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INTRODUCTION

The purpose of this survey lecture is to provide an exposition on the theory
of harmonic maps of surfaces, especially integrable system approach to harmonic
map theory of surfaces into symmetric spaces. For the recent progress in this area,
see, e. g. [OCAMI2008],

The harmonic map theory of surfaces into symmetric spaces investigates the
construction, the classification and the moduli spaces of solutions to the harmonic
map equations. The content of this article consists of the following topics:

(1) Harmonic map equation of Riemann surfaces into Lie groups and symmet-
ric spaces.

(2) Extended solutions of the harmonic map equation.

(3) Loop groups and infinite dimensional Grassmannian.

(4) Loop group actions and DPW representation formulas.

(5) Uniton transforms and harmonic maps of finite uniton number.

(6) Harmonic maps of finite type and harmonic maps of tori.

This article is based on the author’s lectures at the RIMS meeting “The Progress
and View of Harmonic Map Theory”, organized by Professor Hiroshi Iriyeh (Tokyo
Denki University), RIMS, Kyoto Univ., 2 (Wed)-4 (Thu) June, 2010. The author
would like to thank Hiroshi Iriyeh for his excellent organization and his kind invi-
tation to a keynote lecture at the meeting.

1. HarmoNic Map EqQuaTiONs

1.1. Harmonic maps of Riemann manifolds. Let (M™, g)/) be an m-dimensional
Riemanninan manifold and (N", gy) be an n-dimensional Riemanninan manifold.
Let ¢ : M™ — N" be a smooth map.
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Definition 1.1. The energy functional for smooth maps ¢ is defined by
1
B@) =5 | ldelfav
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Definition 1.2. ¢ is a harmonic map
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For any compact supported C*-variation {¢,} of ¢,
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Example. (1) Constant maps.

(2) Geodesics = 1-dimensional harmonic maps (dim(M) = 1) .

(3) Minimal surfaces (surfaces satisfying the equations of soup films) = con-
formal harmonic maps.

(4) The Gauss map of constant mean curvature surfaces (surfaces satisfying
the equations of soup bubbles) is a harmonic map into a 2-dimensional
unit sphere,

(5) Besides so many various examples of harmonic maps are known (cf. J.
Eells and L. Lemaire, Two Reports on Harmonic Maps, [6]).

Generally the harmonic map theory has different aspects in the cases dim(M) =
1, dim(M) = 2 and dim(M) > 3, respectively.
Letp : M — N be a smooth map.
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The second fundamental form of a smooth map ¢ is defined by
BX.Y) = Vide(Y) - dp(VY{Y) (VXY € C*(TM)).
The tension field of the map ¢ is defined by

0 0
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Definition 1.3. Harmonic Map Equation (HME) :
(@) =0. |

Let ¢ : M — N be a smooth map. Suppose that N is equipped with a semi-

Riemannian metric gy, or more generally a torsion-free affine connection V¥,
Then
@ 1s a harmonic map
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Here (gu)ij, gj(}, T M)f.‘j denotes the components of g)s and its Levi-Civita connec-
tion, and (I'y);, denote the the components of the Levi-Civita connection of gy, or

a torsion-free affine connection equipped on N.

1.2. Harmonic maps of Riemann surfaces.

Fact. In the case when M is 2-dimensional, the energy functional and harmonic-
ity of smooth maps are invariant under conformal deformations of a Riemannian
metric of M (conformal invariance!).

Suppose that M is an oriented 2-dimensional smooth manifold. Let
[g] := {pg | p is a positive smooth function on M}

be a conformal class of a Riemannian metric g of M.

As a domain manifold of harmonic maps, we consider a Riemann surface (i.e.
a 1-dimensional complex manifold) (M, [g]) = (M, J) rather than an oriented 2-
dimensional Riemannian manifold (M, g).

Lemma 1.1. ¢ : (M, [g]) = (M, J) = (N, VYY) is a harmonic map

=
0
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Here {(z,z} denotes a local complex coordinate system of the Riemann surface
(M, J).
This harmonic map equations means that dgo(c%) is a local holomorphic sec-

tion of ¢! (TN)C with the holomorphic vector bundle structure defined by the 8-

operator V¥,
=

1.3. Famous theorems on harmonic maps. The first result is a classical result
due to the direct method of variations as follows:

Theorem 1.1. Let M and N be two compact Roemannnian manifolds. Suppose
that dim(M) = 1, that is, M = S!(a circle). Then any homotopy class of con-
tinuous map from M to N contains a harmonic map of minimum energy. Hence
each element of the fundamental group n;(N) of N can be represented by a closed
geodesic of minimum energy.

The second one is the Eells and Sampson’s theorem shown by nonlinear heat
equation method (a breakthrough!).

Theorem 1.2 (Eells-Sampson, 1964). Let M and N be two compact Roemannnian
manifolds. Suppose that the sectional curvatures of N are non-positive. Then Then
any homotopy class of continuous map from M to N contains a harmonic map of
minimum energy.



Remark. The homotopy class of a continuous map of degree +1 from a torus 72 (a
compact Riemann surface of genus 1) to a unit 2-sphere S? does not contain any
harmonic map (cf. [6]).

Thirdly, we mention Sacks-Uhlenbeck’s reults [28]. Let M be a compact Rie-
mann surface and N be a compact Riemannain manifold. For each @ > 1, the
a-energy functional for smooth maps ¢ : M — N is define as follows:

Eq(p) := L (1 + lldgll?)*dva

Here dvy, is a volume form of a Riemannian metric of M. If @ = 1, then E, is
equivalent to the usual energy functional E. It is known that if @ > 1, then E,
satisfies the Palais-Smale Condition (C) .

The first result of Sacks-Uhlenbeck is the Removability theorem for an isolated
singularity of harmonic maps :

Theorem 1.3 (Sacks-Uhlenbeck). Let N be a compact Riemannian manifold. Sup-
pose that a harmonic map ¢ : D\ {p} — N defined outside a point p in a domain D
of the Gauss plane C. If ¢ has finite energy, then ¢ extends to a smooth harmonic
map from M to N. In particular, any harmonic map ¢ : C — N with finite energy
from the complex plane C to N extends to a harmonic map from a Riemann sphere
S2=CuU/{oo}toN.

