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1 Model for Crack Evolution
Many methods are proposed for numerical computations on crack evolution
problems, because of the difficulty of the singularity arising from the crack tip,
change of computational boundary arising from the new crack surface, lack of
the explicit method to determine the direction of expand the crack. We show
that the mode III (anti-plane shear mode) crack growth on a plate is described as
reaction-diffusion system that is consisted by the of the anti-plane displacement
and the phase field that describes the crack[2]. This system is derived from the
energy description introduced by Francfort and Marigo[l], We show that this
reaction-diffusion system make the computation of the crack problem easy.

(a) (b) (c)

Figure 1: 3 modes of the crack evolution on a plate (a) mode I, (b) mode II, (c)
mode III.

We derive equation for the crack evolution of the plate, that is expanded
by the small anti-plane displacement (Figure 1 $(c)$ ). Let $\Gamma$ be a bounded two
dimensional domain with a piecewise smooth boundary $\Gamma_{N}$ , and let $\Gamma_{D}$ be a
nonempty open portion of $\Gamma_{N}$ which consists of a finite number of connected
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components. We define $\Gamma_{N}$ $:=\Gamma\backslash \Gamma_{D}$ . For $t>0$ , we consider the equations:

$\{\begin{array}{ll}\alpha_{1}\frac{\partial u}{\partial t} = div((1-z)^{2}\nabla u) x\in\Omega, t>0\alpha_{2}\frac{\partial z}{\partial t} = (\epsilon\triangle z-\frac{\gamma^{2}}{\epsilon}z+|\nabla u|^{2}(1-z))_{+} x\in\Omega, t>0u(x, t) = g(x, t) x\in\Gamma_{D}, t>0\frac{\partial u}{\partial n}=0 x\in\Gamma_{N}, t>0, \frac{\partial z}{\partial n}=0 x\in\Gamma, t>0u(x, 0)=u_{0}(x), z(x, 0)=z_{0}(x) x\in\Omega\end{array}$ (1)

where $u(x, t)$ represents the small anti-plane displacement at the position $x\in\overline{\Omega}$

and time $t\geq 0$ , and $g(x, t)$ is a given anti-plane displacement on the boundary
$\Gamma_{D}$ . The variable $z(x, t)$ satisfies $0\leq z(x, t)\leq 1$ in $\Omega$ and represents the
crack shape, as $z\approx O$ in the region without crack and $z\approx 1$ near the crack. The
minimum length scale of $z$ is given as $O(\epsilon)$ with a small regularization parameter
$\epsilon>0$ for the numerical stability. The function $z(x, t)$ is called the phase field
for the crack shape. For stable numerical simulations, we also introduce small
time relaxation parameters $\alpha_{1}\geq 0$ and $\alpha_{2}>0$ .

The first equation of (1) expresses the force balance in the uncracked region
$(z\approx 0)$ , and the second equation expresses the crack evolution due to the
modulus of the stress Vu $|$ . The material constant $\gamma>0$ is called the fracture
toughness, which prescribes the critical value of the energy release rate in the
Griffith $s$ criterion. It is harder for the crack to grow, if the value of $\gamma$ is larger.

A crack once generated can be no longer repaired. We put $($ $)_{+}$ to the right
hand side of the second equation, where $(a)_{+}= \max(a, 0)$ . It guarantees the
non-repair condition for the crack: $\frac{\partial z}{\partial t}\geq 0$ .

This model has advantages for numerical simulation of crack evolution as
followings: i) automatic path selection of the crack that means the possibility of
calculation of the outbreak of new crack and sub-crack, ii) possibility to use the
ordinal method (for example, FDM, FVM, and FEM) for numerical simulation
because of the PDE model on fixed domain, iii) numerical stability introduced
by the regularization parameter $\epsilon>0$ , iv) potential to adopt the spacial profile
or hysteresis of the fracture toughness $\gamma$ .

2 Energy estimation
Griffith focused on the energy balance of the material that includes the crack,
because he thinks that the rupture strength is mainly dominated by the stress
concentration at the tip of the crack. He introduced the relation between the
energy for making new crack surface and that for releasing by the crack evolution
under the quasi-static condition Griffith’s fracture criterion).
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Starting from the internal energy proposed by Francfort-Marigo [1], we treat
the following energy description:

$\{\begin{array}{ll}\mathcal{E}(u, z) := \mathcal{E}_{1}(u, z)+\mathcal{E}_{2}(z)\mathcal{E}_{1}(u, z) ;= \frac{\mu}{2}\int_{\Omega}(1-z)^{2}|\nabla u|^{2}dx-\int_{\Omega}fudx\mathcal{E}_{2}(z) := \frac{1}{2}\int_{\Omega}\gamma(x)(\epsilon|\nabla z|^{2}+\frac{1}{\epsilon}z^{2})dx\end{array}$ (2)

where $\mathcal{E}_{1}(u, z)$ is the regularized elastic energy of the plate, and $\mathcal{E}_{2}(z)$ is the
surface energy of the crack. $\gamma(x)>0$ is fracture toughness on $x\in\Omega$ . In [1],
they proposed this energy and investigated precisely. Bourdin et al. and Buliga
made some numerical simulations of crack evolution that minimize the energy
similar to (2).

We set the total energy $\mathcal{E}$ as a free energy of Ginzburg-Landau Theory, and
derive the temporal evolution equations of the displacement and the phase field.

Though the detailed derivation of (1) is written in [3], the reaction-diffusion
equation on two scalar variable (1) is given when we set $f=0,$ $\gamma(x)\equiv\gamma>$

$0,$ $\mu=1,$ $\epsilon\equiv\epsilon\gamma$ .

$t=0$ $t=0.5$ $t=1$

Figure 2: Birdsview of $u$ (top), $u$ (middle) and z(bottom).
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We studied that crack evolution phenomena can be developed by the numer-
ical simulations of (1) with $g(x, t)$ ([2],[3]). In this model, quasi-static energy
relaxation that leads the crack evolution is assumed, then, we confirm that this
assumption is kept in the numerical simulation.

Set the initial crack at $t=0$ , we make a numerical simulation fixed the
boundary condition as $g(x, t)=g(x)$ . In the following simulations, we put
$\epsilon=10^{-3},$ $\alpha_{1}=0,$ $\alpha_{2}=10^{-3},$ $\gamma=0.5$ in (1), and set the computational domain
as $\Omega=(-1,1)\cross(-1,1)$ , with $\Gamma_{D}=\{(x_{1}, x_{2})|x_{1}\in(-1,1), x_{2}=\pm 1\}$ . The
boundary condition for $u$ is given as $g(x, t)=5x_{2}(x\in\Gamma_{D}, t\geq 0)$ .

Time

Figure 3: Temporal evolution of $\mathcal{E}$ (solid line), $\mathcal{E}_{1}$ (dashed line), $\mathcal{E}_{2}$ (dotted line).

The temporal evolution of $u$ (Figure 2) shows the crack evolution, however,
velocity of the crack expansion becomes slower by time. From the results of
numerical simulation, we calculate the energy of system (2). Figure 3 shows
the temporal evolution of energy that the elastic energy $\mathcal{E}_{1}$ is decaying, surface
energy $\mathcal{E}_{2}$ is growing, and total energy is decaying slowly as the crack growth till
the material is fractured $(t\sim 1)$ . We confirm that these numerical results follow
our model and describe the crack evolution phenomena, The physical character-
istics of the material can be estimated by calculating the stress intensity factor
from these numerical results.
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