divisor is the Humbert surface of discriminant 5 (for the definition of Humbert surfaces, see 2.2). It is known that χ_{10}, χ_{35} and G_{24} are Borcherds lifts (see [GN1] and [GN2]), but χ_{12} is not a Borcherds lift (see [HM]).

1.3 Main results

Employing our previous result on the multiplicative symmetries for Borcherds lifts ([HM]; see Theorem 3.1), we give several necessary conditions for $F \in M_k(\Gamma_2)$ to be a Borcherds lift.

Theorem 1.1. Assume that $F \in M_k(\Gamma_2)$ is a Borcherds lift. Then $\Phi(F)$ is proportional to a power Δ^r of the modular discriminant Δ with $r \geq 0$.

Corollary 1.2. If $F \in M_k(\Gamma_2) \setminus S_k(\Gamma_2)$ is a Borcherds lift, then the weight k is divisible by 12.

We note that $\chi_{10} \in S_{10}(\Gamma_2)$ is a Borcherds lift, and hence that the assumption of noncuspidality is necessary.

Corollary 1.3. The Siegel Eisenstein series E_k is not a Borcherds lift.

Moreover we have the following result:

Theorem 1.4. If $F \in M_k(\Gamma_2)$ is a Borcherds lift and $W(F) \neq 0$, then the weight k is divisible by 12 and greater than 12.

Corollary 1.5. Let $F \in M_k(\Gamma_2)$ be a Borcherds lift. We let b = 0 if k is even and b = 1 otherwise. Define $a \in \mathbb{Z}_{\geq 0}$ such that the coefficient of H_1 in the divisor of F is equal to 2a + b. Then there exists a Borcherds lift $F' \in M_{k'}(\Gamma_2)$ with $W(F') \neq 0$ such that F is proportional to $\chi_{10}^a \chi_{35}^b F'$. In particular, the weight k of F is of the form

$$10a + 35b + 12c$$
 $(a \in \mathbb{Z}_{>0}, b \in \{0, 1\}, c \in \mathbb{Z}_{\geq 0}, c \neq 1).$

2 Borcherds lifts

2.1 Jacobi forms

For $k \in \mathbb{Z}$, let $J_{k,1}^{wh}$ denote the space of holomorphic functions on $\mathfrak{H} \times \mathbb{C}$ satisfying the following conditions:

(i)
$$\phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^{k} \mathbf{e}\left(\frac{cz^{2}}{c\tau+d}\right) \phi(\tau,z) \qquad \left(\begin{pmatrix} a & b\\ c & d \end{pmatrix} \in \Gamma_{1}, \tau \in \mathfrak{H}, z \in \mathbb{C}\right).$$

(ii) $\phi(\tau,z+\lambda\tau+\mu) = \mathbf{e}(-\lambda^{2}\tau-2\lambda z)\phi(\tau,z) \qquad (\lambda,\mu\in\mathbb{Z}).$

(iii) Let $\phi(\tau, z) = \sum_{n,r \in \mathbb{Z}} a_{\phi}(n, r) \mathbf{e}(n\tau + rz)$ be the Fourier expansion of ϕ . Then $a_{\phi}(n, r) = 0$ if $4n - r^2$ is sufficiently small.

We call $J_{k,1}^{wh}$ the space of weakly holomorphic Jacobi forms of weight k and index 1. The Fourier coefficient $a_{\phi}(n,r)$ depends only on $N = 4n - r^2$ and is often denoted by $a_{\phi}(N)$. We put $a_{\phi}(N) = 0$ if $N \equiv 1$ or 2 (mod 4). We then have

$$\phi(\tau,z) = \sum_{N \in \mathbb{Z}} a_{\phi}(N) \sum_{r \in \mathbb{Z}, r^2 \equiv -N \mod 4} \mathbf{e}\left(\frac{N+r^2}{4}\tau + rz\right).$$

For $\phi \in J_{0,1}^{wh}$, we call $\{a_{\phi}(N) \mid N < 0\}$ the principal part of ϕ , which determines ϕ since the space of holomorphic Jacobi forms of weight 0 and index 1 vanishes.