The second result is on convergence, degeneration and bubbling of harmonic
maps:

Theorem 1.4 (Sacks-Uhlenbeck). Let M be a compact Riemann surface and N be
a compact Riemannain manifold. Suppose that a(i) > 1, a(i) = 1(i — o),
¥e) : M\ {p} — N is a sequence of critical maps of Eq;) and E(pai)) <
C ( positive constant). Then there exist a subsequence {a(j)} C {a(i)}, a finite set

{p1,-- ., pe} € M, a harmonic map ¢oo : M — N, non-constant harmonic maps
§® S22 s N(k=1,---,¢) s such that

(1) @a(j) = @ (j = 0) C'-converges on any compact subset of M\{p1, - , pe}-
(2) e(@a(j)) = e(pw) + Zi:l my 6(px) converges as measures. In particular,
E(pw) = E(p) + Zizl E(¢(k)) < limj—booE(Qoa(J)) < Cand E(¢(k)) < my.

In my lecture at the RIMS meeting I mentioned about Micallef and Moore [17]
on sphere theorem for compact Riemannian manifolds with positive isotropic sec-
tional curvature as one of most successful applications of the Sack-Uhlenbeck’s
theory. There has been many other important applications and progress of the
Sack-Uhlenbeck’s theory: the construction of “Bubble tree”, the compactification
of the moduli space of harmonic maps, J-holomorphic curves and the Gromov-
Witten theory, etc.



2. HARMONIC MAPS INTO SYMMETRIC SPACES

2.1. Symmetric Spaces. Symmetric spaces form a class of smooth manifolds of
particularly high symmetry. Here we give a brief explanation on: What is a sym-
metric space ? We refer [12], [15] as the excellent textbooks.

We give attention to the following two conditions on a smooth manifold N,
which are equivalent each other :

(1) N is a semi-Riemannian manifold (or more generally a smooth manifold
with a torison-free affine connection) such that the geodesic symmetry at
each point of N extends to an isometry (affine transformation) of N.

(2) N 1s a homogeneous space

N=G/K,

where G is a Lie group with an involutive automorphism o and K is a
closed subgroup of G such that G ¢ K c G,. Here G, denotes the
subgroup of G consisting of all elements fixed by o and GY its identity
component.

N is called a symmetric space if N satisfies such a condition. A symmetric space is
locally characterized by the curvature condition VR = 0.

Examples of symmetric spaces.

(1) Euclidean space E”, standard sphere S”(c), real hyperbolic space form
H"(¢).

(2) Projective spaces RP", CP", HP", OP? = F4/S pin(9). Grassmann mani-
folds of k-planes Gr;(R"), Gri(C"), Gry(H"), etc.

(3) Lie groups G, S, SO(3), SU(2), S O(n), SU(n), U(n), G,, etc. Homoge-
neous spaces G€/G, etc.

Riemannian symmetric spaces were created and classified first by Elie Cartan.
There is a duality between Riemannian symmetric spaces of compact type (nonneg-
atively curved!) and Riemannian symmetric spaces of noncompact type (nonposi-
tively curved!) such as S” and H". All simply connected irreducible Riemannian
symmetric spaces are classified into 9 types of group manifolds (4 classical types
and 5 exceptional types) and 19 types of non-group manifolds (7 classical types
and 12 exceptional types).

Non-symmetric homogeneous spaces related to symmetric spaces are also im-
portant in geometry of symmetric spaces. For instance, Hopf fibrations, genralized
flag manifolds, twistor spaces, etc.

2.2. Harmonic map equations of Riemann surfaces into Lie groups. Let M
be a Riemann surface and G be a compact Lie group equipped with biinvariant
Riemannian metric gjs. Let 6§ = 6 denote the left-invariant Maurer-Cartan form
of G and it is fundamental that @ = 6 satisfies the Maurer-Cartan equations

dgg+%[eg/\06] =0. 2.1)
Here [B1 A B2)(X, ) := [B1(X), B2(1)] = [B1(Y), B2(X)] .



Let ¢ : M — G be a smooth map. Set
a=¢9=¢pldp=0a +o",

where o’ and a” denote the (1, 0)-part and the (0, 1)-part of a, respectively. Then
a is a 1-form on M with values in g and by (2.1) a satisfies the Maurer-Cartan
equation

1
da + E[a/\a]=0.

The harmonic map equation for the map ¢ is written as
= 1
o’ + E[a' Aa']=0. (2.2)
By using (2.2) we can show that (2.2) is equivalent to the equation

d*a=-V-18a' + V-16a"" = \/-—_1(—30' +0a")=0. (2.3)

2.3. Zero curvature formalism of harmonic map equation. For each 1 € S! or
A€ C* = C\ {0}, we define

1
ay = %(1 - A Y + 5(1 - a”’,

which @ is a 1-form on M with values in g for 1 € S! and ¢€ for 1 € C*.

Theorem 2.1 ([23], [35], [36], [32]). The system of the Maurer-Cartan equa-
tion (2.2) and the harmonic map equation (2.3) is equivalent to the system of the
Maurer-Cartan equations

da, + %[a,l Aap]=0 (YaeS'orC 24)

This equation is also called the “Uhlenbeck equation™.

2.4. Lax equation formalism of harmonic map equation. The equation (2.4) is
equivalent to the Lax equation

o _ k11,
iy | 2.5)
L:= p +(1-a2YH4,, K:=-(1-24;.

Here A is the spectral parameter and set

1 ,{d 1., (a
Az = Ea’ (&), Az = 2&’ (32) (26)



2.5. Gauge-theoretic formulation of harmonic map equation. The harmonic
map equation from a Riemann surface M to a Lie group G can be formulated as
the Yang-Mills-Higgs equation over a Riemann surface in the following way. Let
P = M x G be a trivial principal bundle with structure group G over a Riemann
surface M. Let Ap denote the affine space of all smooth connections on P and
Ql(gp) denote the vector space of all smooth 1-forms with values in the adjoint
bundle gp. Let 4 € Ap be a connection on P defined by dy = d+ %a and ¢ € Q'(gp)
the Higgs field defined by ¢ = %a/. Then the harmonic map equation is described
as the Yang-Mills-Higgs equation

1
dap=dyx¢=0.

On the other hand, the slightly different Yang-Mills-Higgs equation over a Riemann
surface M

dip=dsx¢p=0
locally corresponds to the harmonic map equation into noncompact symmetric

space G¢/G and the moduli space of its solutions is called the Hitchin System.
See also [18], [19].

