
Bounds of minimal dilatation for
pseudo-Anosovs and the magic 3-manifold

Eiko Kin and Mitsuhiko Takasawa

1 Minimal dilatation of pseudo-Anosovs
Let $\Sigma=\Sigma_{g,n}$ be an orientable surface of genus $g$ with $n$ punctures, and
let Mod $(\Sigma)$ be the mapping class group. Mapping classes $\phi\in$ Mod $(\Sigma)$

are classified into 3 types, periodic, reducible, pseudo-Anosov. There
exist two numerical invariants of pseudo-Anosov mapping classes. One
is the entropy ent $(\phi)$ which is the logarithm of the dilatation $\lambda(\phi)>1$ .
The other is the volume $vol(\phi)$ which is the hyperbolic volume of the
mapping torus of $\phi$

$\mathbb{T}(\phi)=\Sigma\cross[0,1]/\sim$ ,

where $\sim identifies(x, 1)$ with $(f(x), 0)$ for any representative $f\in\phi$ .
We denote by $\delta_{g,n}$ , the minimal dilatation for pseudo-Anosov ele-

ments $\phi\in$ Mod $(\Sigma_{g,n})$ . We set $\delta_{g}=\delta_{g,0}$ . A natural question arises.

Question 1.1. What is the value of $\delta_{g,n}$ ? Find a pseudo-Anosov ele-
ment of Mod $(\Sigma_{g,n})$ whose dilatation is equal to $\delta_{g,n}$ .

The above question is hard in general. For instance, in the case of closed
surfaces, it is open to determine the values $\delta_{g}$ for $g\geq 3$ . On the other
hand, one understands the asymptotic behavior of the minimal entropy
$\log\delta_{g}$ . Penner proved that $\log\delta_{g^{\vee}}\wedge\frac{1}{g}[12]$ . The following question posed
by McMullen.

Question 1.2 ([11]). Does $\lim_{garrow\infty}g\log\delta_{g}$ exist? What is its value?

Note that $\lim_{garrow\infty}g\log\delta_{g}$ exists if and only if $\lim_{garrow\infty}|\chi(\Sigma_{g})|\log\delta_{g}$ exists,

where $\chi(\Sigma)$ is the Euler characteristic of $\Sigma$ .
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Figure 1: (left) 3 chain link $C_{3}$ . (center) $(-2,3,8)$ -pretzel link or White-
head sister link. (right) link $6_{2}^{2}$ . $(N$ equals the exterior of $C_{3}$ . $N( \frac{-3}{2})$ is
homeomorphic to the $(-2,3,8)$-pretzel link exterior. $N( \frac{-1}{2})$ is homeo-
morphic to the $6_{2}^{2}$ link exterior.)

Related questions on the minimal dilatation are ones for orientable
pseudo-Anosovs. A pseudo-Anosov mapping class $\phi$ is said to be $or^{J}i-$

entable if the invariant (un)stable foliation for a pseudo-Anosov homeo-
morphism $\Phi\in\phi$ is orientable. We denote by $\delta_{g}^{+}$ , the minimal dilatation
for orientable pseudo-Anosov elements of Mod $(\Sigma_{g})$ for a closed surface
$\Sigma_{g}$ of genus $g$ .

In this paper, we report our results in [7, 8] on the minimal di-
latation by investigating the so called magic manifold $N$ which is the
exterior of the 3 chain link $C_{3}$ , see Figure 1(left). In Section 2, we de-
scribe a motivation for the study of pseudo-Anosovs which occur as the
monodromies on fibers for Dehn fillings of $N$ . In Section 3, we state
our results.

We would like to note that this paper only contains some results in
[7, 8] and does not contain their proofs. The readers who are interested
in the details should consult (the introduction of) [7, 8].

2 Why is the magic manifold an intrigu-
ing example?

Gordon and Wu named the exterior of the link $C_{3}$ the magic manifold
$N$ , see [3]. The reason why this manifold is called “magic” is that many
important examples for the study of the exceptional Dehn fillings can
be obtained from the Dehn fillings of a single manifold $N$ . The magic

100



manifold is fibered and it has the smallest known volume among ori-
entable hyperbolic 3-manifolds having 3 cusps. Many manifolds having
at most 2 cusps with small volume are obtained from $N$ by Dehn fillings,
see [10].