2.2 Humbert surfaces

Let

$$Q := \begin{pmatrix} & & & 1 \\ & & 1 & \\ & -2 & & \\ & 1 & & \\ 1 & & & \end{pmatrix}.$$

Put $Q(X,Y) := {}^{t}XQY$ and Q[X] := Q(X,X) for $X,Y \in \mathbb{C}^{5}$. For $Z = (\tau_{1}, z, \tau_{2}) \in \mathfrak{H}_{2}$ put $\widetilde{Z} := {}^{t}(-\tau_{1}\tau_{2}+z^{2},\tau_{1},z,\tau_{2},1) \in \mathbb{C}^{5}$. Note that $Q[\widetilde{Z}] = 0$ and $Q(\widetilde{Z},\overline{\widetilde{Z}}) = 4 \det(\operatorname{Im}(Z)) > 0$. There exists a homomorphism $\iota : \operatorname{Sp}_{2}(\mathbb{R}) \to O(Q)_{\mathbb{R}}$ such that $\widetilde{g\langle Z \rangle} = j(g,Z)^{-1}\iota(g)\widetilde{Z}$ for $g \in \operatorname{Sp}_{2}(\mathbb{R})$ and $Z \in \mathfrak{H}_{2}$.

Let $L := \mathbb{Z}^5, L^* := Q^{-1}L$ and $L^*_{\text{prim}} := \{\lambda \in L^* \mid n^{-1}\lambda \notin L^* \text{ for any integer } n > 1\}$. For an integer $d \in \mathbb{Z}$, let

$$\mathcal{H}_d := \sum_{X \in \mathcal{L}_d} \left\{ Z \in \mathfrak{H}_2 \mid Q(X, \widetilde{Z}) = 0 \right\},$$

where $\mathcal{L}_d := \{X \in L_{\text{prim}}^* \mid Q[X] = -d/2\}$. Note that $\mathcal{H}_d = 0$ unless d > 0 and $d \equiv 0$ or 1 (mod 4). Since L_d^* is $\iota(\Gamma_2)$ -invariant, \mathcal{H}_d is Γ_2 -invariant. Denote by H_d the image of \mathcal{H}_d in $\Gamma_2 \setminus \mathfrak{H}_2$ by the natural projection $\mathfrak{H}_2 \to \Gamma_2 \setminus \mathfrak{H}_2$. The divisor H_d of $\Gamma_2 \setminus \mathfrak{H}_2$ is called the Humbert surface of discriminant d. It is known that H_d is nonzero and irreducible if $d \equiv 0$ or 1 (mod 4) (see [Ge2], page 212, Theorem 2.4; see also [GH], Section 3). Note that

$$\mathcal{H}_1 = \bigcup_{\gamma \in \Gamma_2} \gamma \{ (au_1, 0, au_2) \mid au_1, au_2 \in \mathfrak{H} \}$$

 $\mathcal{H}_4 = \bigcup_{\gamma \in \Gamma_2} \gamma \{ (au, z, au) \mid au \in \mathfrak{H}, z \in \mathbb{C} \}.$

Let v be the unique nontrivial quadratic character of Γ_2 and $M_k(\Gamma_2, v)$ the space of Siegel modular forms on Γ_2 of weight k with character v. The following result of Igusa is quite useful (see [GN1], Corollary 1.4).

Lemma 2.1. Let $F \in M_k(\Gamma_2, v)$. If k is odd, $\chi_5^{-1}F \in M_{k-5}(\Gamma_2)$. If k is even, $\chi_{30}^{-1}F \in M_{k-30}(\Gamma_2)$.

2.3 Borcherds lifts on Γ_2

As a special case of Borcherds theory ([Bo1] and [Bo2]; see also [GN3], §2.1), we have the following result:

Theorem 2.2. Let $\phi \in J_{0,1}^{wh}$ and write a(N) for $a_{\phi}(N)$. Assume that $a(N) \in \mathbb{Z}$ if N < 0.

