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1 Introduction

Consider the following eigenvalue problem

(A + Q)u= \Bu, (1)

where A: D(A) - Y,Q: X - Y and B: X — Y are linear operators for the complex Hilbert
spaces D(A) C X C Y. The inner products and norms of X and Y are denoted (u,v)x, (u,v)x,

lulx = {(w,u)x, (v,v)y and ||luly = \/(u,u)y, respectively. Here, note that it is possible that we
use two inner products (u,v)x and (u,v)x.

gre— >
Assumption 1

Al For all ¢ € Y, Ay = ¢ has the unique solution ¥ € D(4) C X. Denote this mapping by
ALY - X.
A2  The operator A satisfies

(u,v)x = (Au,v)y, Yu € D(A), WvelX. (2)

A3 There exists a constant C, > 0 such that

IBully < Cpllulx, VueX. ©)

A4 There exists a constant Cp > 0 such that

|A='Bu|x < Chllullx, VueX. (4)
\_ Y,

In actual validated computation, explicit values of C, and Cj have to be evaluated. If the imbedding

D(A) — X is compact, A~! is also compact.
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1.1 Example 1

In the case of linear elliptic problem for a bounded domain Q in R"(n = 1,2, 3), where b € L>=(Q)",
c e L>(Q),

—Au+b-Vutcu = lu in Q, ()
v =0 on 09, ’

A=-A, Q@Q=0b-V+¢, B=Ix_.y,
D(A) = HXQ)NH}(Q), X =HMO), Y =L*Q),
(w,v)x = (u,v)x = (Vu,Vv)r2q), (%,v)y = (4,v)r2q) =:/uvdz.
Q

The constant C), is the Poincaré or Rayleigh-Ritz constant. For example, if @ = (0,1) x (0, 1), Cp =
1/(7v/2) and C, = Cz.

1.2 Example 2

In the case of Orr-Sommerfeld equation

(=D? +a?)?u +iaR[V(-D? + a?) + V"|u = A(-=D? + a?)u, 6)
u(zry) = u(z2) = v'(z1) = u'(x2) =0, (
A= (-D?+a?®? Q=iaR|V(-D*+a*)+V"), B=-D*+d?
Q= [z1,22], D(A)=H'Q)NHQ), X=H;Q), Y=L*Q),
(u,v)x = (u,v)x = ((-D? + a®)u, (—D? + az)v)Ln(m, (u,v)y = (u,v)2() =t /qud:c.

If Q= (-1,1), C, =1, and G} can be taken as Cp = 1/(n2/4 + a?) [9].

1.3 Example 3
In the case of a linearized problem of the Kolmogorov equation [5]
A%+ R(J(dn, AY) + J (3, Apn)) = ARAY in Q, (M

where Q = (—7/a, 7/a) X (=7, 7), J(u,v) = uz¥y —uyvz, R>0,0< a < 1and ) € X and ¢ € X*

are in function spaces such that

Xt=XtoXfoXxre.. -,

Il

o0 o0
X('f : {Z an cos(ny) | an € C, Zn%ai < oo} ,
n=1 n=1

a, €C, Z ((am)?* + n?*)a2 < oo} , m>1

n=—od

Xk = { Z ay cos(max + ny)

n=-—oc

‘We can set
A=A% Q=R(J(¢n,A)+J(,A¢N)), B=RA,
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DA =X X=Xx% Y=X9
(u,v)x = (Au, AV)r), (u,v)y = (4,0)p2q) = /nuvda:.
Here, for this problem (7), we introduce one more inner product
(4,v)x = (Ugzz + BUzzy + SUayy + Uyyy, Voaz + 3Vaay + BVayy + Vyyy ) L2(q)

which implies H3-seminorm |u|gs() because @ has the third order differential term. Under these

definitions, we can take C, = Ra~! and Cp = Ra™2.

2 Eigenvalue excludings

Our concept of excluding method is due to the idea by Lahmann-Plum [2](pp.192). Let u € C be a
candidate point which is suspected that no eigenvalue is close to u. We consider equivalently shifted

eigenvalue problem of Eq.(1) by

Lu = (\ - p)Bu, (8)
where
Lu:=Au- f(u): D(A)—Y, (9)
and ,
fw)i=—(@Q-pBu: X Y. (10)

Then the following excluding result is obtained.

