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Smoluchowski-Poisson equation and harmonic heat
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1 Introduction

The purpose of the present paper is to describe similarity and difference
between harmonic heat flow and Smoluchowski-Poisson equation defined
on two-dimensional domain. Starting with stationary states, the former is
called the harmonic map, while the latter arises as the point vortex mean
field equation.

First, equilibrium statistical mechanics of Gibbs is achieved with Hamil-
tonian denoted by H. Classical gas molecular dynamics is described by the
Hamilton system

dqi OH dpi OH .
—_— =, — = — 1<i:<N
dt Op;’ dt 0q;’ ==

where H casts total energy. Then micro-canonical ensemble indicates the
coset in R% /{H} using the phase variable z = (q1,...,qn,P1,...,PN) €
RY. Micro-canonical measure

gn _ 1 dX(H)

ds(H)
W= ) V]

Q(H) =
(#) (H(z)=H} |VH]

is thus defined with d¥(H) on {z € R® | H(z) = H} which satisfies

dE(H)

de =dH - ———~
! VH]

by the principle of equal a priori probabilities. Canoncial mechanics, on
the other hand, is concerned with iso-thermal system, or closed system in



physical chemistry. Canonical ensemble is the coset in R®Y/{T} and then
micro-canonical measure is formulated by

—PH g
duPN = 2 Z(8,N =/ ~PH
p" Z(ﬂ, N)) (/83 ) R6N € £

where T, 3 = 1/(kT), and k denote temperature, inverse temperature, and
the Boltzmann constant, respectively. These two measures are equivalent in
thermal equilibrium through the thermodynamical relation

8= o 1o Q(H).

Onsager [26] introduced point vortex mean field equation using canonical
measure from the point vortex system

dz;
dt

d/0
=VzHy, Vi= ( _a//g;l ) T = (21,72)

o ——

2
Hy(z1,...,zN) = z %’—R(CL'J') + ZaiajG(xi,xj)

i 1<j

defined on simply-connected bounded domain  C R? with smooth bound-
ary 00 where G = G(z,z’) is the Green’s function of —A provided with
I 80 = 0 and

R(z) = [6(a,) + - Togle - |

is the Robin function. The above point vortex system is derived from the
Euler equation

v+ (v-V)v=-Vp, V-v=0 inQx (0,T), v-v=0 ondQx (0,T)

’'=x

N
that is w = V x v, w(dz,t) = Zaz z:(t)(dz). Thus, in the case of equal

=1
intensity a; = a there arises the point vortex mean field equation

p= f:e—_w’ wz/QG’(-,m')p(x')dm' (1)

as N T +oo. Mathematical justification is done by [6, 7, 17] under the
relative Boltzmann factors {Z} bound and unique existence of the solution
to (1), re-formulated by

e’

fQ ev

—Av = inQ, v=0 ondN (2)
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using A = — and v = e~#¥. More precisely, weak convergence of canonical
measures, equivalence between canonical and micro-canonical ensembles in
the mean field limit level, and propagation of caos formulated by

k= p®F =TI, p(x:)

where p;? denotes the k-th pdf, see [42]. This property is actually the case
for A < 87 which is proven by [39]. The case A > 87 is also exciting as the
following theorem [22] indicates.

Theorem 1 Let {(\,v)} be a solution sequence to (2) satisfying A\, —

Ao € (0,00), |Jvklloo — 00 then it holds that A\g = 87¢, £ € N. Passing to a

subsequence we obtain S C Q, §S = £ such that vi, — vg locally uniformly in

O\ S where vo(x) = 8n Z G(z,z0) and S = {x},...,z}} are the singular
€S

limit and the blowup set prescribed by V%HA (21,

¢, respectively, where

amﬂ) (:I:l, ,$e

Hy(zy,...,z0) = 5 ZR(% )+ Y G(zi,z5)

1<g

denotes the original Hamiltonian.

We thus obtain quantized blowup mechanism in the total mass \ and also
recursivity of Hamiltonian.