2.1 Entropy versus volume
Both invariants entropy ent $(\phi)$ and volume $vol(\phi)$ know some complex-
ity of pseudo-Anosovs $\phi$ . A natural question is how these are related.

Theorem 2.1 ([6]). There exists a constant $B=B(\Sigma)$ depending only
on the topology of $\Sigma$ such that the inequality,

$Bvol(\phi)\leq$ ent $(\phi)$

holds for any pseudo-Anosov $\phi$ on $\Sigma$ . Furthermore, for any $\epsilon>0_{f}$ there
exists a constant $C=C(\epsilon, \Sigma)>1$ depending only on $\epsilon$ and the topology
of $\Sigma$ such that the inequality

ent $(\phi)\leq Cvol(\phi)$

holds for any pseudo-Anosov $\phi$ on $\Sigma$ whose mapping torus $\mathbb{T}(\phi)$ has no
closed geodesics of length $<\epsilon$ .

The first part of Theorem 2.1 says that if the entropy is small, the
volume can not be large.

For a non-negative integer $c$ , we set

$\lambda(\Sigma;c)$ $=$ $\min${ $\lambda(\phi)|\phi\in$ Mod $(\Sigma),$ $\mathbb{T}(\phi)$ has $c$ cusps},
$vol(\Sigma;c)$ $=$ $\min${ $vol(\phi)|\phi\in$ Mod $(\Sigma),$ $\mathbb{T}(\phi)$ has $c$ cusps}.

A variation on the questions of the minimal dilatations is to determine
$\lambda(\Sigma;c)$ and to find a mapping class realizing the minimum. In [6],
the authors and S. Kojima obtain experimental results concerning the
minimal dilatation. In the case the mapping class group Mod $(D_{n})$ of
an n-punctured disk $D_{n}$ , they observe that for many pairs $(n, c)$ , there
exists a pseudo-Anosov element simultaneously reaching both minima
$\lambda(D_{n};c)$ and $vol(D_{n};c)$ . Experiments tell us that in case $c=3$ , the
mapping tori reaching both minima are homeomorphic to $N$ . More-
over when $c=2$ , it is observed that there exists a mapping class $\phi$
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realizing both $\lambda(D_{n};2)$ and $vol(D_{n};2)$ and its mapping torus $\mathbb{T}(\phi)$ is
homeomorphic to a Dehn filling of $N$ along one cusp. This is a moti-
vation for us for focusing on $N$ .

2.2 Small dilatation pseudo-Anosovs

After we have finished our papers [6, 7], we leaned the small dilatation
pseudo-Anosovs, introduced by Farb, Leininger and Margalit.

For any number $P>1$ , define the set of pseudo-Anosov homeomor-
phisms

$\Psi_{P}=$ {pseudo-Anosov $\Phi$ : $\Sigmaarrow\Sigma|\chi(\Sigma)<0$ , lx $(\Sigma)|\log\lambda(\Phi)\leq\log P$}.

Elements $\Phi\in\Psi_{P}$ are called small dilatation pseudo-Anosov homeo-
morphisms. If one takes $P$ sufficiently large $(e.g. P\geq 2+\sqrt{3})$ , then
$\Psi_{P}$ contains a pseudo-Anosov homeomorphism $\Phi_{g}:\Sigma_{g}arrow\Sigma_{g}$ for each
$g\geq 2$ . By a result in [5], $\Psi_{P}$ also contains pseudo-Anosov homeomor-
phism $\Phi_{n}$ : $D_{n}arrow D_{n}$ for each $n\geq 3$ . Let $\Sigma^{o}\subset\Sigma$ be the surface ob-
tained by removing the singularities of the (un)stable foliation for $\Phi$ and
$\Phi|\Sigma^{\circ}$ : $\Sigma^{o}arrow\Sigma^{o}$ denotes the restriction. Observe that $\lambda(\Phi)=\lambda(\Phi|\Sigma\circ)$ .
The set

$\Psi_{P}^{o}=\{\Phi|_{\Sigma O}:\Sigma^{o}arrow\Sigma^{o}|(\Phi;\Sigmaarrow\Sigma)\in\Psi_{P}\}$

is infinite. Let $\mathcal{T}(\Psi_{P}^{o})$ be the set of homeomorphism classes of mapping
tori by elements of $\Psi_{P}^{o}$ .

