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Jacobi’s theta-hypergeometric formula in 2 variables:
some applications of the modular forms on the hyperball
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1 Introduction

—BHRBEER & ICT— ZEERICBV T, ATIRE~RS Jacobi DAR, FAAK, BMTHRMT
FHAR, OEENBEMELLBEEL 2R L—>OHEROHFLHNBL TWEINDOXIITRAD,
Ihbz, BERETIRABEENLZRAAIIROGNDB, TNETHIBRBAOH IHERIIB/LN
TWiahote, Bl HEEY =7 —EHERCEET 3 RATENRE S 2R L SEEREEHEN
EZ bR TWRMP-7206TH B, Picard DRI [P] (&I L TEEDXFIAREEE [S] 1% 1989
0 K. Matsumoto [Mat] DRBEE L & biz, ZOBRTHIRBEE S 2R o7 2 BHEREEY
TH2D, TOEROKEAFIZAR TR OPRLIEY,

2 Classical model : Jacobi-Gauss formulas
Start from the family of elliptic curves in the Legendre normal form:
v =z(z—-1)(z-)), A€ P! - {0,1,00}.

Put

o dg

_J1
T(/\)—fo &
o0y

(to avoid the ambiguity we suppose 0 < A < 1,7 € H for the moment). Recall that we have

Theorem 2.1.
V5 (7)
Mr)y==32~2 reH (2.1)
0= a0l
, here we use ‘
. -
(r) = 3 explmi(n + )7 + 2mi(n + 2)z] (3,5 € {0, 1)%).
nEZ 2 2°2
Especially
Boo(r) =1+24+2G +--- +24™ +---, 2
do1(1) =1 —2(j+2(j4+...+(__1)n2(jn’ +oe, G=emT

According to Jacobi we have
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Theorem 2.2. (Jacobi, Complete works I, p.235) Under the relation (2.1) we have

11 dz
ﬂg"(T):F<2 plil ) \/z(z—l o=@ 23)

Here
F(abc/\)—z(an(b'n))\" for |A| <1,
with
( _Ja(a+1)---(a+n-1) forn>0,
an) = 1 forn=0.

Remark 2.1. At first, we have the equality (2.8) for a pure imaginary 7. Then we can make
analytic continuations on H both sides. So we obtain (2.3) on the whole H.

2.1 From the Jacobi formula to Gauss AGM
The following duplication formula (due to Gauss 1818) plays an important role:

Theorem 2.3. (duplication formula)

930(27) = § (93o(7) + 952(7)) (2.4)
931 (27) = Yoo()Y01 (7).

For an initial data (a,b) with 0 < a,b, set ¢(a,b) = (%’—b, \/55), and set (an,b,) = ¥"(a,b).
We have a common limit lim a, = lim b,. We define Gauss’ arithmetic geometric mean
n—oo n—oo

M(a,bd) := nli{xoloan = nli_’rxolo bn.

Theorem 2.4. (Gauss AGM theorem)

We have 1 11
——————— . — 2
M, z) F(2 phl-e )

By putting z = 92,(7)/93,(r) we can derive the Gauss AGM theorem from the above Jacobi

formula. In fact, we have
.1 n .
M(3Bo(r), 9% (7)) = Jim = (Bo(2"7) + 05, (277)) = lim 03(r) =1.

So we have 9%,(7) M(1,z) = 1.
This proof shows the close relation among Jacobi’s formula, the Duplication formula and Gauss’

AGM formula.

3 Jacobi-Gauss formulas for the Picard modular case

3.1 Picard modular forms

We express the Picard curve with the projective parameters:

C(€) : ¥° = z(z — o)(z — &1)(z — &2), (3.1)



where

geA={f: & : &) ePXC): &bra(bo — &) (6 — €2) (€2 — &) # 0}
It is a curve of genus three, The Jacobian variety Jac(C(¢)) of C(€) has a generalized complex
multiplication by v/=3 of type (2,1). In fact we have a basis of holomorphic differentials

c_li dz zdz

80=901=wa 902=ZU—2', ‘P3=TUT'

Putting A\; = £1/&, A2 = £2/&, we assume 0 < A; < A2 < 1. Under this condition we choose
the following symplectic basis of Hy(C,Z) already used in [S]. Here we put cut lines starting from
branch points in the lower half z-plane to get simply connected sheets. The real line(resp. dotted
line, chained line) indicates an arc on the first sheet (resp. second sheet, third sheet).