Geometric background of the above theorem is described by the Liouville
integral of (2), see [40]. Thus we obtain a meromorphic function F = F(z),
z €  C R? = C satisfying

p(F) = (%)1/261’/2, )\-——J/Qe“

|

where p(F) = stands for the spherical derivative. Then (2) is trans-

1+|F)?
o\1/2 .
formed to p(F)|50 = (é—) , that is to find conformal immesion v/8F :
- Q — S?% such that %2— = ¢!/2 where (S%,dS) denotes the sphere with
s

|52 = 8. Since

/ﬂ(%)2dx=8/9p(ﬁ’)2dx=/906”



stands for the immersed area of V8F(f), the conclusion

)\=/ae”——+87r€
Q

indicates ¢-covering of the sphere by this mapping.

At this moment it will be natural to suspect similarity between har-
monic map. Given the domain of m-compact manifold (2, g) and the target
compact manifold N — R"™ without boundary thus we put

H'(Q,N)={ue H(Q,R™) |u€ N ae. onQ}, E(u)z-;-/ |Vul?
Q

to define the harmonic map u € H}(Q, N) by

9 i +eg)| =0, e O=(QRY

e=0
where I : U — N is the geodesic projection and U is a tubular neigh-
bourhood of N. There is energy quantization for m = 2. The difference,
however, is the collision of bubbles classified as bubble on bubble and sepa-
rated bubble which forms bubble tree.

2 Duality - Symmetry

The Smoluchowski-Poisson equation

ut =V - (Vu —uVv), _szu—rflﬂ u in Qx (0,7)
Q
ou Oov Ov
E—UE—a—O onaﬂx(O,T), -/Q’U—-O (3)

is a fundamental equation in transport theory which arises in the context
of semi-conductor physics, high molecular chemistry, astrophysics, and cell
biology [41, 42] where 2 C R" denotes bounded domain with smooth bound-
ary. Fundamental properties are the positivity of the solution © > 0 under
that of the initial value ug > 0, total mass conservation

d
llulh =0 @

and decrease of the free energy

d

77 == [ uVlogu—v)P <0

Flu) = /Qu(logu -1) - %/QXQ G(z,z')u ® u. (5)
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Then we obtain formation of collapse with quantized mass. Henceforth
T = Thax € (0,400] denotes the existence time of the solution.

Theorem 2 Ifn =2 and T = Tpax < +00 in (3) it holds that

u(z, t)dz —= Y m(x0)dz,(dz) + f(z)dz (6)

ToES
in M(Q) ast 1 T where

0< f=f(z) e L' Q)NC@Q\S)
S={zoeQ] 3(:Bk,tk) — (g, T)such that u(x,tr) — +00}

8, €N

Since |lu(t)|; = |luol|; we obtain
24(S N Q)+ #(S N 6Q) < luolly /(4r), (8)

and, in particular, the blowup set S is finite. The strict inequality is actually
true in (8).

The above described quantized blowup mechanism was suspected from
that of stationary states. Since (4)-(5) this stationary state is defined by

logu — v = constant, |ju|l; = A

with the prescribed total mass A. This property implies
Ae’

fn e’

(9)

u =

and hence

v 1

e
—Av =)\ (—— ——
erv 12|

) in Q, @:O on 092, /v=0 (10)
81/ 0

which is reduced to the point vortex mean field equation defined on Riemann

surface where the quantized blowup mechanis is observed. This profile that

quantization of stationary states implies that of non-stationary states may

be called nonlinear spectral theory.
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Toland duality [48, 49] is observed in (1) between u = Ap and v = e~PY.
In the context of (9)-(10), the variational structure is provided with both u
and v, that is the free energy

1
Fw = [ ullogu—1)= 5 (&) uu), w20, ful =
Q
and the field functional

JA(v)z%HVUH%—)\log/Qe”—}—/\(log)\—1), v € HY(Q), /szo

where v = (—A)~!u if and only if

1 ov
—szu———/uinQ, — =0 on 09, /v=0.
1 Jo ov Q
In fact (3) is the model (B) equation derived from F(u), that is

