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ABSTRACT. We give a construction of a quandle cocycle from a group cocycle, especially
an explicit construction of quandle cocycles of the dihedral quandle $R_{p}$ from group cocy-
cles of the cyclic group $\mathbb{Z}/p$ . The 3-dimensional group cocycle of $\mathbb{Z}/p$ gives a non-trivial
quandle 3-cocycle of $R_{p}$ .

1. INTRODUCTION
A quandle, which was introduced by Joyce [Joy], is an algebraic object whose axioms

are motivated by knot theory and conjugation in a group. In [CJKLS], the authors
introduced a quandle homology theory, and they defined the quandle cocycle invariants
for classical knots and surface knots. The quandle homology is defined as the homology of
the chain complex generated by cubes whose edges are labeled by elements of a quandle.
On the other hand the group homology is defined as the homology of the chain complex
generated by tetrahedra whose edges are labeled by elements of a group. So it is natural
to ask a relation between quandle homology and group homology.

In [IK], the authors defined a simplicial version of quandle homology and constructed
a homomorphism from the usual quandle homology to the simplicial quandle homology.
Applying the construction for PSL $($ 2, $\mathbb{C})$ -representation of the knot complement, we ob-
tained a diagrammatic formula of the hyperbolic volume and the Chern-Simons invariant.
The important point of [IK] is to give a triangulation of a knot complement in alge-
braic fashion by using quandle homology. This construction enable us relate the quandle
homology with the topology of a knot complement.

In this note, we apply the work [IK] for finite quandles to construct quandle cocycles
from group cocycles. Especially we construct quandle cocycles of the dihedral quandle $R_{p}$

from group cocycles of the cyclic group $\mathbb{Z}/p$ . It will be shown that the 3-dimensional group
cocycle gives a non-trivial quandle 3-cocycle of $H_{Q}^{3}(R_{p};\mathbb{Z}/p)$ . Since $\dim H_{Q}^{3}(R_{Y};\mathbb{Z}/p)=1$ ,
our quandle 3-cocycle is a constant multiple of the Mochizuki‘s 3-cocycle [Moc].

This note is organized as follows. We will review the definition of quandles and their
homology theory in Section 2. In Section 3, we recall the definition of the group homology.
We will review the construction of [IK] in Section 5 and apply it to construct quandle
cocycles of a dihedral quandle. We will propose a general construction in Section 7.

2. QUANDLE AND QUANDLE HOMOLOGY

A quandle is a set $X$ with a binary operation $*$ satisfying the following axioms:
(1) $x*x=x$ for any $x\in X$ ,
(2) the map $*y:Xarrow X$ defined by $x\mapsto x*y$ is a bijection for any $y\in X$ ,
(3) $(x*y)*z=(x*z)*(y*z)$ for any $x,$ $y,$ $z\in X$ .
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FIGURE 1. $\partial(g(x, y, z))=-(g(y, z)-gx(y, z))+(g(x, z)-gy(x*y, z))-$

$(g(x, y)-gz(x*z, y*z))$ . Here $x,$ $y,$ $z\in X$ and $g\in G_{X}$ . Edges are labeled
by elements of $X$ and vertices are labeled by elements of $G_{X}$ .

We denote the inverse of $*y$ by $*^{-1}y$ . For a quandle $X$ , we define the associated group
$G_{X}$ by $\langle x\in X|y^{-1}xy=x*y$ $(x, y\in X)\rangle$ . A quandle $X$ has a right $G_{X}$ -action in the
following way. Let $g=x_{1}^{\epsilon_{1}}x_{2}^{\epsilon_{2}}\cdots x_{n}^{\epsilon_{n}}$ be an element of $G_{X}$ where $x_{i}\in X$ and $\epsilon_{i}=\pm 1$ .
Define $x*g=(\cdots((x*^{\epsilon_{1}}x_{1})*^{\epsilon_{2}}x_{2})\cdots)*^{\epsilon_{n}}x_{n}$ . One can easily check that this is a
right action of $G_{X}$ on $X$ . So the free abelian group $\mathbb{Z}[X]$ generated by $X$ is a right
$\mathbb{Z}[G_{X}]$-module.

Let $C_{n}^{R}(X)$ be the free (left) $\mathbb{Z}[G_{X}]$-module generated by $X^{n}$ . We define the boundary
map $C_{n}^{R}(X)arrow C_{n-1}^{R}(X)$ by

$\partial(x_{1}, x_{2}, \ldots, x_{n})=\sum_{i=1}^{n}(-1)^{i}((x_{1}, \ldots,\hat{x_{i}}, \ldots, x_{n})$

$-x_{i}(x_{1}*x_{i}, \ldots, x_{i-1}*x_{i}, x_{i+1}, \ldots, x_{n}))$ .