Theorem 2.2 ([2]). The set $\mathcal{T}(\Psi_{P}^{o})$ is finite. Namely, for each $P>1_{f}$

there exist finite many complete, non compact hyperbolic 3-manifolds
$M_{1},$ $M_{2},$ $\cdots,$

$M_{r}$ fibering over $S^{1}$ so that the following holds. Any pseudo-
Anosov $\Phi\in\Psi_{P}$ occurs as the monodromy of a Dehn filling of one of
the $M_{k}$ . In particular, there exists a constant $V=V(P)$ such that
$vol(\Phi)\leq V$ holds for any $\Phi\in\Psi_{P}$ .

It is not known that how large the set of manifolds $\{M_{1}, \cdots, M_{r}\}$ is.
By Theorem 2.2, one sees that the following set $\mathcal{V}$ is finite.

$\mathcal{V}=$ { $\mathbb{T}(\Phi|_{\Sigma^{o}})|n\geq 3,$ $\Phi$ is pseudo-Anosov on $\Sigma=D_{n},$ $\lambda(\Phi)=\delta(D_{n})$ },

where $\delta(D_{n})$ denotes the minimal dilatation for pseudo-Anosov ele-
ments of Mod$(D_{n})$ on $D_{n}$ .
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In [7], we show that for each $n\geq 9$ $($ resp. $n=3,4,5,7,8)$ , there ex-
ists a pseudo-Anosov homeomorphism $\Phi_{n}$ : $D_{n}arrow D_{n}$ with the smallest
known entropy (resp. the smallest entropy) which occurs as the mon-
odromy on an n-punctured disk fiber for the Dehn filling of $N$ . A
pseudo-Anosov homeomorphism $\Phi_{6}$ : $D_{6}arrow D_{6}$ with the smallest en-
tropy occurs as the monodromy on a 6-punctured disk fiber for $N$ . In
particular, $N\in \mathcal{V}$ . See also work of Venzke [13]. This result suggests
that one may have a chance to find pseudo-Anosov homeomorphisms
with small dilatation on other surfaces which arise as the monodromies
on fibers for Dehn fillings of $N$ . This is another motivation for us.

3 Results
Let us introduce the following polynomial

$f_{(k,l)}(t)=t^{2k}-t^{k+\ell}-t^{k}-t^{k-\ell}+1$ for $k>0,$ $-k<P<k$ ,

having a unique real root $\lambda_{(k,\ell)}$ greater than 1 [8]. For the rational
number $r$ , let $N(r)$ be the Dehn filling of $N$ along the slope $r$ .

Theorem 3.1. Let $r \in\{\frac{-3}{2}, \frac{-1}{2},2\}$ . For each $g\geq 3$ , there exists a
monodromy $\Phi_{g}=\Phi_{g}(r)$ on a closed fiber of genus $g$ for a Dehn filling
of $N(r)$ , where the filling is on the boundary slope of a fiber of $N(r)$ ,
such that

$\lim_{garrow\infty}g\log\lambda(\Phi_{g})=\log(\frac{3+\sqrt{5}}{2})$ .

In particular
$\lim_{garrow\infty}\sup g\log\delta_{g}\leq\log(\frac{3+\sqrt{5}}{2})$ .

Remark 3.2. Independently, Hironaka has obtained Theorem 3.1 in
case $r= \frac{-1}{2}[41\cdot$ Independently, Aaber and Dunfield have obtained
Theorem 3.1 in case $r= \frac{-3}{2}[1J$ . They have obtained similar results on
the dilatation to those given in [8].