(i) Set

$$\begin{split} \delta &:= \sum_{r \in \mathbb{Z}} a(-r^2), \\ \rho &:= \frac{1}{2} \sum_{r \in \mathbb{Z}, r > 0} a(-r^2)r, \\ \nu &:= \frac{1}{4} \sum_{r \in \mathbb{Z}} a(-r^2)r^2 \end{split}$$

and

$$\Lambda := \left\{ (m, r, n) \in \mathbb{Z}^3 \mid m > 0 \text{ or } m = 0, n > 0 \text{ or } m = n = 0, r > 0 \right\}$$

Then

$$\Psi_{\phi}(\tau_1, z, \tau_2) := \mathbf{e} \left(\frac{\delta}{24} \tau_2 - \rho z + \nu \tau_1 \right) \prod_{(m, r, n) \in \Lambda} (1 - \mathbf{e} (m\tau_1 + rz + n\tau_2))^{a(4mn - r^2)}$$

converges absolutely if det(Im(Z)) is sufficiently large, and is meromorphically continued to \mathfrak{H}_2 .

- (ii) The function Ψ_{ϕ} is a meromorphic modular form on Γ_2 of weight $k_{\phi} = a(0)/2$ and character v^{α} ($\alpha \in \{0,1\}$).
- (iii) The divisor of Ψ_{ϕ} is

$$\sum_{d} a(-d) H_{d}^{*},$$

where d runs over the positive integers congruent to 0 or 1 modulo 4 and

$$H_d^* := \sum_{f>0, f^2|d} H_{f^{-2}d}.$$

The meromorphic modular form Ψ_{ϕ} is called the *Borcherds lift* of ϕ .

Remark 2.3. It is well-known that the weight of Borcherds lifts is related to the Cohen numbers H(N) = H(2, N). These are the coefficients of the Cohen Eisenstein series

$$\sum_{N\geq 0} H(2,N) \mathbf{e}(N\tau),$$

of weight 5/2. For convenience we put $h(N) = \sum_{f^2|N} \mu(f) H(f^{-2}N)$, where μ is the Möbius function. Moreover put $\hat{H}(N) = -60H(N)$ and $\hat{h}(N) = -60h(N)$. Then we have

Theorem 2.4.

- (i) For each positive integer d with $d \equiv 0$ or 1 (mod 4), there exists an $F_d \in M_{k_d}(\Gamma_2, v^{\alpha_d})$ with $\alpha_d \in \{0, 1\}$ satisfying div $(F_d) = H_d$.
- (ii) We have $k_d = \hat{h}(d)$.
- (iii) We have $F_1 \in M_5(\Gamma_2, \upsilon), F_4 \in M_{30}(\Gamma_2, \upsilon)$ and $F_d \in M_{k_d}(\Gamma_2)$ if d > 4.
- (iv) A Borcherds lift $F \in M_k(\Gamma_2, v^{\alpha})$ ($\alpha \in \{0, 1\}$) is a constant multiple of $\prod_d F_d^{A(d)}$, where d runs over the positive integers with $d \equiv 0$ or 1 (mod 4), and A(d) is a nonnegative integer (A(d) = 0 except for a finite number of d) satisfying A(1) + A(4) \equiv \alpha \pmod{2}. Furthermore we have

$$k = \sum_{d>0} A(d) \widehat{h}(d).$$

Moreover we have

Theorem 2.5. The weight k_d of F_d is divisible by 24 if and only if d > 4 and $d \neq 8$.

Borcherds lift	weight	divisor
$F_1^{2a} \ (1 \le a \le 6)$	10a	$2aH_1$
$F_1^{2a+1}F_4 \ (1 \le a \le 2)$	10a + 35	$(2a+1)H_1 + H_4$
$F_1^{2a}F_5 \ (1 \le a \le 3)$	10a + 24	$2aH_1 + H_5$
F_4^2	60	$2H_4$
F_5^2	48	$2H_5$
F_8	60	H_8

Remark 2.6. The Borcherds lifts in $M_k(\Gamma_2)$ with $k \leq 60$ are listed as follows:

The table shows that every Borcherds lift of weight less than or equal to 60 is a monomial of F_1, F_4, F_5 and F_8 . We also see that there is no holomorphic Borcherds lift of weight 12. This gives another proof of the fact that χ_{12} is not a Borcherds lift, which was proved in [HM] in a different way.