Figure 1 shows a graphical picture of the boundary map. Let $C_{n}^{D}(X)$ be the $\mathbb{Z}[G_{X}]-$

submodule of $C_{n}^{R}(X)$ generated by $(x_{1}, \ldots , x_{n})$ with $x_{i}=x_{i+1}$ for some $i$ . Now $C_{n}^{D}(X)$

is a subcomplex of $C_{n}^{R}(X)$ . Let $C_{n}^{Q}(X)=C_{n}^{R}(X)/C_{n}^{D}(X)$ . For a right $\mathbb{Z}[G_{X}]$-module $M$ ,
we define the rack homology of $M$ by the homology of $C_{n}^{R}(X;M)=M\otimes_{\mathbb{Z}[G_{X}]}C_{n}^{R}(X)$ and
denote it by $H_{n}^{R}(X;M)$ . We also define the quandle homology of $M$ by the homology of
$M\otimes_{\mathbb{Z}[G_{X}]}C_{n}^{Q}(X)$ and denote it by $H_{n}^{Q}(X;M)$ . The homology $H_{n}^{Q}(X;\mathbb{Z})$ , here $\mathbb{Z}$ is the
trivial $\mathbb{Z}[G_{X}]$ -module, is equal to the usual quandle homology $H_{n}^{Q}(X)$ . Let $Y$ be a set
with a right $G_{X}$ -action. For any abelian group $A$ , the abelian group $A[Y]$ generated by
$Y$ over $A$ is a right $\mathbb{Z}[G_{X}]$-module. The homology group $H_{n}^{Q}(X;A[Y])$ is usually denoted
by $H_{n}^{Q}(X;A)_{Y}$ ([Kam]).

Let $N$ be a left $\mathbb{Z}[G_{X}]$-module. We define the rack cohomology $H_{Q}^{n}(X;N)$ by the
cohomology of $C_{R}^{n}(X;N)=Hom_{\mathbb{Z}[G_{X}]}(C_{n}^{R}(X), N)$ . The quandle cohomology $H_{Q}^{n}(X;N)$

is defined in a similar way. For a set $Y$ with a right $G_{X}$-action and an abelian group
$A$ , we let Func $(Y, A)$ be the left $\mathbb{Z}[G_{X}]$-module generated by functions $\phi$ : $Yarrow A$ , here
the action is defined by $(g\phi)(y)=\phi(yg)$ for $y\in Y$ and $g\in G_{X}$ . The cohomology group
$H_{Q}^{n}$ ( $X$ ; Func $(Y,$ $A)$ ) is usually denoted by $H_{Q}^{n}(X;A)_{Y}$ .
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3. GROUP HOMOLOGY

3.1. Let $G$ be a group. Let $C_{n}(G)$ be the free $\mathbb{Z}[G]$ -module generated by $[g_{1}|\ldots|g_{n}]\in G^{n}$ .
Define the boundary map $\partial$ : $C_{n}(G)arrow C_{n-1}(G)$ by

$\partial([g_{1}|\ldots|g_{n}])=g_{1}[g_{2}|\ldots|g_{n}]+\sum_{i=1}^{n-1}(-1)^{i}[g_{1}|\ldots|g_{i}g_{i+1}|\ldots|g_{n}]+(-1)^{n}[g_{1}|\ldots|g_{n-1}]$ .

Let $C_{0}(G)\cong \mathbb{Z}[G]arrow \mathbb{Z}arrow 0$ be the augmentation map. We remark that the chain
complex $\{\cdotsarrow C_{1}(G)arrow C_{0}(G)arrow \mathbb{Z}arrow 0\}$ is acyclic. So the chain complex $C_{*}(G)$ gives
a free resolution of $\mathbb{Z}$ . Let $M$ be a right $\mathbb{Z}[G]$-module. The homology of $M\otimes_{\mathbb{Z}[G]}C_{n}(G)$ is
called the group homology of $M$ and denoted by $H_{n}(G;M)$ . In other words, $H_{n}(G;M)=$

$Tor_{n}^{\mathbb{Z}[G]}(M, \mathbb{Z})$ .
Let $C_{n}’(G)$ be the free $\mathbb{Z}$-module generated by $(g_{0}, \ldots, g_{n})\in G^{n+1}$ . Then $C_{n}’(G)$ is a left

$\mathbb{Z}[G]$-module by $g(g_{0}, \ldots, g_{n})=(gg_{0}, \ldots, gg_{n})$ . Define the boundary operator of $C_{n}’(G)$

by

$\partial(g_{0}, \ldots, g_{n})=\sum_{i=0}^{n}(-1)^{i}(g_{0}, \ldots,\hat{g_{i}}, \ldots, g_{n})$.

$C_{*}(G)$ and C’ $(G)$ are isomorphic as chain complexes. In fact, the following correspondence
gives an isomorphism:

$[g_{1}|g_{2}|\ldots|g_{n}]rightarrow(1, g_{1}, g_{1}g_{2}, \ldots, g_{1}\cdots g_{n})$

$( g_{0}[g_{0}^{-1}g_{1}|g_{1}^{-1}g_{2}|\ldots|g_{n-1}^{-1}g_{n}]rightarrow(g_{0}, \ldots, g_{n}) )$

The notation using $(g_{0}, \ldots, g_{n})$ is called homogeneous and the one using $[g_{1}|\ldots|g_{n}]$ is
called inhomogeneous.