> -
A

Figure 1. homology basis

Setting p(z,w) = (z,ww), we have
By =p(B1), As=-p"(4), By=-p’(As),

here w stands for exp[2mi/3]. We have A;B; = d;;. Put

no=/ v, n1=—/ o, 772=/ ©. (3.2)
A1 Bg A2

By the analytic continuation, they are multivalued analytic functions on the domain A = {MA2(A1—
(A2 — 1) (A — A2) # O} C C2. Tt holds

Mo fAl Y1 """'Z fAs Pi fAl Pi —w an Pi
m|=|-lo,or|=|-Isei|, |~Jo,0|=|-wlp 0|, (=23 33
2 Jas 91 ~w? f5, pi Ja, @i ~w [p, pi

Set

Ql-':(‘/I;AWi), Qz=(/BA<P¢), (1<14,5<3).

The normalized period matrix of C(§) is given by Q = Q71Q,. By the relations of periods (3.3)
together with the symmetricity Q2 = Q, we can rewrite

2 2 2_,2
u’ 42wy 2 wu’—w’y
) 1—w W T-w
Q=070 = w?u —w? U , (3.4)

wul-w?y 0 @lul+20%y

1-w 1-w
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here we put u = %, v = {% So we set @ = Q(u,v). The Riemann period relation Im (2 > 0
induces the inequality 2Re (v) + |u|?> < 0. We set

D ={n=n0:m:ml€P?: nH'T <0} = {(u,0) € C*: 2Re (v) + ful® < 0},

010
hereweput H={1 0 0) . We define our period map ®: A — 2 by
0 01

B(A1, A2) = [0, M1, m2)-
Set the Picard modular group

I =U(2,1;2[w]) = {g € GLs(Z[w]) : 'gHg = H}.

PPN
The element g = {p2 g2 72 | € I' acts on 2 by
pP3 g3 T3
P3 + q3v + 73U P2 +qov + 12U
9(u,v) = : : (3.5)
P11+ @v+Tniu pr+ QU+ nu

Set I'(v/-3) ={geI:g=1I3 mod v/-3}. We have I'/T'(vV-3) & 5.
The Riemann theta constant is defined by

Y [Z] Q)= Z exp[mi(n + a)Qt(n + a) + 27i(n + a)*b],
nez’d

here a,b € Q3 (row vectors) and Q € &3 .
We use the following Riemann theta constants and their Fourier expansions (see [S], p.327):

Ok (u,0) =9 [133 1?3 k?S] (Q(u,v)) =”§ulw2’°"("’H(uu)qN("’ (3.6)

with an index k € Z, where tr(p) = u + i, N(p) = ppi and

H(w = expl T2 [Ve] (-0, 0= expl ]
Apparently it holds 9 (u,v) = 9x+3(u,v), so k runs over {0,1,2} = Z/3Z.
The following properties are already established.

Fact 3.1. (Originally by Picard 1881, [S] p.849, 1988) The period map @ induces a biholomorphic
isomorphism from ¢-space P2(C) to the Satake compactification 2/T(v/=3) of 2/T(v/=3). This
compactification is obtained by atatching 4 boundary points corresponding to 4 points [£o,&1,82) =
[0,0,1],[0,1,0},]1,0,0],[1,1,1]. We have an action of the Sy that is composed of projective linear

transformations which causes a permutation of above 4 points on P2
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Fact 3.2. The following theorem is due to M. Namba [Nam/, 1981.
Theorem. Let C()) and C(X') be two Picard curves. They are isomorphic as Riemann surfaces
if and only if we have an automorphism f of C such that f({0,1,A1, A2}) = {0,1, A1, A3}

So P%/S, = (2/T(v/=3))/Ss = (2/T)° is the moduli space of our family of Picard curves,
here ° means the one point compactification.
Fact 3.3.