By using monodromies on closed fibers coming from $N( \frac{-3}{2})$ , we find
an upper bound of $\delta_{g}$ for $g\equiv 0,1,5,6,7,9(mod 10)$ and $g\geq 5$ .

Theorem 3.3. (1) $\delta_{g}\leq\lambda_{(g+2,1)}$ if $g\equiv 0,1,5,6(mod 10)$ and $g\geq 5$ .
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(2) $\delta_{g}\leq\lambda_{(g+2,2)}$ if $g\equiv 7,9(mod 10)$ and $g\geq 7$ .

For more details of an upper bound of $\delta_{g}$ for other $g$ (e.g. $g\equiv 2,4$

$(mod 10))$ , see [8]. The bound in Theorem 3.3 improves the one by
Hironaka [4].

We turn to the study on the minimal dilatations $\delta_{g}^{+}$ for orientable
pseudo-Anosovs. The minima $\delta_{g}^{+}$ were determined for $g=2$ by Zhirov
[14], for $3\leq g\leq 5$ by Lanneau-Thiffeault [9], and for $g=8$ by Lanneau-
Thiffeault and Hironaka [9, 4]. Those values are given by $\delta_{2}^{+}=\lambda_{(2,1)}$ ,
$\delta_{3}^{+}=\lambda_{(3,1)}=\lambda_{(4,3)}\approx 1.40127,$ $\delta_{4}^{+}=\lambda_{(4,1)}\approx 1.28064,$ $\delta_{5}^{+}=\lambda_{(6,1)}=$

$\lambda_{(7,4)}\approx 1.17628$ and $\delta_{8}^{+}=\lambda_{(8,1)}\approx 1.12876$ .
We recall the lower bounds of $\delta_{6}^{+}$ and $\delta_{7}^{+}$ and the question on $\delta_{g}^{+}$ for

$g$ even by Lanneau-Thiffeault.

Theorem 3.4 ([9]).

(1) $\delta_{6}^{+}\geq\lambda_{(6,1)}\approx 1.17628$ .

(2) $\delta_{7}^{+}\geq\lambda_{(9,2)}\approx 1.11548$ .

Question 3.5 ([9]). For $g$ even, is $\delta_{g}^{+}$ equal to $\lambda_{(g,1)}$ ?

We give an upper bound of $\delta_{g}^{+}$ in case $g\equiv 1,5,7,9(mod 10)$ using
orientable pseudo-Anosov monodromies coming from $N( \frac{-3}{2})$ .

Theorem 3.6. (1) $\delta_{g}^{+}\leq\lambda_{(g+2,2)}$ if $g\equiv 7,9(mod 10)$ and $g\geq 7$ .

(2) $\delta_{g}^{+}\leq\lambda_{(g+2,4)}$ if $g\equiv 1,5(mod 10)$ and $g\geq 5$ .

The bound in Theorem 3.6 improves the one by Hironaka [4]. Theo-
rem 3.6(1) together with Theorem 3.4(2) gives:

Corollary 3.7. $\delta_{7}^{+}=\lambda_{(9,2)}$ .

Independently, Corollary 3.7 was established by Aaber and Dunfiled
[1].

The following tells us that the sequence $\{\delta_{g}^{+}\}_{g\geq 2}$ is not monotone
decreasing.

Proposition 3.8. If Question 3.5 is true, then $\delta_{g}^{+}<\delta_{g+1}^{+}$ whenever
$g\equiv 1,5,7,9(mod 10)$ and $g\geq 7$ . In particular the inequality $\delta_{7}^{+}<\delta_{8}^{+}$

holds.
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Our pseudo-Anosov homeomorphisms providing the upper bound of $\delta_{g}$

in Theorem 3.3(1) are not orientable. This together with the inequality
$\lambda_{(7,1)}<\lambda_{(6,1)}=\delta_{5}^{+}$ implies:

Corollary 3.9. $\delta_{5}<\delta_{5}^{+}$ .
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