Factoring out $C_{n}(G)$ by the degenerate complex, that is generated by $[g_{1}|\ldots|g_{n}]$ with
$g_{i}=1$ for some $i$ , we obtain the normalized chain complex and its homology group. It is
known that the group homology using the normalized chain complex coincides with the
unnormalized one. In homogeneous notation, we factor out $C_{n}’(G)$ by the subcomplex
generated by $(g_{0}, \ldots, g_{n})$ with $g_{i}=g_{i+1}$ for some $i$ .

3.2. Let $X$ be a quandle and $M$ be a right $\mathbb{Z}[G_{X}]$ -module. We can construct a map from
the rack homology $H_{n}^{R}(X;M)$ to the group homology $H_{n}(G_{X};M)$ . The following lemma
is well-known.

Lemma 3.1. Let . . . $arrow P_{1}arrow P_{0}arrow Marrow 0$ be a chain complex where $P_{i}$ are projective
($e.g$ . free). Let $\cdotsarrow C_{1}arrow C_{0}arrow Narrow 0$ be an acyclic complex. Any homomorphism
$Marrow N$ can be extended to a chain map from $\{P_{*}\}$ to $\{C_{*}\}$ . Moreover such a chain map
is unique up to chain homotopy.

So there exists a unique chain map from $C_{*}^{R}(X)$ to $C_{*}(G_{X})$ up to homotopy. This map
induces $M\otimes_{\mathbb{Z}[G_{X}]}C_{*}^{R}(X)arrow M\otimes_{\mathbb{Z}[G_{X}]}C_{*}(G_{X})$ and then $H_{n}^{R}(X;M)arrow H_{n}(G_{X};M)$ . We
can also construct a natural map $H_{n}^{Q}(X;M)arrow H_{n}(G_{X};M)$ . We give an explicit chain
map. Let $(x_{1}, \ldots, x_{n})$ be a generator of $C_{n}^{R}(X)$ . We define the map $f$ by

$f((x_{1}, \ldots, x_{n}))=\sum_{\sigma\in \mathfrak{S}_{n}}sgn(\sigma)[y_{\sigma,1}|\cdots|y_{\sigma,i}|\cdots|y_{\sigma,n}]$
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FIGURE 2

where $y_{\sigma,i}\in X$ is defined for a permutation $\sigma$ and $i\in\{1, \ldots, n\}$ as follows. Let $j_{1},$ $\ldots,j_{i}<$

$i$ be the maximal set of numbers satisfying $\sigma(i)<\sigma(j_{1})<\sigma(j_{2})<\cdots<\sigma(j_{i})$ . Then
define

$y_{\sigma,i}=x_{\sigma(i)}*(x_{\sigma(j_{1})}x_{\sigma(j_{2})}\cdots x_{\sigma(j_{i})})$ .
The graphical picture of this map is given in Figure 2.

Example 3.2. Let $(x, y, z)\in C_{3}^{R}(X)$ . Then the chain map $f$ : $C_{3}^{R}(X)arrow C_{3}(G_{X})$

constructed above is given by

$\partial((x, y, z))=[x|y|z]-[x|z|y*z]+[y|z|(x*y)*z]-[y|x*y|z]$

$+[z|x*z|y*z]-[z|y*z|(x*y)*z]$ .

If we use the normalized chain complex for group homology, we obtain a map $f$ : $C_{3}^{Q}(X)arrow$

$C_{3}(G_{X})$ .

Remark 3.3. Fenn, Rourke and Sanderson defined the $mck$ space $BX$ . Since $\pi_{1}(BX)$

is isomorphic to $G_{X}$ , there exists a unique map, up to homotopy, from $BX$ to the
Eilenberg-MacLane space $K(G_{X}, 1)$ which induces the isomorphism between their fun-
damental groups. The map we have constructed is essentially same as this map.

As we have seen, there exists a relation between quandle homology and group homology.
We shall give another relation which seems to reflect more geometric feature.

4. SHADOW COLORING AND THE CYCLE INVARIANT

The contents of this section will be used in Section 7.3.

4.1. Let $X$ be a quandle. Let $K$ be an oriented knot in $S^{3}$ and $D$ be a diagram of $K$ .

An arc colort,$ng$ is a map $\mathcal{A}$ : {arcs of $D$} $arrow X$ if it satisfies the relation $arrow||_{x}y\uparrow|^{x*y}$ at

each crossing, where $x,$ $y\in X$ . By the Wirtinger presentation of a knot complement, an
arc coloring determines a representation $\pi_{1}(S^{3}\backslash K)arrow G_{X}$ . This is obtained by sending
each meridian to its color.
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Let $Y$ be a set with a right $G_{X}$ action. A map $\mathcal{D}$ : {regions of $D$ } $arrow Y$ is called a

region coloring if it satisfies the relation $arrow|x\phi r\cdot xr$ for any pair of adjacent regions, where

$r\in Y$ and $x\in X$ . A pair $S=(\mathcal{A}, \mathcal{R})$ is called a shadow coloring.
We define a cycle $[C(S)]$ of $H_{2}^{Q}(X;\mathbb{Z}[Y])$ for a shadow coloring $S$ . Assign $+r\otimes(x, y)$

for a positive crossing colored by
$-\underline{\uparrow y}and-r\otimes(x, y)$

for a negative crossing colored
$x\uparrow$

$r$

by $arrow^{r\downarrow x1_{y}}$ . Then define

$C(S)= \sum_{c:crossing}\epsilon_{c}r_{c}\otimes(x_{c}, y_{c})\in C_{2}^{Q}(X;\mathbb{Z}[Y])$
,

where $\epsilon_{c}=\pm 1$ . We can easily check that this is a cycle and the homology class $[C(S)]$

is invariant under Reidemeister moves. Moreover it does not depend on the choice of the
region coloring if the action of $G_{X}$ on $Y$ is transitive. So the homology class $[C(S)]$ is an
invariant of the arc coloring $\mathcal{A}$ .