Theorem 3.1. (Theta representation of 1, [S] p.327)

91 (u,v)® I2(u,v)?
(A1, A2) = ( ﬂ;(u’v)a, ﬂz(u,v).&). (3.7)

Fact 3.4. ([S] p.829) The projective group I'(v/=3) = I'(v/=3)/{1,w,w?} is generated by

1 00 1 0 0 1 0 0
a=[01 0], gg={w—-w? 1 0|, gs={w-1 1 w-1},
0 0 w 0 01 1-w? 0 1
1 w—w? 0 1 w-1 w-1
ga=10 1 0], gs=1{0 1 0
0 0 1 0 1-w? 1

This is the projective monodromy group of the multivalued map ® : A — 2.

Fact 3.5. ([S] p.346) We have the automorphic property:
Bk (9(u,v))® = (b1 + q1v + r1u)® Fi(u, v)° (3.8)
P @1 71
forg={p2 g2 r2| € I(V=3). The sytem {9x(g(u,v))3}k=0,1,2 is a basis of the vector space
P3 Q43 T3
of automorphic forms with the property (3.8).
Fact 3.6. The system of periods {no,m1,m2} s a basis of the space of solutions for the Appell
hypergeometric differential equation E1(a,b,b’,c) with (a,b,¥,¢c) = (%, %, %, 1):

r(l-z)z+p(c—(1+a+bd)z)-bgy+s(l—z)y—abz=0
Ei(a,b,b,c): (3.9)
~(t'pz)+sz(1-y)+t(Q-y)y+g(c—Q+a+?)y)—abz=0,

With T = 23,8 = Zzy,t = Zyy,P = 2,9 = 2y. It has singularities along P? — A. T(v/=3) is the
projective monodromy group of El(%, %, %, 1) also.
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3.2 A Jacobi type formula in two variables

Under the relation

_(%1(w,v)® Pa(u,v)?
(A1, Ag) = ( 0;(% P 19:(%”)3) (3.10)

stated in Fact 3.1 , we have the following:

Theorem 3.2. (A Jacobi type formula in two variables, [M-S] 2010)

111

11
3! 3 3 Aly ’\2)1 (31)

Po(u,v) = Co Fi(3,

6o [ﬂ )

6
here Fy(a,b,b',c; A1, A2) indicates the Appell hypergeometric function

Z (a,m +n)(b,m)(¥',n) AR, (3.12)

’ . =
Fl(a’ bv b e Al’ Az) (C, m + n)m‘n‘

m,n>0

Remark 3.1. By using the power series ezpansion of F1, we have the equality (8.11) for an
arbitrary point in o neighborhood of the set {(u,v) € 2 : u = 0,v < 0} in 9. By making the
analytic continuation of the both sides we have the equality on the whole domain 2.

Theorem 3.3. ([M-S] 2010) We have

3
9:(u,)® = C& X (Fl(; ; ; )\1,1—)\2))  (i=1,2). (3.13)
Remark 3.2. According to some classical literature (also in [M-T-Y]), it holds
) 33/8 57 -
co=o [{] (=) = G e 3.14)
6

3.3 Application to a three terms AGM theorem
In [K-S1], a new three terms arithmetic geometric mean Ms(a, b, ¢) is introduced. For three positive
numbers a, b, ¢, set a new triple (a’,b’,c’) with

o =3}(a+b+c),

b3 + ¢ = 1(a% + b2c+ Fa + ab? + bc? + ca?),

b3 -3 = Wl—'E(a - b)(b-c)(c—a).
Define our AGM process by

(a',¥,c") = ¢(a,b,c).

We can take a nice choice of the cubic roots for ', ¢’ so that 2(a,b,c) becomes to be a triple of
positive numbers again. Thus, we get a unique positive number

Ms(a,b,c) == ,}L“go Y™ (a,b,c).