é N

Lemma 1 If the operator L has the inverse L=! : Y — D(A), and there exists M > 0 such that

”ﬂ_l(p”X < M”(b”}’) Vo € Y) (11)

then there is no eigenvalue X of Eq.(1) in the area such that

- 1

A—ul< —. 12
i< oo (12)
- ' 4

Proof.

For any eigenpair (X, @) € C x D(A) such that
Li=(—-p)Ba, w@#0,
since La € Y, substituting L into the condition (11) as ¢ and using A3, we have

lallx < M|\ La|y
< MCy|X — | |lallx,
therefore )

A—pl>—
| ul_CpM

b

then the result is derived. O



Next, we show an another excluding criterion using an operator on X.

From the assumption A2, the weak problem of Eq.(1) is
(u,v)x =((AB-Q)u,v)y. WwelkX. (13)

Using A~! : Y — X, the weak problem (13) can be rewritten equivalently in the form

u=A"'(AB - Q)u

on X, hence
u+ A7 Qu=IA"'Bu.

Then we have shifted eigenvalue problem for (u, ) € X x C such that
Lu=(\—u)A !By, : (14)

where
Lu=u—A"'flu): X-X (15)

Then, an another excluding lemma is obtained as follows.

Lemma 2 If the operator L has the inverse L=! : X — X, and there exists M > 0 such that

[L~1¢llx < M|gllx, Vo€ X, (16)

then there is no eigenvalue X of Eq.(13) in the area such that

- 1 )
l)\ - ,ul < C'[)_M ) . . (17)
\_ _J
Proof.

For any eigenpair (), %) € C x X of Eq.(13) which satisfies

Li=(\—-pA 'Bi, #0,
taking ¢ € X as Li in (16), we have

lallx < M| La|x
=X — pl M||A™' B x
<A~ pl CoM|ulix,

by A4, therefore

. 1
— > —.0
A —pl > Gl

Now we will show the relation between the invertibility of L and L.

[Lemma 3 If L is invertible, then L is also invertible. j

Proof. Assume L : X — X has the inverse. For any ¢ € Y, there exists v € X such that v = A" 1lg
by A1, and there exists u € X such that Lu = v, namely,

u-ATN W)= AT = u=ATN(f(u)+¢)

121
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Then by the definition of 47!, u € D(A) and

Au=f(u)+¢ = Lu=¢.

Combining Lemmata, the following excluding theorem is obtained.

~
(Theorem 1 Assume the operator L has the inverse L~! : X — X, and there exists M > 0 such

that
IL-'¢llx < Mi¢llx, Vo€ X, (18)

then there is no eigenvalue A of Eq.(13) in the area such that

< 1
A= pl < G (19)

Moreover if there exists M > 0 such that
IL" ¢llx < Miglly, VéeY, (20)

then also there is no eigenvalue  of Eq.(1) in the area such that

< 1
N _J

3 Invertibility condition of L

This section describes a computable condition assuring the invertibility of the linear operator L such

that
Lu=u— A"} f(u).

Basically, this verification method is an extension of the one for solutions of second-order elliptic bound-
ary value problems introduced by a part of the authors {6, 7]. From now on, the identity maps on X
are denoted by the symbol I.

3.1 Finite dimensional subspace and projection error

First we introduce a finite dimensional approximation subspace S, C X, and let P, : X — Sy, be the
orthogonal projection defined by

(v—= Pyv,up )x =0, VY € Sp. (22)

Since S}, is the closed subspace of X, any element u € X can be uniquely decomposed into

U= up + u,, up, € Sp, u, € S,

where
Su:={u. € X |uy=(I - Py)u, ueX}.