There are two important sets with right $G_{X}$-action, one is $Y=\{*\}$ and the other is
$Y=X$ . Eisermann showed that the cycle $[C(S)]$ for $Y=\{*\}$ is essentially described
by the monodromy of some representation of the knot group along the longitude ([Eisl],
[Eis2] $)$ . So we study the invariant $[C(S)]$ in the case of $Y=X$ .

4.2. Quandle cocycle invariant. Let $X$ be a quandle with $|X|<\infty$ . Let $A$ be an
abelian group. For any quandle cocycle $f\in H_{Q}^{2}$ ( $X$ ; Func $(X,$ $A)$ ),

$\sum$ $\langle f,$ $C(S)\rangle\in \mathbb{Z}[A]$

$S$ :shadow colorings

is an invariant of knots. This is called the quandle cocycle invariant. When $Y=\{*\}$ ,
Eisermann in [Eis2] showed that $[C(S)]$ is essentially equivalent to the coloring polynomial,
which is described by the monodromy of some representation of $\pi_{1}(S^{3}\backslash K)$ along the
longitude. So we study the case $Y=X$ .

5. SIMPLICIAL QUANDLE HOMOLOGY $H_{n}^{\triangle}(X_{1}\mathbb{Z})$ AND THE MAP
$H_{n}^{R}(X_{1}\mathbb{Z}[X])arrow H_{n+1}^{\Delta}(X;\mathbb{Z})$

Let $X$ be a quandle. Let $C_{n}^{\Delta}(X)=span_{\mathbb{Z}}\{(x_{0}, \ldots, x_{n})|x_{i}\in X\}$ . We define the bound-
ary operator of $C_{n}^{\Delta}(X)$ by

$\partial(x_{0}, \ldots, x_{n})=\sum_{i=0}^{n}(-1)^{i}(x_{0}, \ldots,\hat{x_{i}}, \ldots, x_{n})$.

Since $X$ has a right action of $G_{X}$ , the chain complex $C_{n}^{\Delta}(X)$ has a right action of $G_{X}$ by
$(x_{0}, \ldots, x_{n})*g=(x_{0}*g, \ldots, x_{n}*g)$ . Let $M$ be a $\mathbb{Z}[G_{X}]$-module. We denote the homology
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FIGURE 3

of $C_{n}^{\Delta}(X)\otimes_{\mathbb{Z}[G_{X}]}M$ by $H_{n}^{\Delta}(X;M)$ and call it the simplicial quandle homology of $X$ . For
any abelian group $A$ , we can also define the cohomology group $H_{\Delta}^{n}(X;A)$ in a similar way.

Let $I_{n}$ be the set consisting of maps $\iota$ : $\{$ 1, 2, $\cdots,$ $n\}arrow\{0,1\}$ . We let $|\iota|$ denote the
cardinality of the set $\{i|\iota(i)=1,1\leq i\leq n\}$ . For each generator $r\otimes(x_{1}, x_{2}, \cdots , x_{n})$ of
$C_{n}^{R}(X;\mathbb{Z}[X])$ , here $r,$ $x_{1},$ $\ldots,$

$x_{n}\in X$ , we define
$r(\iota)=r*(x_{1}^{\iota(1)}x_{2}^{\iota(2)}\cdots x_{n}^{\iota(n)})\in X$,

$x(\iota, i)=x_{i}*(x_{i+1}^{\iota(i+1)}x_{i+2}^{\iota(i+2)}\cdots x_{n}^{\iota(n)})\in X$,

for any $\iota\in I_{n}$ . Fix an element $p\in X$ . For each $n\geq 1$ , we define a homomorphism
$\varphi:C_{n}^{R}(X;\mathbb{Z}[X])arrow C_{n+1}^{\Delta}(X)\otimes_{\mathbb{Z}[G_{X}]}\mathbb{Z}$

by

(5.1)
$\varphi(r\otimes(x_{1}, x_{2}, \cdots, x_{n}))=\sum_{\iota\in I_{n}}(-1)^{|\iota|}(p, r(\iota), x(\iota, 1), x(\iota, 2), \cdots, x(\iota, n))$

.

For example, in the case $n=2$ (see Figure 3),

$\varphi(r\otimes(x, y))=(p, r, x, y)-(p, r*x, x, y)-(p, r*y, x*y, y)+(p, (r*x)*y, x*y, y)$ ,

and in the case $n=3$ ,
$\varphi(r\otimes(x, y, z))=$

$(p, r, x, y, z)-(p, r*x, x, y, z)$

$-(p, r*y, x*y, y, z)-(p, r*z, x*z, y*z, z)$
$+(p, (r*x)*y, x*y, y, z)+(p, (r*x)*z, x*z, y*z, z)$
$+(p, (r*y)*z, (x*y)*z, y*z, z)-(p, ((r*x)*y)*z, (x*y)*z, y*z, z)$ .