1

2.6. Extended solutions of the harmonic map equation. A solution
O, :M—->G (1eSh
or
®,: M->G (1eC)
to the linear partial differential equations
PO=0"1db=a; (YaeS'orC" (2.9)
or equivalently locally
19 - 59:@:(1—/1),42, (VaeS!orCY (2.10)
0z 0z
is called an extended solution of a harmonic map ¢ (Uhlenbeck [32]). Here we set
@ =2A4,dzand o” =2 A4;dz .
If M is simply connected, there exists uniquely an extended solution @ for any

initial condition ®(zg) = (1) (YA € S! or C*). Here y can be considered as a
loop in a Lie group.

@ (1-2NH4,, o

2.7. Extended solutions and loop groups. ([26])
The (free) loop group of G is defined by

AG:={y:S! -G |C™).
The based loop group of G is defined by
QG :={y:8' - G| C™ y(1)=e).



The extended solution of a harmonic map ®; = Y0 A’ T; with @; = e can be
considered as a map into the based loop group

P M>3z+— P(2) € QG.

Assume that G is a compact Lie group. It is known that QG has the infinite
dimensional complex Kihler manifold structure and if H(G,Z) = H*(QG,Z) =
Z, then it is Einstein-Kdhler. The Kéhler form (and thus a symplectic form) is
given by

1
waclén) = fo & @)
—E DO = JacE®) )

1/2

@.11)

for each &, € Qq.

Proposition 2.1. 4n extended solution ®, : M — G (A € §') of a harmonic map
with @, = e is nothing but a holomorphic map ® : M — QG whose differential
d® satisfying the condition

0

cb"dcp(—) e(1-1Ng.
0z

2.8. Correspondence between harmonic maps and extended solutions. As-

sume that M is a simply connected Riemann surface, that is, is conformal to

Riemann sphere S 2, Gauss plane C, unit open disk B(1). Then from the above ar-

gument we see that there is a bijective correspondence between the quotient space
of all extended solutions modulo left translations by loops y : S! = G

QG\{D : M — QG | extended solutions }
={®: M — QG| extended solutions, ®(zg) = e}

and the quotient space of harmonic maps modulo left translations by elements of
G

G\{¢: M — G| harmonic maps}
~{¢: M — G| harmonic maps, ¢(zp) = e}.

Remark. The extended solutions for harmonic maps of a Riemann surface M into a
symmetric space G/K can also be formulated (cf. [9], [7]). The Cartan immersion
of a symmetric space G/K into G is fitting and useful in the formulation. It is
known that every compact Lie group and every compact symmetric spaces can be
immersed into a unitary group and a complex Grassmann manifold as a totally
. geodesic submanifold. Note that a composition ¢ o ¢ of a harmonic map ¢ and a
totally geodesic immersion ¢ is also a harmonic map.

3. INFINITE DIMENSIONAL (GRASSMANNIAN AND LOOP GROUPS

The harmonic map theory in symmetric spaces is built up in the framework of
geometry of loop groups and infinite dimensional Grassmannian due to Pressley-
Segal [25], Segal-Wilson[27].



Suppose that G = U(n) (for the simplicity). Define
H® = [X(S',C7),
HY = (f e XS, C) | f2) = ) Hei),

i=0

H? = (f e XS',C | f) = ) Ay,
i<0
H"™ = H" ¢ H®.

Define an infinite dimensional complex Grassmannian Gr(H™) by
Gr(H(")) := {W| aclosed vector subspace of H®™ satisfying the conditions (1), (2)}

1) pr,: W—- Hﬂr") is a Fredholm linear operator,

Q) pr_: W —> H®™ is a Hilbert-Schmidt linear operator.

Moreover, we define an infinite dimensional submanifold of the infinite dimen-
sional Grassmannian Gr(H®™) as follows:

Gr?) := (W e Gr(H™) | W satisfying the conditions (3), (4)}
3) AW cCWw.

(4) pr, (W), pr_(W) consists of C*-functions.

Then there is a diffeomorphism (after a suitable completion) between
QG>y+— yH, € G

Grg) is called the infinite dimensional Grassmannian model of QG.

The two fundamental splitting theorems for loops are obtained from theory of
infinite dimensional Grassmannian models.

Let T denote the maximal torus of G, that is, the subgroup of all diagonal matri-
ces of U(n). Define the complex (free) loop group of G€ by

AGC :={y:8' 5 G¢ | C™)
and its subgroups by
A*GC := {y € AG® |y extends continuously to holomorphic Dy — G©),
A~G® := {y € AG® |y extends continuously to holomorphic D, — G,
ATGE = {y e A°GC|y(e0) = e}, |
T:={6:8' — T c G continuous group homomorphism},
Here
Dy :={21e CU{oo}|| < 1},
Dy, :={1€ CU{oo}||2] > 1}.



The following splitting theorem is called the polar decomposition or Iwasawa
decomposition of the complex loop group AGC:

Theorem 3.1 ([25]). Anyy € AGC can be uniquely decomposed into

Y=YuY+>
wherey, € QG, y, € A*GC. The multiplication map

QG X A*G® 3 (yu, 74) — Yu v+ € AGS

is a diffeomorphism (after a suitable completion).

This theorem was shown by proving

QG = Gr? = AGC/A*GE.

The next splitting theorem is called the Birkhoff decomposition of the complex
loop group AG€:
Theorem 3.2 ([25]). Anyy € AGC can be decomposed into

Y=7-67+,
where y_ € AGC 6eT, Vs € A*GE. Moreover, A"G€ - A*GC is a dense open
subset (“Bigg Cell”) of the identity component of AG€ and the multiplication map
AJGE x A*GC 3 (y_,y4) — y- v+ € A"GC - A*GC c AG®

is a diffeomorphism (after a suitable completion).

The Birkhoff splitting theorem for loops describes the Morse theoretic stratifica-
tion of QG for the energy functional of loops ([24]). The complement of the Big
Cell can be characterized by zeros of a canonical global holomorphic section o of
the dual determinant line bundle Det* of Gr(H™) (cf. [27]).

Moreover we introduce another setting of loop groups and it is necessary to
define loop group actions on extended solutions of harmonic maps ([32], [1], [8]).