We assume P has the following properties.
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Assumption 2 )
A5 There exists C(h) > 0 such that .
(I - Pr)ullx < C(A)||Aully,  Vu e D(A). : (23)
A6  There exists v; > 0 such that
1PnA™ fu) |l x < villualix, Yu,. € S.. (24) -
A7  There exist v2 > 0 and v3 > 0 such that
_ @Iy < el Pallx +vsll(I - Paulx,  Vu e X. '(25)/'

For the case of Example 1 (5), P, is the usual Hi-projection, and it can be taken as C(h) = h/7
and h/(2x) for bilinear and biquadratic element, respectively, for the rectangular mesh on the square
domain [3]. And C(h) = 0.493h for the linear and uniform triangular mesh of the convex polygonal
domain [1]. Here, h > 0 stands for the maximum mesh size for given finite elements.

For u. € S., since P,(—A)71(b- Vu, + cu. — pu,) € S,

[VPu(=A)7H (b Vuu + cus — ) ||72(q

= (VP(—A)71(b - Vu, + cuy — pty), VP (=A) (b - Vu, + cu. — pt.)) L2(q)

= (b- V. + ctts — ptta, Po(—A) 71 (b Vuu + cu. — p)) p2(q)

<16 Ve + cun — punl 2y Col PaV(=A) 71 (b - Vuu + cun — pu) || L2
we have

I PaV(=A)" (b Vs + cus — pu.)| 20y < Cp [|b- Vs + cuy — pual|r2(q)
< Cp (“b . V’UA*”L?(Q) + ||(C - /I,)U*HLZ(Q))
= Cp ([IIblellz= @) + Cpllc = pll L @) | Vxll L2(ey-

Therefore we can take
vi = Cp ([1blellL=(0) + Cpllc = llL=(q)),

vy = vz = |||b|gllL= + Cplic — pll L= (o)-

3.2 Newton-like method
We will show that the problem Lu = 0 has only unique solution u = 0. Defining F : X — X by
Fu=A"f(u), (26)
the problem Lu = 0 can be rewritten equivalently in the fixed-point form

u = Fu.

In order to prove the uniqueness (u = 0) of the fixed-point of F on X, for a nonempty, bounded, convex

and closed set U C X centered zero, we will check

FU c int(U).
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From uniqueness of decomposition for S, and S., the fixed-point equation u = Fu on X is equivalently

rewritten as

{ Phu = P;,Fu, (27)

(I-Pyu = (I-Pp)Fu.
Now, let us define the Newton-like operator N} : X —» Sp by
NMau = Pyu — [I = F|;'Py(I - Fu.
Here [I - F],:1 : Sp — S, means the inverse of the restriction of the operator Pp(I — F) : X — Sp to
Sh. Note that the existence of [ - F ];1 is equivalent to the invertibility of & matrix, which is numerically

checked in the actual verified computations. Since Pyu = PoNpu <& Pyu = Py Fu, using amap T on X

defined by
Tu = Nyu + (I — P,)Fu,

we find that the two fixed-point problems: u = F'u and u = Tu are equivalent.

Next, for positive constants 4 and &, set

Uh = {'U,h € Sh | “uh”X < ﬁ/v} C Sh’
U i={u. € 8. | |lulx <&} CS.,

and define a candidate set U C X by
U.=Uy+U..

Then a sufficient condition for the invertibility result is as follows [4].

Lemma 4 When an inclusion

TU C int(V) (28)

holds, then L is invertible.

Proof. If there exists u € X such that Lu = 0 and u # 0, u also satisfies ¥ = Tu. Since T is linear

operator, for any ¢t € R, we have

T(tu) = tT(u)
= tu.

Then, we can choose £ € R satisfying
: tu € 8U.

However, this contradicts with TU C int(U) and T(tu) = tu. Therefore v = 0. That is, u = 0 is a
unique solution of Lu = 0.

We now describe a procedure to construct the candidate set U of X which is expected to satisfy the
inclusion (28). From the unique decomposeness of u € U, we will check for finite and infinite part
separately.

The finite dimensional part of the inclusion, NyU C int(Uy), can be written as

sup [[Npullx < 4.
uelU:



On the other hand, the infinite dimensional part of the inclusion, (I — P,)FU C int(U,), means
(I = P,)A™  f(u) € int(U.)
for any u € U. Therefore, from the assumption A5 (23}, the condition

C(h)sup [|f(u)lly <&
uelU

is sufficient. From this we can derive the following lemma.