Theorem 5.1 (Inoue-Kabaya, [IK]). The map $\varphi$ : $C_{n}^{R}(X;\mathbb{Z}[X])arrow C_{n+1}^{\Delta}(X)\otimes_{\mathbb{Z}[G_{X}]}\mathbb{Z}$ is
a chain map.
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Therefore $\varphi$ induces a homomorphism $\varphi_{*}:H_{n}^{R}(X;\mathbb{Z}[X])arrow H_{n+1}^{\Delta}(X;\mathbb{Z})$ . We remark
that the induced map $\varphi_{*}:H_{n}^{R}(X;\mathbb{Z}[X])arrow H_{n+1}^{\Delta}(X;\mathbb{Z})$ does not depend on the choice of
$p\in X$ .

In general, it is easier to construct cocycles of $H_{n+1}^{\Delta}(X)$ from group cocycles of some
group related to $X$ than $H_{n}^{R}(X;\mathbb{Z}[X])$ . If we have a function $f$ from $X^{k+1}$ to some abelian
group $A$ satisfying

(1) $\sum_{i=0}^{k+1}(-1)^{i}f(x_{0}, \ldots,\hat{x_{i}}, \ldots, x_{k+1})=0$ ,

(2) $f(x_{0}*y, \ldots, x_{k}*y)=f(x_{0}, \ldots, x_{k})$ for any $y\in X$ ,
(3) $f(x_{0}, \ldots, x_{k})=0$ if $x_{i}=x_{i+1}$ for some $i$ ,

then $f$ is a cocycle of $H_{\triangle}^{k}(X;A)$ and $\varphi^{*}f$ is a cocycle of $H_{Q}^{k-1}$ ( $X$ ; Func$(X,$ $A)$ ). Moreover
$\varphi^{*}f$ can be regarded as a cocycle in $H_{Q}^{k}(X;A)$ by a natural map

$r\otimes(x_{1}, \ldots, x_{k-1})\mapsto(r, x_{1}, \ldots x_{k_{1}})$.
We will construct functions satisfying these three conditions from group cocycles.

6. COCYCLES OF DIHEDRAL QUANDLES

For any integer $p>2$ , let $R_{x}$ denote the cyclic group $\mathbb{Z}/p$ with quandle operation
defined by $x*y=2y-x$ . The quandle $R_{p}$ is called the dihedml quandle. In this section,
we construct quandle cocycles of $R_{p}$ from group cocycles of $\mathbb{Z}/p$ . In the next section, we
will propose a general construction of quandle cocycles from group cocycles.

6.1. Group cohomology of cyclic groups. Let $G$ be the cyclic group $\mathbb{Z}/p(p$ is an
integer greater than 1). The first cohomology $H^{1}(G;\mathbb{Z}/p)$ is generated by the l-cocycle

$b_{1}(x)=x$

and the second cohomology $H^{2}(G;\mathbb{Z}/p)$ is generated by the 2-cocycle

$b_{2}(x, y)=\{\begin{array}{l}1 if \overline{x}+\overline{y}\geq p0 otherwise\end{array}$

where $\overline{x}$ is an integer $0\leq\overline{x}<p$ with $\overline{x}\equiv xmod p$ . Moreover any element of $H^{*}(G;\mathbb{Z}/p)$

can be presented by a cup product of $b_{1}$ ’s and $b_{2}’ s$ :
$H^{*}(G, \mathbb{Z}/p)=\wedge(b_{1})\otimes \mathbb{Z}[b_{2}]$ .

6.2. 3-cocycle of $R_{p}$ . Let $f$ be a k-cocycle of $H^{k}(G, \mathbb{Z}/p)$ . Using homogeneous notation,
we obtain a map $f$ : $(R_{p})^{k+1}arrow \mathbb{Z}/p$ satisfying

(1) $\sum_{i=0}^{k+1}(-1)^{i}f(x_{0}, \ldots,\hat{x_{i}}, \ldots, x_{k+1})=0$ ,

(3) $f(x_{0}, \ldots, x_{k})=0$ if $x_{i}=x_{i+1}$ for some $i$ .
Therefore if $f$ also satisfy the condition (2) $f(x_{0}*y, \ldots, x_{k}*y)=f(x_{0}, \ldots, x_{k})$ for any
$y\in R_{p},$ $f$ gives rise to a quandle k-cocycle of $H_{Q}^{n}(R_{p};\mathbb{Z}/p)$ by the construction of Section
5. Define $f;(R_{p})^{k+1}arrow \mathbb{Z}/p$ by

$\tilde{f}(x_{0}, \ldots, x_{k})=f(x_{0}, \ldots, x_{k})+f(-x_{0}, \ldots, -x_{k})$ .
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FIGURE 4. A shadow coloring of $($ 2, $p)$-torus knot by $R_{Y}$ . (For any $x,$ $y,$ $r\in R_{\tau}.$ )

Then $f$ satisfies the conditions (1), (2) and (3). So we obtain a quandle k-cocycle.
We give an explicit presentation of the 3-cocycle coming from $b_{1}b_{2}\in H^{3}(G;\mathbb{Z}/p)$ . Let

$d(x, y)=b_{2}(x, y)-b_{2}(-x, -y)$

then $d$ is a 2-cocycle. (We can check that $d$ is cohomologous to $2b_{2}.$ ) Then $\overline{b_{1}b_{2}}$ is given
by $[x|y|z]\mapsto x\cdot d(y, z)$ .