Choose a real number € with 0 < & < 1. Take two circles on a Riemann sphere
C U {00} as follows :

Ce:={1eC||4 =&},
Co1 :={1eC|A =71},
Regarding C; as a circle with center O we denote by I, its interior. Regarding
C,-1 as a circle with center co, we denote by /-1 its interior.
I, .={1eC||A <é&},
I :={1eC||A>¢e').
Set ] := I, U I.-1. We denote the complementary subset of C U {oo} to the closure

I of I by
E :=(CU{ooP\ I

10
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At this setting we define different groups of loops in G€.

A% GC :={g: C,UC,1 — GC, smooth map},

AEeGC = (g€ A GC | g extends continuously to holomorphic g€ : E — G},
AT*GE = (g e AP°GC 1 g5(1) = o),

AGC = (g€ A5 G | g extends continuously to holomorphic g’ : I — G°}.

In our case we define the reality condition on g € A% GC as follows :

g =gy (YaeC,uC,).

A;’E-IGC ={ge A5 GC | g satisfies the reality condition},
AE#GC .= AF5GC 0 AZT GF,

AE#GE = AP*GC N ST G,

ALEGE = AT*GC n A2 GC.

We describe the splitting theorem for these loop groups. This formulation was
inspired by Uhlenbeck [32]. The latter half of the statement is essential and was
proved by Ian Mclntosh [16]. His proof is an ingenious combination of the Iwa-
sawa decomposition and the Birkhoff decomposition.

Theorem 3.3 ([32], [1], [8], [16]). AZ*GC - ALGC is a dense open subset of the
identity component of A®'GS, and the multiplication map
AE2GE % AT°GE 3 (yg, 1) — v yr € AFSGE - AP*GC c A% GC

is a diffeomorphism (after a suitable completion). Moreover, the restriction of this
-1
multiplication map to real elements induces a diffeomorphism onto AR° GC:

AESGC x ALPGE — AL#GC . ALPGE = AZT GE.
For each nonnegative integer k > 0 or k = oo, we define certain subsets of QGC
and QG as follows:
X; :={6 : C* — G© | 6 is holomorphic on C*, §(1) = e,
k k
S = ) A4, 607 = Y ABy),

: i=—k i=—k :
Xir :={0 € X | 6 satisfies the reality condition,

ie. ()7 =67 (YAe CY).
Here notice that Xo € X1+ C Xx € Xje1 € -+ - C Xoo € QGC, X is a subgroup

of QGC€ and X(),R - XI,R"' C Xk,R - Xk+l,R c--- C XW,R c QG, Xoo,R is a
subgroup of QG.



4. LOOP GROUP ACTIONS AND REPRESENTATION FORMULAS FOR HARMONIC MAPS

In this section we explain two fundamental and important structures of harmonic
map from Riemann surfaces to Lie groups and symmetric spaces The first one is
a structure of infinite dimensional group actions on all such harmonic maps. The
second one is a structure of Weierstrass type representation formulas, which repre-
sents locally all such harmonic maps in terms of infinite dimensional holomorphic
potentials.

4.1. S'-action on harmonic maps. The group S! = {¢ € C* | |¢| = 1} acts on the
based loop group QG by

Q) =y DY (¢ eSlyeo).

The S!-action on extended solutions (and thus harmonic maps) is defined as
follows (C.-L. Terng): For each £ € S! and each extended solution ®; : M —
G(1 e S, we define

(D) 1= Bp1, @,

Then the map (£'®),; : M - G (1 € S') is a new extended solution.
Moreover the semigroup C; and the complex group C* also acts on extended
solutions of harmonic maps ([8], [33]).

4.2. Loop group action §§. In this subsection we assume the setting of the Birkhoff-
Uhlenbeck decomposition in Section 3.
There is a natural injection

ARSGE 3 h— hEjsi € QG,
where hf denotes the continuous extension of A € Af;’jGC to a holomorphic map
hE : I — GC. We regard this injection as
AR5GE cQG.
Now, by using the Birkhoff-Uhlenbeck Decomposition Theorem 3.3, we define the

group action # of the infinite dimensional group Aff_]GC on ALGC ¢ QG as
follows : Foreach g € Aff_lGC and each & € Ag’fGC c QG,

g'h = gh(gh);' = (gh)r € ARG cQG.

Theorem 4.1 ([32], [1], [8]). Each g € A;’;"“‘_IGC and each extended solution @ :

M- Aﬁ:fGC, go: M- Aﬁ'TGC C QG is a new extended solution.

This group action § is called the Birkhoff-Uhlenbeck group action (cf. [1], [8]).

12
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4.3. Loop group action ij. By the Iwasawa Decomposition Theorem 3.1, the nat-
ural group action h of the infinite dimensional group AGC on QG is defined as
follows : For eachy € AG® and each 6 € QG,

Y6 := y6(y8);! = (v6)u € QG .

Theorem 4.2 ([8]). For each y € AGC and each extended solution ® : M — QG,
Yi® : M — QG is a new extended solution.

This group action | is called the natural group action (cf. [8]).

4.4. Relationship between the Birkhoff-Uhlenbeck action #§ and the natural
action . We easily see that the group actions # and f of the subgroups AE SGC and
QG are simply left translations of extended solutions by loops. Thus we should
compare the group actions § and fj of A% o G€ and A*GC.

For any &£ > 0, the group A*G* can be embedded into the group AI °GC by the
following injective group homomorphism:

A*G® 5y — 7 e AFGS, (4.1)
where for each 1 € C U {0},
S y(A) (1e CU{o0}, |2 2 &) @2)
o@D (AeCufe), A< ). '

Then we obtain
Theorem 4.3 ([8]). For each A € A*GC and 6 € Xjr (0 < k < ),
Y6 = 945 . (4.3)

Corollary 4.1 ([8]). For each A € A*GC and extended solution ® : M — QG such
that ®, is holomorphic in A € C* entirely, we have

P = 4. (4.4)

The properties of the loop group action for harmonic maps, its Morse theoretic
aspect and applications to the study on spaces of harmonic maps were discussed in

[8].