For the proof of the convergence of ¥™(a,b,C) see [K-S1] Theorem 2.1. As a consequence of
Theorem 3.3 i.e. (3.11) we obtain a new proof of the three terms AGM theorem in [K-S1] (p.134
Theorem 2.2). For it we use



Theorem 3.4. (Isogeny formula, [K-S1] 2009)

(\/ u 31)) =1 (190 + 191 + ’192)
3(v/=3u,3v) + 19 $(v=3u,3v) = $(939; + 9209, + 9%00 + 9o} + 195 + 9293),
(\/ 3u, 3v) — ¥3(v/—3u,3v) = \/1:3(190 — ¥1) (%1 — 92)(F2 — Do),

By using this isogeny formula, we obtain

Theorem 3.5. (AGM formula in two variables, [K-S1] 2009)
1 111 s

Malzy W33z stT - 1). 3.15
ey - B yppbl-ahi-y), (el <Lil<D) (3.15)

We can prove it from Theorem 3.2 by the same method as the classical case.

Example 3.1. We have Fi(},3,3,1,3,3) = ﬁg‘)/—?z—gj. Put z = y = 1/3/2. By three times

procedure v for them, we get a forty digits approzimation

1/M3(1,1/¥/2,1/¥/2) = 1.159595266963928365769992051570020881945 - - -

of FEIrEy

4 Application to Shimura curve calculation

4.1 General consideration

A Shimura space corresponding to a quaternion algebra B = (%ﬁ) is a coarse moduli space
embedded in the coarse moduli space & of principally polarized abelian varieties {A} of a certain
dimension g with an endmorphism structure B C EndgA. We can extract the Shimura space with
its modular group action as a pair of the upper half plane H and a discrete group G C SL(2, R).
Here note that the Shimura curve H/G is compact.

In the article of A. Kurihara we find how we can realize the Shimura curve with discriminant 6
in the projective space generated by the modular forms on H with respect to G. (It is explained
originally this description is given by Y. Ihara.)

We restrict our attention only for the case B = (:—%'2) Even in this case, we may allowed to
ask the following questions:

(1) Is it possible to get more explicit descrition of the Shimura curve ? We are wishing to have
a explicit algebraic curves corresponding to the point on the Shimura curve. In this case what does
it mean our coordinates, in other words what is our embient space ?

(2) Is it possible to get more precise and more simple description of the modular group G 7

(3) Can we describe the period differential equation for our algebraic curves ? '

(4) May I find a direct relation between the Gauss hypergeometric differential equation and
our modular group G?7

(5) Is it possible to give an explicit " Fourier expansion” for our modular form defined on H
with respect to the modular group G?

We answer for these questions. We use the Picard modular forms for k = Q(+/—3) as our main

tool.

199
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4.2 Ball quotient geometry

010

1 0 0}f,and
0 01

we denote (n,n')uy = nH Ty for n,n’ € C3, here * indicates the complex conjugate. Let us recall

2 = {n = [no,m,m) € P*(C) : nH®n < 0} is the image of our period map ®. For a generic point

n € 9, it corresponds a Picard curve C()). We set A(A) = Jac(C(})).

Let ¢ € O} be a fixed vector with ||cllz = (c,c)n > 0. We call

Set k = Q(v/=3), and let Ok be the ring of algebraic intergers of k. Set H =

D.={ne2: (n,c) = 0}
a k-disc in 9. According to the study by R. P. Holzapfel and M. Petkova, we have the following:

Proposition 4.1. Let D, be a k-disc. Then for a generic point n € De, the corresponding Jacobi
variety A()) is isogenous to a product type abelian variety Eg x A'()), with Eo = C /[(Z +wZ)
and a two dimensional abelian variety A’()).