2.4 The image of Ψ_{ϕ} under the Witt operator

For $m \in \mathbb{Z}_{>0}$, let \mathcal{M}_m be the set of matrices in $M_2(\mathbb{Z})$ of determinant m. As is well-known, there exists a polynomial Φ_m in $\mathbb{Z}[X, Y]$, called the modular polynomial of degree m, such that

$$\prod_{M\in \mathrm{SL}_2(\mathbb{Z})\backslash\mathcal{M}_m} (X-j(M\langle\tau\rangle)) = \Phi_m(X,j(\tau)).$$

The degree of $\Phi_m(X,Y)$ in X is equal to $\sigma_1(m) = \sum_{0 \le d|m} d$. Let

$$\eta(\tau) := \mathbf{e}(\tau/24) \prod_{n=1}^{\infty} (1 - \mathbf{e}(n\tau)) \qquad (\tau \in \mathfrak{H})$$

be the Dedekind's eta function.

Theorem 2.7. Let $\phi \in J_{0,1}^{wh}$ and suppose that $a(N) := a_{\phi}(N) \in \mathbb{Z}$ if N < 0. Assume that the Borcherds lift Ψ_{ϕ} of ϕ is holomorphic.

- (i) We have $\mathcal{W}(\Psi_{\phi}) = 0$ if and only if $\sum_{r>0} a(-r^2) > 0$.
- (ii) Assume that $\sum_{r>0} a(-r^2) = 0$. Then

(2.1)
$$\mathcal{W}(\Psi_{\phi}) = c \, (\eta(\tau_1)\eta(\tau_2))^{b(0)} \prod_{n>0} \Phi_n(j(\tau_1), j(\tau_2))^{b(-n)},$$

where $c \in \mathbb{C}^{\times}$ and

$$b(n) := \sum_{r \in \mathbb{Z}} a(4n - r^2).$$

(iii) Assume that $\sum_{r>0} a(-r^2) = 0$. The automorphic form $\mathcal{W}(\Psi_{\phi})$ belongs to $\operatorname{Sym}^2(S_{b(0)/2}(\Gamma_1))$ if and only if $\sum_{r\in\mathbb{Z}} a(-r^2)r^2 > 0$.

Remark 2.8. The degree of $\mathcal{W}(\Psi_{\phi})$ in $q_1 = \mathbf{e}[\tau_1]$ is equal to

$$b(0)/24 - \sum_{n>0} \sigma_1(n)b(-n).$$

Corollary 2.9. Let d > 4. Then $F_d \in S_{k_d}(\Gamma_2)$ if and only if $d = \Box$.

3 Multiplicative symmetries and the main theorems

3.1 The multiplicative symmetries

For $F \in M_k(\Gamma_2)$ and a prime number p, we put

$$F|\mathcal{T}_{p}^{\uparrow}(\tau_{1}, z, \tau_{2}) = F(p\tau_{1}, pz, \tau_{2}) \prod_{a=0}^{p-1} F\left(\frac{\tau_{1}+a}{p}, z, \tau_{2}\right),$$
$$F|\mathcal{T}_{p}^{\downarrow}(\tau_{1}, z, \tau_{2}) = F(\tau_{1}, pz, p\tau_{2}) \prod_{a=0}^{p-1} F\left(\tau_{1}, z, \frac{\tau_{2}+a}{p}\right).$$

We say that F satisfies the *multiplicative symmetries* if the condition

$$(\mathrm{MS})_p \qquad \qquad F|\mathcal{T}_p^{\uparrow} = \epsilon_p(F) F|\mathcal{T}_p$$

holds with $\epsilon_p(F) \in \mathbb{C}^{\times}, |\epsilon_p(F)| = 1$ for any prime number p. Denote by $A_{F,p}^{\uparrow}(n, r, m)$ (respectively $A_{F,p}^{\downarrow}(n, r, m)$) the coefficient of $\mathbf{e}(n\tau_1 + rz + m\tau_2)$ in the Fourier expansion of $F|\mathcal{T}_p^{\uparrow}(\tau_1, z, \tau_2)$ (respectively $F|\mathcal{T}_p^{\downarrow}(\tau_1, z, \tau_2)$). If F satisfies (MS)_p, then we have

$$A_{F,p}^{\uparrow}(m,r,n) = \epsilon_p(F) A_{F,p}^{\downarrow}(m,r,n)$$

for any (m, n, r). As a special case of [HM], we have the following result.