4.5. DPW formula for harmonic maps (Iwasawa decomposition). Another im-
portant structure of harmonic maps of Riemann surfaces into Lie groups and sym-
metric spaces is a Weierstrass type representation formula of all such harmonic
maps in terms of holomorphic functions with values in a certain infinite dimen-
sional vector space. It is due to Dorfmeister-Pedit-Wu ([5]), the so-called DPW
Jormula, and here we shall explain their representation formula for harmonic maps.

Assume that M c C is a simply connected domain of the complex plane. Fix a
base point zy € M.

Let ¢ : M — G be a harmonic map. We may assume that p(z9) = e after a
suitable left translation of G. Let ® : M — QG be its extended solution with
D(z9) = e.



We consider the equation of the holomorphicity on g = ®b : M — AGC with
respectto b : M — A*GC:
0=0g=0Db+Ddb.
It 3-equation for b : M — A*G€
db=-(®'D)b
1 " (4.5)
= - 5(1 - a" b

Then there exists a solution b : M — A*GC to the d-equation (4.5) satisfying
b(zg) = e, which has the freedom of right multiplication by holomorphic maps
h: M — A*GC with h(zp) = e. Thus we obtaing = ®b : M — AGC which is
a holomorphic map in the sense that dg = 0 and satisfies g(zo) = e. Moreover we
define p, := g~'dg. Then we have a formula

p,=g 'dg=g'og
=" Y@ ' od)b + b7 0B
= — A7 Ad(bl1=0) "' (") + [terms of X' (= 0)].

Define an infinite dimensional complex vector space

Ao = {g € Ag® | ¢ has Fourier series expansion & = Z A fi} .

i=-1

Denote by Q!'"0(M, A_1 ) the complex vector space of all smooth (1, 0)-forms
with values in A_ o, defined on M. Then we define the infinite dimensional vector
space of all holomorphic potentials with values in A_ o by

P:={ue QY (MA 1) |8u=0}.

Each u € P is expressed as

p= > A =pdz,
i=—1
where each y; is a holomorphic 1-form on M with values in g€ and y, is a holo-
morphic function with values in A_; ., on M. Then we have y, € P.

We discuss the inverse construction from g to a harmonic map. For each u € P,
it holds

d,u+%—[;1/\/1]=5u=0

and thus there exists a unique smooth map g# : M — AGC such that g(z) = e
and (g#)"'dg# = p. In particular, g : M — AGC is a holomorphic map in the
sense that dg# = 0. By Iwasawa Decomposition Theorem 3.1, there exist uniquely
Q4 : M - QG and b* : M — A*G such that

g =B
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Note that ®#(pg) = e, b(e) = e. Then ®* is an extended solution of a harmonic
map. Indeed, we have a formula

(@)7'dD* = (1 - ™) (Ad(PH|aco)pit) + (1 - 2) (AAB 1co)pi)

Via the Grassmannian model of QG
QG = Gr™ =~ AGC/A*GE,

the corresponding extended solution of a harmonic map is expressed in terms of
the above holomorphic map g : M — AGC as

D:M>3xr— Ox)HY = gx) H” € G = AGS/A*GC.  (4.6)
Hence the natural group action i of y € A*G® c AGC is given by
@) HY = (d(z) HY
=y®(z) HY
= yg(z) HY
=yg(@)y 'H™ e Gr = AG®/A*GC

for each z € M. Note that an extended solution Y® : M — QG also satisfies
(Y'®)(z0) = e. A holomorphic map representing the extended solution y4® : M —
QG is
’yg’y-l M>3pr— 'yg(p)'y_1 e AGC
and the corresponding holomorphic potential is given by
o = (vgy ) 'dygy™)

=yg 'y ydgy™!

=y(g 'dgyy™"

= yuoy ™

= Ad(y)(uo) .

The holomorphic gauge transformation group
G:={h:M— A*G®|6h =0} 4.7)

acts on the infinite dimensional affine space # of holomorphic potentials as fol-
lows : For each 4 € G and each u € P, define

h-u = (Adh)u — (dh) b
and then /4 - /.14 € P. The based holomofphic transformation group is defined by
G ={heG|hz)=e}, (4.8)
which is a normal subgroup of G. Then the above construction implies that
G\P ={®: M — QG| extended solutions, ®(zj) = e}
={¢p: M — G| harmonic maps, p(z9) = e}.

15



Let h € G. We set

Sy = hzo)gu b~ : M — AGE. (4.9)
Then we have gj.,.(z0) = e and g;.}‘dgh.,, = h - u. Hence we obtain the formula
th-p = (gh-p)u
= (h(20)&)u
= (h(z0)Dpu)u
= h(z0)'®, .

We mention about a notion of the normalized meromorphic potential of a har-
monic map ([5]). Let ¢ : M — G be a harmonic map with ¢(zp) and ® : M — QG
be its extended solution with ®(zy) = e. In order to construct the holomorphic
potential corresponding to ¢ and @, we can use the Birkhoff decomposition theo-
rem. Set M’ := ®~!(Big Cell) ¢ M, which is an open set of M, and M \ M’ =
®~!((Big Cell)°) is a discrete set of M by the holomorphicity of ®. On M’, by
Birkhoff decomposition theorem 3.2, we decompose ® uniquely as

o = h_ h+,
where h_ : M — A[GS, h, : M — A*GE.

%(1 - )" =016
=Ad(h;')(h='6h_) + h'bh,
and thus |
S(1-2 Ad(h)(@") = hZ'6h_ + Ad(h.)(h;' Bh.)
Comparing the we have A~1dh_ = 0 and
%(1 —Da” =h;'on,
On the other hand,
%(1 -1 e =000
=Ad(h;))(hZ'0h) + h;' O,
%(1 —- Y Ad(hy)(@') =hZ'Oh_ + Ad(h.)(h; Oh.).
Compéring with the coefficients of 2-! on the both sides; we have

-%,1“ Ad(hsaco)(@’) = h™'9h_.

Hence we obtain

_ | , _
hZ'oh_ = -54 PAd(hyla=0)(@) = A7y

16
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p = hZ'0h_ = 27'5n_; is a holomorphic potential defined on M’ corresponding
to the extended solution ®@. It is possible to show that u extends to a meromor-
phic 1-form on M entirely by the geometric argument of the infinite dimensional
Grassmannian on the Big Cell and the dual determinant line bundle ([5]). This
meromorphic 1-form u = A7'5_; on M is called the normalized meromorphic
potential.