Proposition 4.2. The k-disc D, is a Shimura curve for the quaternion algebra B = (—‘E’igl’i)

in the sense that we have
B C Endp(A’(N)).
4.3 Results

Set ¢ = (1,1,0). Its H-norm cHE is 2. We have D, = {(u,v) € 2 : v = -1} = ¢ N 2. According
to Petkova and Holzapfel ([Pet]) we know that 9, is the one dimensional Shimura space for

(248 (3)

DiscB)= J] »p=2-3=6
(=3,2)p=-1

with Disc(B) = 6. (We have

So this is the case discussed in the Clay Lecture by Voight and also studied in the thesis of
Maria Petkova.

Theorem 4.1. ([P-S] 2010) Set a complez line Lo = {\ + A2 = 1} in (A1, A2) space P2, Then
we have

O(D.) = L.
Namely our Shimura curve is realized as a hyperplane section in the vector space space (93,93, 93)

of Picard modular forms.
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~

1L A

Figure of the Shimura curve L.

Proposition 4.3. For the Picard curves C(A) : 3 = z(z = 1)(z — M1)(z — Ag) with My + A2 =1,

we have a decomposition
J(C(N\)) 2 Ey x A'(A\)  (up to isogeny )
where Eg = C/(wZ + Z) and A’'()\) is a 2-dimentional abelian variety. And we have
Endo(A4’()\)) D B.
Namely C(A\) with A\; + A2 =1 is the corresponding curve for our Shimura variety.
Proposition 4.4. Put \; = %(1 +8), Ay = %(l—s). On the line L. the Appell differential equation
E(%, %, %, 1) reduces to

27 82 (~1+52)” (3+82) zss + 18 5 (3 — 3852 +27s* +85°) 2, 1)
+6 (—9— 6052 +127s* +22355) 2z, + 853 (9+ s%)] 2 =0.
Remark 4.1. This is a Fuchsian differential equation of rank 8. Looking at (4.1) we know that
it has new singularities u = /=3 other than ezpected singularities Lo N (P% — A) = {0, 1, 00}.
We have the Riemann scheme of (4.1):

(0 1 -1 /=3 —v/=3 o)
00 0 O 0 3
< 1 1 2->
2 1 1 1 2

2 4
3 -3 -3 8 3§

So u = £+/—3 are apparent singularities.
Let

m +n)(3,m)(3,7)
(1, m + n)m!n!

111 i n
Fl()\l,/\z)=F1(§,§,§,1;)\1,)\2)=1+ Z (5 AT'AS

m+n>0

be the Appell hypergeometric series that is a solution of E(%, %, %, 1).
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Theorem 4.2. ( [P-S] 2010) Let f(s) = Fi(3(1 + s),3(1 —s)) be the restriction of F1 on Le.
Then f(s) is an even function of s. So we put f(s) = g(t) witht = s2. In this situation g(t)
satisfies the following Gauss hypergeometric differential equation:

(0 + oy O + =gy 9) =0 (42)

Remark 4.2. (1) This theorem shows that the system (4.1) contains the subsystem (4.2) with rank
2. And it corresponds to the fact that we have the linear relation no +m = 0 in the period domain

2.
(2) The Riemann scheme of (4.2) is

0 1 o
00 %
1 1 1
3 6 3

So (4.2) is the Gauss hypergeometric differential equation E(%, %, %), and its monodromy group is
the triangle group A(3,6,6). We can find it in the list of arithmetic co-compact triangle groups by
K. Takeuchi [Tak].

Definition 4.1. Set B = (%9) be an indefinite quaternion algebra over Q. We say Sp is a
Shimura curve for B, if it is a moduli space of the isomorphism classes of principally polarized
Abelian surfaces with the condition B' C Endg(A) under some identification B = B’ as quaternion

algebras over Q.

Theorem 4.3. ( [P-S]2010) SetM =T'\p, ={g €T :g9(D.)=D.}/{g €T : gp, = idp.}. Under
the identification induced from the isomorphism © : 2/T'(v/=3) — P?, we have the representation

of the Shimura curve:
Sp=L./{c) = D./M = H/A(3,86,6),

where o stands for the involusion (A1, A2) — (A2, A1).
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