Lemma 5 If one can check the conditions:
sup [[Npullx <4,
uelU

C(h)sup || f(w)lly <&,
uelU

then L is invertible.

3.3 Criterion for the invertibility of L

In order to counfirm the verification Lemma 5, for given positive parameters & and 4, we have to

compute
v := sup ||Npt|x, a:= C(h)sup || f(u)|ly,
2€eU ey

and confirm

In the actual computation, the candidate set U contains the infinite dimensional term U,. Moreover,
it is impossible to avoid the effect of rounding error of floating point arithmetic. However, by norm
estimates, and interval arithmetic software taking into account effects of rounding error, we can obtain
mathematically rigorous upper bounds for. v and « and with possible over-estimates. Let us describe
these computations in more detail.

For any u € U such that u = up + u., up € Un, u. € U,, we obtain
Nyu =Pru — [I - F];IP}L(I - F)u
=[I - FI;' P, A7  f(u.)

from the linearity of f.

Here setting
N -~
sni=PRA7 f(u,) = Zsh,n¢n €8n, 8:=[snn]€C",
n=1

N
Nhu = Zth,nc?)n €Sh, t:= [th,n] € CN»

n=1
where {¢,}2 is basis of Sy with N := dim Sh, the definition of [I — F];! implies

((I = F)Npu,vn)x = (8h,Vh )X, Yun € S : (29)

125



From A2 (2), the eq.(29) is equivalent as

N N
Zth,n ((Q’;m(Z’m )X - (f(¢n)s$m )Y) = Zsh,n(‘f;na&m )X! 1<m<N.
n=1 n=1

Therefore defining

[Atl i :=(as &m ) x,

[Azlmn = (f(¢n)1 ém )Y,
G :=A1 + A2v

[43] s, :=($rs $m ) x,

and L3 is the matrix decomposed factor of A3 such that Az = L3L§" we have
Gt = A; s,
and
IMaullx = L3 tlE < p [lshllx, (30)

where p > 0 is an upper bound satisfying

ILIG A LT e < p
M (31)

for the matrix 2-norm || - ||g. Evaluations of p can be reduced to the computation of the maximum

singular value of a matrix.

Here note that when (u,v)x = (u,v)x, A1 = L3L} then p is estimated by
l IL3G ™ Lslle < p I

llselix < vifluslix < na, (32)

From assumption A6
hencefore
|Muul|x < pria, VueUl.

Moreover, from assumption A7,

If(@lly < vellunllx + vallu.|lx (33)
< vof + v36. (34)

Therefore, the following criterion for verification holds.

Theorem 2 If
k= C(h)(prriva +13) < 1 (35)

holds, then the operator L has the inverse.

126
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4 Upper bound of M

We can get an upper bound M > 0 satisfies

1L ¢llx < M|gllx, V¢ € X.

under the invertibility criterion for L by the following theorem.

' I
Theorem 3 Under the same assumption (35), an upper bound M > 0 for (16) can be taken as
M = M| g,
where ,
1+ v1C(h)vap 2%
- 1-k 1—k 2x2
M= C(Ryvap 1 e R*™%, (36)
1-k 1—k
o J
5 Upper bound for M
We can obtain an upper bound M > 0 satisfies
IL¢lx < Miglly, VoeY.
under the invertibility criterion for L by the following theorem.
Defining o
[A4]nm = (¢ma ¢n )Ya (37)

L, is the matrix decomposed factor of Ag: A4 = L4LT, and j > 0 is an upper bound satisfying

LYG 1Ly < p. I
| L3 ale (38)

Then the following can be shown.

-
Theorem 4 Under the assumption (35), and 7

k= C(h)vs(l + pre) < 1,

then,

a o VP Cihf él +v2p)® (39)

- J

6 Verified examples

Consider the two-dimensional self-adjoint eigenvalue problem:

Au in Q
0

on 89: (40)

{ —Au+v(3u? — 2(a+ 1)up +a)u
u



where @ = (0,1) x (0,1), v and a are positive constants, and up is an approximate solution of the

so-called Allen-Cahn equation:

{

—Au
u

vu(u —a)(1 —u)

in
on

Q,
a0.