Theorem 3.1. Suppose that $F \in M_k(\Gamma_2)$ is a Borcherds lift. Then F satisfies the multiplicative symmetries.

3.2 A characterization of powers of the modular discriminant

Let k be a positive integer greater than or equal to 4. Denote by $M_k(\Gamma_1)$ (respectively $S_k(\Gamma_1)$) the space of holomorphic automorphic (respectively cusp) forms on $\Gamma_1 = \operatorname{SL}_2(\mathbb{Z})$ of weight k. Recall that $S_{12}(\Gamma_1) = \mathbb{C} \cdot \Delta$ and that Δ has no zeros in \mathfrak{H} .

For $f \in M_k(\Gamma_1)$ and a prime number p, we define the multiplicative Hecke operator by

$$(f|\mathcal{T}_p)(\tau) = f(p\tau)\prod_{c=0}^{p-1} f\left(\frac{\tau+c}{p}\right).$$

Then $f|\mathcal{T}_p \in M_{(p+1)k}(\Gamma_1)$. The following property plays a crucial role in the proof of Theorem 1.1.

Proposition 3.2. Let f be a nonzero element of $M_k(\Gamma_1)$. Then f satisfies

$$(*)_p f|\mathcal{T}_p(\tau) = \epsilon_p(f)f(\tau)^{p+1} (\tau \in \mathfrak{H}).$$

for any prime number p with $\epsilon_p(f) \in \mathbb{C}^{\times}, |\epsilon_p(f)| = 1$ if and only if f is a constant multiple of Δ^r $(r \in \mathbb{Z}_{\geq 0})$.

Remark 3.3. If $f \in M_k(\Gamma_1)$ satisfies $(*)_2$, f is a constant multiple of Δ^r .

3.3 Multiplicative symmetries for $\text{Sym}^2(M_k(\Gamma_1))$

For $\varphi \in \text{Sym}^2(M_k(\Gamma_1))$ and a prime number p, we define the multiplicative Hecke operators by

$$(\varphi|\mathcal{T}_p^{\uparrow})(\tau_1,\tau_2) = \varphi(p\tau_1,\tau_2) \prod_{c=0}^{p-1} \varphi\left(\frac{\tau_1+c}{p},\tau_2\right)$$
$$(\varphi|\mathcal{T}_p^{\downarrow})(\tau_1,\tau_2) = \varphi(\tau_1,p\tau_2) \prod_{c=0}^{p-1} \varphi\left(\tau_1,\frac{\tau_2+c}{p}\right)$$

,

We say that φ satisfies the multiplicative symmetry for p if there exists an $\epsilon_p(\varphi) \in \mathbb{C}^{\times}, |\epsilon_p(\varphi)| = 1$ such that

 $(\mathrm{ms})_p \qquad \qquad \varphi |\mathcal{T}_p^{\uparrow} = \epsilon_p(\varphi)\varphi|\mathcal{T}_p^{\downarrow}$

holds. For $\varphi \in \text{Sym}^2(M_k(\Gamma_1))$, put $\Phi'(\varphi)(\tau) = \lim_{y \to \infty} \varphi(\tau, iy)$. Then $\Phi'(\varphi) \in M_k(\Gamma_1)$. The following facts can be verified.

Lemma 3.4. If $\varphi \in \text{Sym}^2(M_k(\Gamma_1))$ satisfies $(\text{ms})_p$ and $f = \Phi'(\varphi) \neq 0$, then f satisfies $(*)_p$. In particular, f is a constant multiple of Δ^r and k is divisible by 12.

Proposition 3.5. If $\varphi \in \text{Sym}^2(M_k(\Gamma_1)) \setminus \{0\}$ satisfies $(\text{ms})_2$, k is divisible by 12.