4.6. DPW formula for harmonic maps (Birkhoff-Uhlenbeck decomposition).
In this subsection we assume the setting of the Birkhoff-Uhlenbeck decomposition
in Section 3.

Let M be a simply connected domain of the complex plane C and zp € M be a
base point. Suppose that

®: M— AFSGC cQG

is an extended solution of a harmonic map satisfying ®(z) = e.

We use the following complex loop groups defined over a circle C:

A*GC = {y: C, — G® | y is smooth },

AEGE = {y e A°GC | v extends continuously to holomorphic yI . I, — G©).
Then by a solution to the §-problem there exists b = (bg, bs) : M — ALGC with
b(zp) = e such that

g=0b=(gs8:): M — A‘;’l"g_lGC

and g; = @b, : M — A®GC is a holomorphic map in the sense that 5g€ =
(@ b,) = 0. Such amap b, : M — A’*GC has the freedom of right multiplications
by holomorphic maps 4, : M — AleGC with hy(z) = e.
The holomoprhic 1-form on M with values in Ag®
15 =g;'dgs = g;'0ge
=b; 07100 b, + b 9b,

1
=5(1- A Hbla'b, + b BB,

is holomorphic with respect to 2 € I, \ {0} = D(0, €) \ {0} and has at most a simple
pole (a pole of at most order 1) at 2 = 0.

Set
AS C ._ . C
2108 ={&:Ce— g~ | smooth,
& extends continuously to holomorphic / \ {0} — gC
which has at most a simple-pole at 0}
and define

P o= (e QM AL € 1du=0}.

__l,oo

Each u € P? can be expressed as

H= i pid!

i=—1



on C.. Here each y; is a holomorphic 1-form on M with values in gC. Then we
have pg € P°.
Conversely, for each u € P¢, there exists

g=gi= (&) = (gg): M — AY GC
such that
@) 'd@E) = () o) =p glz)=e
on C,. We take the Birkhoff-Uhlenbeck decomposition

g=2b,
where ® : M — Aﬁ’ch, b:M— A{fGC. Then
®: M — AZGC QG
is an extended solution of harmonic map. Indeed, we have a formula
O 'dd =Ad(b)u - dbb™!
= [Ad®pze e
=(1 = 2 YABO)p-1) + (1 = AABO)u-1) -

The holomorphic gauge transformation group

G®:={h: M — AGC|dn =0} (4.10)

acts on the infinite dimensional affine space P° as follows : For each # € G° and
each y € P¢, define

h-p:=Adhyu—-dh-h'. 4.11)

Then we have & - u € P°. The based holomorphic gauge transformation group is a
normal subgroup of G° defined by

G%¢ :={he G| h(z) = e}. 4.12)

Now we set
g, =hzo)gh M — A°GC . (4.13)

Then we have g‘,jﬂ(za) = e and

&) dg ). =h-u (4.14)
So we define
_ -1
ghu 1= (5,0 85,0 1 M — A GF,

s _ (4.15)
h=(hh): M — ALGE.
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Since h(zo) = (h(zo), h(zo)) € Af’GC, we have
8w =&, 25,)
=(h(z0) g b, h(zo) g h ™)
=(h(z0) g b hz0) g b (4.16)
=(h(z0), hz0))(g, g)(H ™ hT)
=}~z(zo) 8u At
Hence we obtain the formula
Dp.p = (8hp)E
= (hz0)gu W™ ")
= (h(z0) Du by b )E @.17)
= (h(20)®u)E
= h(z0)'®,, .
4.7. Relationship of two kinds of DPW formulas for harmonic maps.
Theorem 4.4. The natural injective linear map over C
P> pr— plc, €P°

induces a bijective correspondence between the moduli spaces of holomorphic po-
tentials by the based holomorphic gauge transformation groups

G\P = G\ 9"

Moreover, they are equivariant with respect to the natural injective group homo-
morphism between the holomorphic gauge transformation groups G — G°. In
particular, they are equivariant with respect to the loop group actions fj and .

5. HARMONIC MAPS OF FINITE UNITON NUMBER AND CLASSIFICATION PROBLEM OF
HARMONIC 2-SPHERES

5.1. Uniton transform. Suppose that G = U(n). Set
Gr(C") = {a € G|a* = 1,}.
Each a € Gr(C") can be expressed as
| a=my—apL=n—-n"
in terms of the orthogonal projection
r=ap:C'=WeW-t — W
onto a vector subspace of C”

W:={veC'lav =v}.
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The finite dimensional complex Grasssmanian of complex vector subspaces of
C" Gr(C") is decomposed into connected components as

Gr(C") = | [ Gry(C™).
k=0

Here Gr;(C") is a complex Grassmann manifold of k.-dimensional vector subspaces
of C".
A smooth map into the complex Grassmannian

n-nt: M- Gr(C") c Un)

can be identified with a complex vector subbundle n of the trivial vector bundle
C'=MxC"

Let ¢ : M — U(n) be a harmonic map. We use the same notation as in the
previous sections, such as @ = ¢*0 = ¢~'dp, a connection dy = d + %a € Ap of the
trivial principal bundle P := M x G, a Higgs field ¢ = %a eQl(gp), p=¢' +¢".

Let®; : M — U(n)(A € S!) be an extended solution of a harmonic map ¢.
Using a smooth map into a complex Grassmannian « — x+ : M — Gr(C") c U(n),
we define

O =0(r+Art): M — Um) (1eShH

and then we have

Lemma 5.1. @ is also a new extended solution if and only if a complex Grassman-

nian m — nt : M — Gr(C") c U(n) satisfies the equations
109 I\ —

{n G+¢"r=0, 5.0

nt¢’'n=0.
In this case p = ®_| = w0 ® = p(n — 7*) is a harmonic map.

The equations (5.1) is called the uniton equation of a harmonic map ¢ and we
say that a harmonic map § can be obtained by making a uniton transform or by
adding a uniton to a harmonic map ¢.

We equip the trivial complex vector bundle C” = M x C" over M with the holo-
morphic vector bundle structure d’; as the d-operator. The harmonic map equation
d/{¢’ = 0 implies that ¢’ is a holomorphic Higgs field and thus we obtain a holo-
morphic Higgs vector bundle structure (C", d’/, ¢"). The first equation of the uniton
equations means the complex vector subbundle n corresponding to a smooth map
n—n* into a complex Grassmannian is a holomorphic vector subbundle of (C", d’)).
The second equation of the uniton equations means that the complex vector sub-
bundle 7 is invariant under the action of a holomorphic Higgs field ¢’, namely,
¢'(n) C 7.