(41)

It is known that this equation has two solution branches with respect to the parameter v > 0 [8]. We

considered both case in which u, are lower and upper branch finite element solutions for v = 150 and

a = 0.01 in linear and uniform triangular mesh of the Q. We can take C(h) = 0.493h for the uniform

partition size h > 0.

Setting wh = v(3u? —~2(a+1)up+a), A= -A, Q=c=wy, B=Ix_y, Cp =1/(nv2), Cy = 1/(2),
D(A) = H}(Q)n H}(Q), X = H}(Q), Y = L*(Q), For u. € S., since

IVPu(=A)" (e = pualZany < IV(=2)7 (e = phual|Zaq

we have

Therefore using

we can take

v1 = CpC(h)lc — pllL=(qy,

||V(—A)"1(cu - #)UnHL’(n) <Gy lle— ll“L«(n)”U*”L’(n)

= ((c = p)u., (=A) e = p)u) L2 a)
< (e — w2y Coll V(=A) " e — p)u. L2y,

||’U*||L’(ﬂ) < C(h)”u*”Hé(Q)’

v2 = Cpllc — pllL=(qy,

The norm |[|c - p L= (q) can be estimated as

fle = pliLe<@) =

3v (uh -3

a+1

:

_ v(a+1)*

3

+av —u

v3 = C(h)[lc ~ pllL=(q)-

Le<(8)

Since 0 < ua(z) < |unllL=() for any = € Q, [lc — pfL=() can be attained when up(x) = 0 or

un(z) = ”Uh“Lx(n) or up(z) =

a+1
3

6.1 Excluding result for h = 1/50 (lower solution)

The approximate absolute minimum eigenvalue is 16.616847.

i P p K M Ry K M R,
-16.4 99.9171 21.9878 0.5426 229.5885 0.0859 0.5306 46.9618  0.0946
-16  35.0991 7.7296 0.1974 46.9723 0.4293 0.1932 9.6071 0.4624
-14 8.2357 1.8222 0.0547 9.1809 2.1500 0.0538 1.9324  2.2991
-11 3.8255 0.8493 0.0317 4.1686 4.7352 0.0313 0.8808  5.0444
0 2.7078 0.3780 0.0375 2.9916 6.5981 0.0251 0.3913 11.3567
11 6.0905 0.8556 0.1158 7.3341 2.6915 0.0745 0.9342  4.7560
15 11.2572 1.5841 0.2370 15.7184 1.2558 0.1506 1.8855  2.3564
17  19.5897 2.7588 0.4333 36.8329 0.5359 0.2735 3.8403 1.1569
18 31.1216 4.3843 0.7051 112.4621 0.1755 0.4438 7.9725 0.5572
18.3 37.8005 5.3258 0.8626 293.1021 0.0673 0.5424 11.7725 0.2773
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Ry and R, stand for the excluding radius 1/(CyM) and 1/(CpM), respectively.

6.2 Excluding result for h = 1/50 (upper solution)

The approximate absolute minimum eigenvalue is 47.107986.

u p p K M Ri i M Ry
-23 1.1915 0.1140 0.1485 1.8421 10.7161 0.0716 0.1333 33.3452
0 1.5426 0.1645 0.1369 2.1532  9.1674 0.0714 0.1873 23.7298
23 2.5973 0.3126 0.1517 34311  5.7532 0.0856 0.3537 12.5644
35 4.7528 0.6161 0.2114 6.5881  2.9966 (.1256 0.7218  6.1561
40 7.8043 1.0465 0.3167 12.3947 1.5926 0.1922 13232 3.3579
43 13.2038 1.8087 0.5655 32.9839  0.5984 0.3477 2.8337 1.5679
44  17.3209 2.3901 0.7550 76.7302  0.2572 0.4664 4.5781 0.9704

44.5 20.5637 2.8481 0.9042 232.8762  0.0847 0.5599 6.6147 0.6716
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