Proposition 6.1. The 3-cocycle coming from $b_{1}b_{2}\in H^{3}(G;\mathbb{Z}/p)$ has the following pre-
sentation:

$(x, y, z)\mapsto 2z(d(y-x, z-y)+d(y-x, y-z))$ $(x, y, z\in R_{\tau})$ .
This is a non-trivial quandle 3-cocycle of $R_{\tau}$ .

Pmof. In (5.1), since the map $\varphi_{*}$ does not depend on the choice of $p\in \mathscr{F}$ , we let $p=0$ .
Then we have

$\varphi(x, y, z)=(0, x, y, z)-(0, x*y, y, z)-(0, x*z, y*z, z)+(0, (x*y)*z, y*z, z)$

$=(0, x, y, z)-(O, 2y-x, y, z)-(O, 2z-x, 2z-y, z)+(O, 2z-2y+x, 2z-y, z)$ .
Rewrite in inhomogeneous notation, this is equal to

$[x|y-x|z-y]-[2y-x|x-y|z-y]$
$-[2z-x|x-y|y-z]+[2z-2y+x|y-x|y-z]$ .

Evaluating by $\overline{b_{1}b_{2}}$ , we have
$xd(y-x, z-y)-(2y-x)d(x-y, z-y)$
$-(2z-x)d(x-y, y-z)+(2z-2y+x)d(y-x, y-z)$

$=xd(y-x, z-y)+(2y-x)d(y-x, y-z)$
$+(2z-x)d(y-x, z-y)+(2z-2y+x)d(y-x, y-z)$

$=2zd(y-x, z-y)+2zd(y-x, y-z)$ .

We can check that this cocycle is non-trivial by evaluating at the cycle given by a coloring
of the $($ 2, $p)$ -torus knot (Figure 4).

$\square$

Since 2 is divisible in $\mathbb{Z}/p,$ $(x, y, z)\mapsto z(d(y-x, z-y)+d(y-x, y-z))$ is also a
non-trivial quandle 3-cocycle. It is known that $\dim_{F_{p}}H_{Q}^{3}(R_{p};F_{p})=1$ , our cocycle is a
constant multiple of the Mochizuki‘s 3-cocycle [Moc].
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FIGURE 5. The value of $d(x, y)$ .

We remark that the cocycle $d$ can be easily understand geometrically. Identify $i\in \mathbb{Z}/p$

with $\zeta^{i}$ where $\zeta=\exp(2\pi\sqrt{-1}/p)$ . Then $d(x, y)=-1$ if $(0, x, x+y)$ is counterclockwise,
$d(x, y)=+1$ if $(0, x, x+y)$ is clockwise and $d(x, y)=0$ otherwise (Figure 5). This
interpretation and the equation $d(-x, -y)=-d(x, y)$ make various calculations easy.

7. GENERAL CONSTRUCTION

7.1. Let $G$ be a group. Fix an element $h\in G$ . Let Conj $(h)=\{g^{-1}hg|g\in G\}$ . Now
Conj $(h)$ has a quandle operation by $x*y=y^{-1}xy$ . Let $Z(h)=\{g\in G|gh=hg\}$ be the
centralizer of $h$ in $G$ .
Lemma 7.1. As a set Conj $(h)\cong Z(h)\backslash G$ by

$g^{-1}hgrightarrow Z(h)g$ (right coset)

From now on we study the quandle structure on $Z(h)\backslash G$ and construct a lift of $\pi$ : $Garrow$

$Z(h)\backslash G$ . The quandle structure on Conj $(h)$ induces a quandle operation on $Z(h)\backslash G$ :
$(g_{1}^{-1}hg_{1})*(g_{2}^{-1}hg_{2})=(g_{2}^{-1}hg_{2})^{-1}(g_{1}^{-1}hg_{1})(g_{2}^{-1}hg_{2})$

$=(g_{1}g_{2}^{-1}hg_{2})^{-1}h(g_{1}g_{2}^{-1}hg_{2})$

$+\simarrow Z(h)g_{1}(g_{2}^{-1}hg_{2})$

The quandle operation on $Z(h)\backslash G$ lifts to a quandle operation on $G$ by
$g_{1}\bullet g_{2}=h^{-1}g_{1}(g_{2}^{-1}hg_{2})$ $(g_{1}, g_{2}\in G)$ .