The procedure of the Gauss bundle and the harmonic sequence of harmonic
maps of Riemann surfaces into complex projective spaces and complex Grassman-
nians is an examples of the uniton transform (cf. [6]).
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Lemma 5.2 (Valli [34]).  Let M be a compact Riemann surface. Assume that a
harmonic map § is obtained by adding a harmonic map ¢ to a uniton n. Then the
energy formula

E(y) - E(g) = ~8ndeg(n), deg(n) := fM o) €Z. (52)

holds. Here c\(n) denotes the first Chern class of the complex vector bundle 7.
The invariant inner product of Lie algebra u(n) of U(n) is defined as (4,B) :=
—tr(AB) (A4, B € u(n)).

Definition 5.1. Set £ = (C", d’/), which is a holomorphic vector bundle. Consider
a holomorphic Higgs bundle (E, ¢’). If it holds (V) < p(E) for any holomorphic
vector subbundle V' < E invariant by ¢’, then the holomorphic Higgs bundle E is
called semi-stable. Here u(V) := deg(V)/rank(V).

From Lemma 5.2 and the concept of the semi-stability of holomorphic Higgs
bundle, we obtain :

Theorem 5.1 ([34], [21]). Any harmonic map of a compact Riemann surface
M into the unitary group U(n) can be transformed by a finite number of uniton
transforms into a harmonic map whose associated holomorphic Higgs bundle is
semistable. It is not possible to decrease the energy of a harmonic map with the
semistable holomorphic Higgs bundle by any uniton transform. In particular, if M
is a Riemann sphere, then any harmonic map of M into U(n) can be transformed
by a finite number of uniton transforms into a constant map.

5.2. Harmonic maps of finite uniton number. Suppose that G = U(n).

Definition 5.2. If a harmonic map ¢ : M — U(r) has an extended solution @ :
M — QU(n)

m
o= TA,

; ’ (5.3)
O =nmod=ap (JacUn)),

then ¢ is said to be of finite uniton number. Such a harmonic map ¢ : M — U(n) is
called harmonic map of finite uniton number or a uniton solution to the harmonic
map equation. Or equivalently, it means that a harmonic map ¢ : M — U(n) has
an extended solution @ such that

D(M) € Xmr C QU(n) (5.4)

for some nonnegative integer m. We call such a minimal number m the minimal
uniton number and then ¢ or ® an m-uniton.

A harmonic map ¢ : M — U(n) of finite uniton number is always weakly
conformal, that is, a branched minimal immersion. ([21]).

A 0-uniton solution is a constant map. A 1-uniton solution ¢ is a left translation
¢ = ch by some ¢ € U(n) of a holomorphic map from a Riemann surface M to a
complex Grassmann manifold # : M — Gr(C").

21



Theorem 5.2 ([32], [26]). Assume that a Riemann surface M is compact and @ :
M — QU(n) is an extended solution satisfies the base point condition ®(zq) = 1,.
Then @ has finite Laurent expansion

q
®= ) T Ap.qeZ,p,q20) (5.5)
i=—p
with respect to A € C*.

Corollary 5.1. If ® : M — QU(n) is an extended solution on a compact Riemann
surface, then ¢ = w o ® : M — U(n) is a harmonic maps of finite uniton number.

Corollary 5.2. Any harmonic map ¢ : §* — U(n) of a Riemann sphere into a
unitary group is always a a harmonic maps of finite uniton number.

Theorem 5.3 ([32]). Suppose that ¢ : M — U(n) is a harmonic map of finite
uniton number. Then there exists a unique extended solution ® : M — U(n) such
that

(1) &, =mrod=ap (JacUn)),

2) 0, = ;'LOTizl"(V/l €eC"), T, %0,

(3) No(®) =C",
where Vo(®) denotes a complex vector subspace of C" spanned by {(To),v | z €
M,v € C"). Moreover this number m is equal to the minimal uniton number of ¢.

Such an extended solution is called the normalized extended solution of a har-
monic map of finite uniton number.

Uhlenbeck proved the factorization theorem into unitons for harmonic maps of
finite uniton number, repeating the uniton transform procedure by a uniton given
by the kernel bundle of T for the normalized extended solution.

Theorem 5.4 ([32]). Suppose that ¢ : M — U(n) is a harmonic map of finite
uniton number. Then for some c € U(n), ¢ can be decomposed into a product of a
finite number of smooth maps into complex Grassmann manifolds :

@ =clm —ny) - (Tm — 7).
(1) Each ¢ = c(m - ny)--(mi—a)(@ = 1,--- ,n) is @ harmonic map.
(2) Each n; — - is a uniton for a harmonic map ¢®.
(3) my =y : M — Gr(C") is a holomorphic map.
(4) m < n and m is equal to the minimal uniton number of .
Moreover, if M is compact, then E(p) = E(¢™) > E(@™ D) > ... > E(pV).

G. Segal [26] provided the different proofs of these results by the method of loop
groups and infinite dimensional Grassmannian.

The loop group action § of A{{EGC coincides with the loop group action h of
A*GC on harmonic maps of finite uniton number ([8]). This loop group action
is used in order to study the topological properties (such as path-connectedness,
fundamental groups) of the spaces of harmonic maps of a Riemann sphere into
some compact symmetric spaces ([8]).
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The factorization theorem into unitons is a fundamental principle for classifi-
cation and explicit construction of a Riemann sphere into a compact symmetric
space, generalizing the known results in the cases of N = ", CP", HP", Gr,(C"),
0,(C), etc.

Problem 5.1. For each compact symmetric space N = G/K, investigate the com-
plete classification, the explicit construction and the properties of the space of all
harmonic maps of a Riemann sphere into N.

6. HARMONIC MAPS OF FINITE TYPE AND CLASSIFICATION PROBLEM OF HARMONIC TORI

6.1. Harmonic maps of finite type. Consider the based complex loop algebra
Qg® = {£: 5" - g, smooth £(1) = 0}.
Each ¢ € Qg© has Fourier series expansion
&= Z (1-A70)g;, & eqC
JEZ\{0)
Define the based real loop algebra
Qg:={£:5" > g, C*-#%, £1) = 0}.
Each ¢ € Qg has Fourier series expansion
£= > (1-a0¢, £€dC & =¢; (GeZ\{0D.
JEZ\{0}

For each d € N, define a finite dimensional real vector space of Qg by

Qq :={§eﬂg|§: Z (1—/1-1')5,-}.