Proposition 3.6. Suppose that $F \in M_k(\Gamma_2)$ satisfies $(MS)_p$ for a prime p. Put $f = \Phi(F)$ and $\varphi = W(F)$. Then, for any prime number p, f (respectively φ) satisfies $(*)_p$ (respectively $(ms)_p$) and $\epsilon_p(F) = \epsilon_p(f) = \epsilon_p(\varphi)$.

3.4 **Proof of Theorem 1.1**

By Proposition 3.6 and Proposition 3.3, we obtain the following result, from which Theorem 1.1 follows.

Proposition 3.7. Assume that $F \in M_k(\Gamma_2)$ satisfies $(MS)_2$ and $f = \Phi(F) \neq 0$. Then $f = c \Delta^r$ $(c \in \mathbb{C}^{\times}, r \in \mathbb{Z}_{\geq 0})$. In particular, the weight k is divisible by 12.

3.5 **Proof of Theorem 1.4**

Theorem 1.4 is a direct consequence of Theorem 3.1 and the following result.

Proposition 3.8. If $F \in M_k(\Gamma_2)$ satisfies $(MS)_2$ and $W(F) \neq 0$, then k is divisible by 12.

PROOF. Let $\varphi = \mathcal{W}(F)$. Then $\varphi \neq 0$ and φ satisfies $(ms)_2$. The proposition now follows from Proposition 3.5.

References

- [Bo1] R. E. Borcherds, Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products, Invent. Math. 120 (1995), 161–213.
- [Bo2] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), 491-562.
- [Bo3] R. E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math.
 J. 97 (1999), 219-233.
- [Br] J. H. Bruinier, Borcherds Products on O(2, l) and Chern Classes of Heegner Divisors, Lecture Notes in Math. 1780 (2002), Springer Verlag.
- [BK] J. H. Bruinier and U. Kühn, Integrals of automorphic Green's functions associated to Heegner divisors, IMRN **31** (2003), 1687–1729.
- [Co] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters Math. Ann. 217 (1975), 271–285.
- [EZ] M. Eichler and D. Zagier, *Theory of Jacobi forms*, Progress in Math. 55 (1985), Birkhäuser.
- [Ge1] G. van der Geer, On the geometry of a Siegel modular threefold, Math. Ann. 260 (1982), 317–350.
- [Ge2] G. van der Geer, Hilbert modular surfaces, Springer, 1988.

- [GH] V. A. Gritsenko and K. Hulek, Minimal Siegel modular threefolds, Math. Proc. Camb. Phil. Soc. 123 (1998), 461–485.
- [GN1] V. A. Gritsenko and V. V. Nikulin, The Igusa modular forms and "the simplest" Lorentzian Kac-Moody algebra, Matem. Sbornik 187 (1996), 1601-1643.
- [GN2] V. A. Gritsenko and V. V. Nikulin, Siegel automorphic form correction of some Lorentzian Kac-Moody Lie algebras, Amer. J. Math. 119 (1997), 181-224.
- [GN3] V. A. Gritsenko and V. V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebra, part II, Int. J. Math. 9 (1998), 201-275.
- [Ha] S. Hayashida, Skew-holomorphic jacobi forms of index 1 and Siegel modular forms of half-integral weight, J. Number Theory **106** (2004), 200-218.
- [HM] B. Heim and A. Murase, Symmetries for the Siegel theta functions, Borcherds lifts and automorphic Green functions, arXiv: 1003.2248.
- [Ig] J. Igusa, On Siegel modular forms of genus two (II), Amer. J. Math. 86 (1964), 392-412.
- [K1] H. Klingen, Introductory lectures on Siegel modular forms, Cambridge Univ. Press, 1990.
- [Ma] H. Maass, Über ein Analogon zur Vermutung von Saito-Kurokawa, Invent. Math. 60 (1980), 85-104.
- [Sk] N.-P. Skoruppa, Explicit formulas for the Fourier coefficients of Jacobi and elliptic modular forms, Invent. Math. 102 (1990), 501-520.

Bernhard Heim

German University of Technology in Oman, Way No. 36, Building No. 331, North Ghubrah, Muscat, Sultanate of Oman

e-mail: bernhard.heim@gutech.edu.om

Atsushi Murase

Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan e-mail: murase@cc.kyoto-su.ac.jp