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Bounds of minimal dilatation for
pseudo-Anosovs and the magic 3-manifold

Eiko Kin and Mitsuhiko Takasawa

1 Minimal dilatation of pseudo-Anosovs

Let ¥ = X, , be an orientable surface of genus g with n punctures, and
let Mod(X) be the mapping class group. Mapping classes ¢ € Mod(X)
are classified into 3 types, periodic, reducible, pseudo-Anosov. There
exist two numerical invariants of pseudo-Anosov mapping classes. One
is the entropy ent(¢) which is the logarithm of the dilatation A(¢) > 1.
The other is the volume vol(¢) which is the hyperbolic volume of the
mapping torus of ¢
T(¢) =X X [07 1]/ ~

where ~ identifies (z, 1) with (f(z),0) for any representative f € ¢.
We denote by 4, ,, the minimal dilatation for pseudo-Anosov ele-
ments ¢ € Mod(3,,). We set §, = Jy0. A natural question arises.

Question 1.1. What is the value of 6,,% Find a pseudo-Anosov ele-
ment of Mod(E, ) whose dilatation is equal to dgp.

The above question is hard in general. For instance, in the case of closed
surfaces, it is open to determine the values d, for g > 3. On the other
hand, one understands the asymptotic behavior of the minimal entropy
log §,. Penner proved that log §, < % [12]. The following question posed

by McMullen. !

Question 1.2 ([11]). Does lim glogd, exist? What is its value?
g—o0

Note that lim glogd, exists if and only if lim [x(Z,)|logd, exists,
g—00

g—00

where x(X) is the Euler characteristic of X.
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Figure 1: (left) 3 chain link C3. (center) (—2, 3, 8)-pretzel link or White-
head sister link. (right) link 62. (N equals the exterior of C3. N(32) is
homeomorphic to the (—2, 3, 8)-pretzel link exterior. N(5t) is homeo-
morphic to the 62 link exterior.)
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Related questions on the minimal dilatation are ones for orientable
pseudo-Anosovs. A pseudo-Anosov mapping class ¢ is said to be ori-
entable if the invariant (un)stable foliation for a pseudo-Anosov homeo-
morphism ® € ¢ is orientable. We denote by 5g+, the minimal dilatation
for orientable pseudo-Anosov elements of Mod(Z,) for a closed surface
24 of genus g.

In this paper, we report our results in [7, 8] on the minimal di-
latation by investigating the so called magic manifold N which is the
exterior of the 3 chain link C3, see Figure 1(left). In Section 2, we de-
scribe a motivation for the study of pseudo-Anosovs which occur as the
monodromies on fibers for Dehn fillings of V. In Section 3, we state
our results.

We would like to note that this paper only contains some results in
[7, 8] and does not contain their proofs. The readers who are interested
in the details should consult (the introduction of) 7, §].

2 Why is the magic manifold an intrigu-
ing example?

Gordon and Wu named the exterior of the link C3 the magic manifold
N, see [3]. The reason why this manifold is called “magic” is that many
important examples for the study of the exceptional Dehn fillings can
be obtained from the Dehn fillings of a single manifold N. The magic
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manifold is fibered and it has the smallest known volume among ori-
entable hyperbolic 3-manifolds having 3 cusps. Many manifolds having

at most 2 cusps with small volume are obtained from /N by Dehn fillings,
see [10].

2.1 Entropy versus volume

Both invariants entropy ent(¢) and volume vol(¢) know some complex-
ity of pseudo-Anosovs ¢. A natural question is how these are related.

Theorem 2.1 ([6]). There exists a constant B = B(X) depending only
on the topology of ¥ such that the inequality,

Bvol(¢) < ent(9)

holds for any pseudo-Anosov ¢ on X. Furthermore, for anye > 0, there
exists a constant C = C(e,X) > 1 depending only on € and the topology
of ¥ such that the inequality

ent(¢) < C vol(¢)

holds for any pseudo-Anosov ¢ on ¥ whose mapping torus T(¢) has no
closed geodesics of length < €.

The first part of Theorem 2.1 says that if the entropy is smiall, the
volume can not be large.
For a non-negative integer c, we set

A2Z;¢) = min{A(¢) | ¢ € Mod(XZ), T(¢) has c cusps},
vol(3;¢) = min{vol(¢) | # € Mod(X), T(¢) has c cusps}.

A variation on the questions of the minimal dilatations is to determine
AM(Z;c) and to find a mapping class realizing the minimum. In [6],
the authors and S. Kojima obtain experimental results concerning the
minimal dilatation. In the case the mapping class group Mod(D,,) of
an n-punctured disk D,, they observe that for many pairs (n, c), there
exists a pseudo-Anosov element simultaneously reaching both minima
A(Dp;c) and vol(D,;c). Experiments tell us that in case ¢ = 3, the
mapping tori reaching both minima are homeomorphic to N. More-
over when ¢ = 2, it is observed that there exists a mapping class ¢
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realizing both A(D,;2) and vol(D,;2) and its mapping torus T(¢) is
homeomorphic to a Dehn filling of N along one cusp. This is a moti-
vation for us for focusing on N.

2.2 Small dilatation pseudo-Anosovs

After we have finished our papers [6, 7], we leaned the small dilatation
pseudo-Anosovs, introduced by Farb, Leininger and Margalit.

For any number P > 1, define the set of pseudo-Anosov homeomor-
phisms

Up = {pseudo-Anosov @ : & — & | x(X) < 0, |x(X)|log A(®) < log P}.