0<l|jl<d

Introduce a Lax equation over ;. Denote by & a smooth function on Q; with
values in M = C = R? and by {z = x + V—-1y} the standard complex coordinate
system of M = C = R?. The Lax equation is the partial differential equation of the
first order:

0 -
= =162V - N (61)
The Lax equation(6.1) has the following properties: Define two vector fields X,
X; on Qg :
1 -
S = V-1x0)e = [£,2V=1(1 - 7] (V€ € Q). (62)

The following fact holds. The compactness of G is used in the proof of the second
statement.

Lemma 6.1. The two vector fields X1 and X; commute, thatis, the bracket product
of vector fields on Qg satisfies [X1,X2] = 0. Moreover, X\ and X, are complete
vector fields on Q.
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So let ¢ and ¢, denote one-parameter transformation groups (flows) generated
by vector fields. For each ¢ € Qg, a function

£:M=C3z=x+ V-1y+r— £(x,9) 1= (@] o B)E) = (&, 0 #})E) € Qu (6.3)

is a solution to the Lax equation (6.1) with the initial condition £(0) = .
On the coefficient £; = £_4 of ¢ the Fourier expansion in A for th solution
& : C - Qy, the following lemma holds:

Lemma 6.2. The 1-form on C with values in g
ay =2 V=1(1 = V) &dz - 2V-1(1 - 1) Edz

satisfies the Maurer-Cartan equation
1
da, + i[a,l Aap]=0

for each A € S L. From this result, an extended solution ® : M = C —» QG
satisfying ®*0 = O®~1d® = a; exists. Hence we obtain a harmonic map ¢ = no® :
C-G

The harmonic map obtained in this way is called a harmonic maps of finite type
or finite type solutions (Burstall-Ferus-Pinkall-Pedit [3]) . Moreover, a harmonic
map of finite type has the property that o/(£) = ¢ 'dg(£) is contained in an
AdGC-orbit in €. In particular, if a’(%) is contained in an AdGC-orbit through a
semisimple element of €, ¢ : M = C — G is called a harmonic map of semisimple
finite type.

Here we mention about the results due to Burstall and Pedit [4] on orbits of loop
group actions on harmonic maps (dressing orbits).

For £ € Qg, set u = (19712 £%)dz € P. A holomorphic map g, : C — AG® with
gu(0) = e, g;'dg, = pis g,(2) = exp(A97'2£%) (z € C). By Iwasawa decomposition
thorem, there exists uniquely ® : C - QG and #* : C — A*GC such that we
decompose g, as

gu(2) = exp(1*~! 2£(0)) = () P(z) (Yz € C).

Then ®# : C — QG is an extended solution of harmonic map of finite type. Via
the identification QG = Grf,’f,), we can express O as

O4(2) HY = exp(1*'z£(1) HY .

The so obtained harmonic map ¢ = (®*)_; : M = C — G is of finite type.

A vacuum solution: Let 4 € g€ € be an arbitrary element satisfying [4,4] = 0
(thus 4 is semisimple). Set

1 -
&= %(1 A H4a+ SA-DdeQ
and

g =z{(1 -2 HA+ (1 - DAYz € P.
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Then its Iwasawa decomposition is

8u, = exp(z{%(l - H4 + %(1 - DA))

z z - z -z - 64)
=exp((5(1 = A7) + 3(1 = DAY exp((5(1 = DA - 5(1 - V)
and thus we obtain an extended solution
®y:C3z— exp(%(l a4+ %(1 ~DA) € QG (6.5)
and the corresponding harmonic map of finite type is
4=P_1:C3z— exp(z4d+24) € G. (6.6)

Such an extended solution or harmonic map is called a vacuum solution.
Burstall and Pedit [4] studied the orbit of the loop group A{{SGC (dressing orbit)
of a vacuum solution and they proved

Theorem 6.1 ([4] ). Any harmonic map of semisimple finite type is contained in a
AﬁeGC-orbit (dressing orbit) of a vacuum solution.

6.2. Classification problem of harmonic tori. Suppose that C/T is a compact
Riemann surface of genus 1 (a torus) and G (or G/K) is a compact Lie group (or a
compact symmetric space). Lety : M = C/T" — G (or G/K) be a harmonic map.

Theorem 6.2 (BFPP [3]). Assume that ¢ is semisimple, that is, the function (¢*6) ( %)
on M has values in a set of semisimple elements of o€. Then ¢ is a harmonic map
of (semisimple) finite type.

Theorem 6.3 (Burstall [2]). Assume that G/K = 8" or G/K = CP". ¢ is an
isotropic (=superminimal) harmonic map (thus a harmonic map of finite uniton
number) or a harmonic map of finite type.

In particular, in the case G/K = S2, any harmonic map ¢ : M = C/T — S? is
a tholomorphic map or a harmonic map of finite type.
The cases of G/K = Gry(C") and G/K = HP" are discussed in [30], [31]

Corollary 6.1 (Pinkall-Sterling [22]). The Gauss map g : M — S?*(1) of a constant
mean curvature torus M = C/T' — R3 immersed in 3-dimensional Euclidean space
R3 is a harmonic map of finite type.

Problem. Assume that N is a compact symmetric space other than §”, CP". Then
is any harmonic map ¢ : M = C/T" = N of a torus into N a harmonic map of finite
uniton number or of finite type ?

Theory of harmonic maps of finite type on compact Riemann surfaces of genus
greater than 1 was discussed in [20].



7. GENERALIZATION TO PLURTHARMONIC MAPS

The notion of pluriharmonic maps is a natural generalization of harmonic maps
of Riemann surfaces to higher dimensional complex manifolds, focused on the
complex structure of the domain manifold of harmonic maps. Theory of pluri-
harmonic maps of complex manifolds into Lie groups and symmetric spaces are
discussed in [21], [20], etc. Pluriharmonic maps of complex manifolds are very
useful and significant even in the study of harmonic maps of Riemann surfaces.
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