We can easily check that $\bullet$ satisfies the quandle axioms and the projection map $\pi$ : $Garrow$

$Z(h)\backslash G$ is a quandle homomorphism. Let $s$ : $Z(h)\backslash Garrow G$ be a section of $\pi(\pi os= Id)$ .
Since $s(x*y)$ and $s(x)\bullet$ $s(y)$ are in the same coset in $Z(h)\backslash G$ , there exists an element
$c(x, y)\in Z(h)$ satisfying

$s(x*y)=c(x, y)s(x)\bullet s(y)$ .
Lemma 7.2. If $Z(h)$ is an abelian group, $c:X\cross Xarrow Z(h)$ is a quandle 2-cocycle. If
the cocycle $c$ is cohomologous to zero, we can change the section $s$ to satisfy $s(x*y)=$
$s(x)\bullet s(y)$ .
Example 7.3. Let $G$ be the dihedral group $D_{2p}=\langle h,$ $x|h^{2}=x^{p}=hxhx=1\rangle$ where $p$ is
an odd number. Then we have $Z(h)=\{1, h\}$ and Conj $(h)=\{x^{-i}hx^{i}|i=0,1, \ldots,p-1\}=$

$\{hx^{2i}|i=0, \ldots,p-1\}$ . We can identify $x^{-i}hx^{i}\in$ Conj $(h)$ with $i\in R_{\tau}=\{0,1,2, \ldots,p-1\}$ .
Define a section $s:Z(h)\backslash Garrow G$ by

Conj $(h)$ $\cong$ $Z(h)\backslash G$
$arrow s$ $G$

(1) u) (V

$x^{-i}hx^{i}$ $rightarrow$ $Z(h)x^{i}$ $\mapsto$ $hx^{i}$
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Then we have
$s(Z(h)x^{i}*Z(h)x^{j})=s(Z(h)x^{2j-i})=hx^{2j-i}$

$=h^{-1}(hx^{i})(x^{-j}hx^{j})=s(Z(h)x^{i})$ $\bullet$ $s(Z(h)x^{j})$ .

Therefore $c(x, y)=0$ for any $x,$ $y\in R_{\tau}$ .

Let $G$ be a group. Fix $h\in G$ with $h^{l}=1(l>1)$ . We assume that $Z(h)$ is abelian and
the 2-cocycle corresponding to $Garrow Z(h)\backslash G$ is cohomologous to zero. Let $s:Z(h)\backslash Garrow$

$G$ be a section satisfying $s(x*y)=s(x)$ $\bullet$ $s(y)$ . Let $f$ : $G^{k+1}arrow A$ be a normalized group
k-cocycle in homogeneous notation. Then $f$ satisfies

(1) $\sum_{i=0}^{k+1}(-1)^{i}f(x_{0}, \ldots,\hat{x_{i}}, \ldots, x_{k+1})=0$ ,

(2) $f(gx_{0}, \ldots, gx_{k})=f(x_{0}, \ldots, x_{k})$ for any $g\in G$ (left invariance),
(3) $f(x_{0}, \ldots, x_{k})=0$ if $x_{i}=x_{i+1}$ for some $i$ .

In the following construction, it is convenient to use a right invariant function. So we
replace $f(x_{0}, \ldots, x_{k})$ by $f(x_{0}^{-1}, \ldots, x_{k}^{-1})$ . Define $f$ ; Conj $(h)^{k+1}arrow A$ by

$f(x_{0} \ldots., x_{k})=\sum_{i=0}^{l-1}f(h^{i}s(x_{0}), \ldots, h^{i}s(x_{k}))$

for $x_{0},$ $\ldots,$
$x_{k}\in$ Conj $(h)$ .

Proposition 7.4. The function $f$ satisfies the conditions (1), (2) and (3) of Section 5.
Therefore $f$ gives rise to a quandle k-cocycle of $H_{\Delta}^{k}$ (Conj $(h);A$ ) and $H_{Q}^{k}(Conj(h);A)$ .

Proof. It is clear to satisfy (1) and (3) from the conditions on a normalized group cocycle
in homogeneous notation. We only have to check the second property.

$f(x_{0}*y, \ldots, x_{k}*y)$

$= \sum_{i=0}^{l-1}f(h^{i}s(x_{0}*y), \ldots, h^{i}s(x_{k}*y))$

$= \sum_{i=0}^{l-1}f(h^{i}s(x_{0})\bullet s(y), \ldots, h^{i}s(x_{k})\bullet s(y))$

$= \sum_{i=0}^{l-1}f(h^{i-1}s(x_{0})(s(y)^{-1}hs(y)), \ldots, h^{i-1}s(x_{k})(s(y)^{-1}hs(y)))$

$= \sum_{i=0}^{l-1}f(h^{i-1}s(x_{0}), \ldots, h^{i-1}s(x_{k}))$ (right invariance)

$=f(x_{0}, \ldots, x_{k})$

$\square$
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Corollary 7.5. If $Z(h)$ is abelian and the 2-cocycle corresponding to $Garrow Z(h)\backslash G$ is
cohomologous to zero, then there is a homomorphism

$H^{n}(G;A)arrow H_{Q}^{n}$ (Conj $(h);A$ )

for any abelian group $A$ .

Since there exists a homomorphism from the associated group $G_{Conj(h)}$ to $G$ , we have a
homomorphism

$H^{n}(G;A)arrow H^{n}(G_{Conj(h)};A)arrow H_{Q}^{n}$ (Conj $(h);A$)

from the construction of Section 3.2. I do not know any relation between these homomor-
phisms.