Elements ® € ¥p are called small dilatation pseudo-Anosov homeo-
morphisms. If one takes P sufficiently large (e.g. P > 2+ 1/3), then
Up contains a pseudo-Anosov homeomorphism &, : £, — 3, for each
g > 2. By aresult in [5], ¥p also contains pseudo-Anosov homeomor-
phism ®, : D, — D, for each n > 3. Let £° C ¥ be the surface ob-
tained by removing the singularities of the (un)stable foliation for ¢ and
|50 : 3° — X° denotes the restriction. Observe that A(®) = A(®|xo).
The set
S ={®ge > X°| (P:Z - L) e VUp}

is infinite. Let 7(¥%) be the set of homeomorphism classes of mapping
tori by elements of ¥%.

Theorem 2.2 ([2]). The set T(¥%) is finite. Namely, for each P > 1,
there exist finite many complete, non compact hyperbolic 3-manifolds
My, My, -+ , M, fibering over S* so that the following holds. Any pseudo-
Anosov ® € Up occurs as the monodromy of a Dehn filling of one of
the My. In particular, there exists a constant V = V(P) such that
vol(®) < V holds for any ® € ¥p.

It is not known that how large the set of manifolds {Mi,--- , M,} is.
By Theorem 2.2, one sees that the following set V is finite.

V = {T(®|g-) | n > 3, ®is pseudo-Anosov on ¥ = Dy, A(®) = §(Dy)},

where §(D,) denotes the minimal dilatation for pseudo-Anosov ele-
ments of Mod(D,,) on D,,.
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In [7], we show that for each n > 9 (resp. n = 3,4,5,7,8), there ex-
ists a pseudo-Anosov homeomorphism ®,, : D,, — D,, with the smallest
known entropy (resp. the smallest entropy) which occurs as the mon-
odromy on an n-punctured disk fiber for the Dehn filling of N. A
pseudo-Anosov homeomorphism ®g : Dg — Dg with the smallest en-
tropy occurs as the monodromy on a 6-punctured disk fiber for N. In
particular, N € V. See also work of Venzke [13]. This result suggests
that one may have a chance to find pseudo-Anosov homeomorphisms
with small dilatation on other surfaces which arise as the monodromies
on fibers for Dehn fillings of N. This is another motivation for us.

3 Results

Let us introduce the following polynomial
foep(@) =t =tttk —tFt L1 for k>0, ~k < €<k,

having a unique real root A( e greater than 1 [8]. For the rational
number 7, let N(r) be the Dehn filling of N along the slope .

Theorem 3.1. Let r € {32, 3},2}. For each g > 3, there exists a
monodromy ®, = ®4(r) on a closed fiber of genus g for a Dehn filling
of N(r), where the filling is on the boundary slope of a fiber of N(r),
such that

lim glog \(®,) = log(3+‘/_)

g—o0

In particular

hm sup glog §, < log(3X2 ‘/—)
Remark 3.2. Independently, Hironaka has obtained Theorem 3.1 in
case 1 = S+ [{]. Independently, Aaber and Dunfield have obtained
Theorem 3.1 in case T = 52 [1]. They have obtained similar results on
the dilatation to those given in [8].

By using monodromies on closed fibers coming from N (:2§), we find
an upper bound of §, for g =0,1,5,6,7,9 (mod 10) and g > 5.

Theorem 3.3. (1) §; < Agt21) f9=0,1,5,6 (mod 10) and g > 5.
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(2) 0y < Agt22) f9=7,9 (mod 10) and g > 7.

For more details of an upper bound of §, for other g (e.g. g = 2,4
(mod 10)), see [8]. The bound in Theorem 3.3 improves the one by
Hironaka, [4]. |

We turn to the study on the minimal dilatations 6; for orientable
pseudo-Anosovs. The minima 5; were determined for g = 2 by Zhirov
[14], for 3 < g < 5 by Lanneau-Thiffeault [9], and for g = 8 by Lanneau-
Thiffeault and Hironaka [9, 4]. Those values are given by 65 = A1),
5; = A(g,l) = /\(4’3) ~ 140127, (SZ = /\(4’1) ~ 128064, 6;- = )\(6,1) =
A4y = 1.17628 and &5 = Ag1) =~ 1.12876.

We recall the lower bounds of §¢ and 7 and the question on 6, for
g even by Lanneau-Thiffeault.

Theorem 3.4 ([9)).

(1) 6 > A1) ~ 1.17628.

(2) 0F > Ao =~ 1.11548.

Question 3.5 ([9]). For g even, is §f equal to A1) ?

We give an upper bound of §; in case g =1,5,7,9 (mod 10) using
orientable pseudo-Anosov monodromies coming from N(32).

Theorem 3.6. (1) 6] < Agy22) f9=17,9 (mod 10) and g > 7.
(2) 65 < Agr24) fg=1,5 (mod 10) and g > 5.

The bound in Theorem 3.6 improves the one by Hironaka [4]. Theo-
rem 3.6(1) together with Theorem 3.4(2) gives:

Corollary 3.7. 87 = A\g2).

Independently, Corollary 3.7 was established by Aaber and Dunfiled
[1].

The following tells us that the sequence {4 }4>2 is not monotone
decreasing.

Proposition 3.8. If Question 3.5 is true, then 5; < 6;+1 whenever
g=1,5,7,9 (mod 10) and g > 7. In particular the inequality 67 < &5
holds.
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Our pseudo-Anosov homeomorphisms providing the upper bound of 4,
in Theorem 3.3(1) are not orientable. This together with the inequality
A1) < A1) = 5;_ implies:

Corollary 3.9. 65 < 67.
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