7.2. We return to the case of $R_{p}$ discussed in the previous section. Let $G$ be the dihedral
group $D_{2p}$ . Consider the short exact sequence

(7.1) $0arrow \mathbb{Z}/parrow D_{2p}arrow \mathbb{Z}/2arrow 0$ .

This induces a map
$H^{*}(D_{2p};\mathbb{Z}/p)arrow H^{*}(\mathbb{Z}/p;\mathbb{Z}/p)^{\mathbb{Z}/2}$.

We can show that this map is an isomorphism. Consider the Hochschild-Serre spectral
sequence of (7.1). Since $E_{2}^{rs}=H^{r}(\mathbb{Z}/2;H^{s}(\mathbb{Z}/p;\mathbb{Z}/p))=0$ for $r>0$ , we have $E_{\infty}^{rs}=0$ for
$r>0$ and $E_{\infty}^{0s}\cong H^{s}(\mathbb{Z}/p;\mathbb{Z}/p)^{\mathbb{Z}/2}$ . So we have $H^{s}(D_{2p};\mathbb{Z}/p)\cong E_{\infty}^{0s}\cong H^{s}(\mathbb{Z}/p;\mathbb{Z}/p)^{\mathbb{Z}/2}$ .
Let $f$ be the group 3-cocycle $(x, y, z)\mapsto x\cdot d(y, z)$ , which was discussed in the previous
section. This is a $\mathbb{Z}/2$-invariant 3-cocycle of $H^{3}(\mathbb{Z}/p;\mathbb{Z}/p)$ , therefore a 3-cocycle of $D_{2p}$ .
Applying our construction for this group cocycle, we obtain a quandle 3-cocycle of $R_{\tau}$ ,
which is twice the cocycle constructed in the previous section.

7.3. Considering the dual of our construction, we obtain a group cycle represented by a
cyclic branched covering along a knot $K$ in the following way.

Let $X$ be the quandle Conj $(h)$ . Let $S$ be a shadow coloring of a knot diagram $D$ with
arc and region color by $X$ . Then a cycle $C(S)$ was defined in Section 4. Now $\varphi(C(S))$

is a cycle in $C_{3}^{\triangle}(X)\otimes_{\mathbb{Z}[G_{X}]}\mathbb{Z}$ but not in $C_{3}^{\Delta}(X)$ . Define a map $\iota$ : $C_{n}^{\Delta}(X)arrow C_{n}^{f}(G)$

by $\iota(x_{0}, \ldots, x_{n})\mapsto(s(x_{0}), \ldots, s(x_{n}))$ . Then $\iota(\varphi(C(S)))\in C_{n}’(G)$ is still not a cycle in
general.

Let $x\in X$ be the color of an arc. Define an arc coloring $\mathcal{A}*x$ by

$(\mathcal{A}*x)(a)=\mathcal{A}(a)*x$ , $(\mathcal{R}*x)(r)=\mathcal{R}(r)*x$ (for any arc $a$ and region $r$ ).

Then $S*x=(\mathcal{A}(m_{i})*x, \mathcal{R}*x)$ is also a shadow coloring. We can show that the sum

$\iota(\varphi(C(S)))+\iota(\varphi(C(S*x)))+\iota(\varphi(C(S*x^{2})))+\cdots+\iota(\varphi(C(S*x^{l-1})))$

is a group cycle represented by the l-fold cyclic branched covering along the knot $K$ .
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7.4. Relative group homology. Let $G$ be a group and $H$ be a subgroup of $G$ . We
define the relative group homology $H_{n}(G, H;\mathbb{Z})$ by the homology of the mapping cone of
the map $C_{n}(H)\otimes_{\mathbb{Z}[H]}\mathbb{Z}arrow C_{n}(G)\otimes_{\mathbb{Z}[G]}\mathbb{Z}$ . We can compute $H_{n}(G, H;\mathbb{Z})$ as follows.

Lemma 7.6. Let $K$ be the kemel of $C_{0}(H\backslash G)arrow \mathbb{Z}.$ Let $\cdotsarrow F_{2}arrow F_{1}arrow Karrow 0$ be a
free resolution of $K$ as $\mathbb{Z}[G]$ -module. Then $H_{n}(G, H;\mathbb{Z})\cong H_{n}(F_{*}\otimes_{Z[G]}\mathbb{Z})$ for $n\geq 1$ .

The quandle Conj $(h)$ can be identified with $Z(h)\backslash G$ . It is easy to check that the complex
$C_{*}^{\Delta}(Z(h)\backslash G)$ is acyclic and have a $\mathbb{Z}[G]$-module structure. If the following acyclic complex

. . . $arrow C_{2}^{\Delta}(Z(h)\backslash G)arrow C_{1}^{\Delta}(Z(h)\backslash G)arrow Ker(C_{0}^{\Delta}(Z(h)\backslash G)arrow \mathbb{Z})arrow 0$

is a projective resolution, $H_{n}^{\Delta}(Z(h)\backslash G)$ is isomorphic to the relative group homology
$H_{n}(G, Z(h);\mathbb{Z})$ .
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