= 0.
aQ

0
ug = Vu - VOF(u), u%(if'(u)

Such duality between field and particles is observed in many models in math-
ematical physics, see [42]. The other variational structure is based on the
symmetry of the Green’s function G(z,z’') = G(2',z) coming from action-
reaction law, that is the weak formulation of (3),

d

a/ﬂcp(a:)u(m,t)dx=/QALP($)-U(:U,t)dx

+% //an po(z, 2 )u(z, t)u(x', t)drdx’
po(z,2') = V2G(z,2') - V(z) + Vo G(z,2') - V(') (11)

valid to

— Oy
2 _
p € C“(Q), 5 0. (12)

N

3 Blowup Analysis - Partial Regularity

The choice n = 2 of Theorem 2 comes from scaling invariance of the equation
defined on whole space

u=Au—-V-(uVl*u), u>0, —Al'=4§ inR"x (0,T) (13)



that is
uu(x,t) = pPu(pz, 4°t), p> 0.

More presicely, this transformation is consistent to the total mass conserva-
tion [luull1 = |lull1 if and only if n = 2. The critical mass A\, = 87 of this
dimension is then detected by scaling of free energy, that is

2
luplly = Jlulli = A, Fu,) = (2)\ — 2——) log 1 + F(u)

i
u(z) = pPu(pz), p>0,

where 0 < u = u(z) € L'(R?). The above critical dimension and the
total mass are associated with the stationary state of (13), 6F(u) = 0 with
lull1 = A, that is

logu —I' * u = constant, u >0 in R2, lulli = A (14)

In fact, (14) is equivalent to
—-Av=¢€’ in R2?, / e’ =A< +o0 (15)
R2

in terms of v = I'su+constant, see [41, 42]. Then (15) admits a family of so-
lutions all of which take the value A = 8, see [10]. These critical dimension
and threshold mass were already noticed heuristically to examine collapse
formation and blowup threshold [11]. Mass quantization in non-compact sta-
tionary solution sequence on bounded domains was actually clarified later
(22, 19]. Then two conjectues made in the context of cell biology, collapse
formation [24] and blowup threshold [11], are combined and solved in the
affirmative as the quantized blowup mechanism [41, 42, 32].

The above described scaling invariance is observed in the fundamen-
tal equations of mathematical physics which induces hierarchical argument
called blowup analysis. We take a simple example

—Av=2v", v>0, 1<p<o
which admits the self-similar transformation
vu(@) = 1P Vu(uz), p>0.

Then we can use blowup analysis to show the following theorem [14].
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Theorem 3 Given a bounded domain @ C R™ with smooth boundary

0Nandl<p< ,’,’-L—*_'g, there is C > 0 such that any solution v = v(x) to

—Av=v", v>0 inQ, v=0 ondN

admits the estimate ||v|,, < C.

To prove the above theorem we assume the contrary, existence of {v}
satisfying

—Avg =1, v, >0 inQ, vx=0 on dN

my = Ug(Tk) = Ukl — +00.

2
Then vk (z) = /,L,:-l vk (urx + i) satisfies the same equation on the rescaled
2

domain where p = m;;"—l } 0 and hence ||Uk||co = Ux(0) = 1. Elliptic
regularity now guarantees the scaled limit v = v(x) satisfying either

—Av=v", 0<v<v(0)=1 inR"
—Av =", 0<v<v(0)=1 inR}, v=0 ondRY} (16)

accoding to the approaching speed of x; toward 9Q2. The Liouville property,
however, guarantees the non-existence of the solution to (16) in case 1 <
p < ;—‘L_g, a contradiction. Ingredients of blowup analysis are thus scaling
invariance of the model, control of rescaled solution at infinity, hierarchical
argument, and classification of scaling limit.

Finiteness of blowup points is the simplest partial reqularity. It is now
well-known that this property is achieved by e-regularity and monotonicity

formula. We take a model harmonic heat flow defined on the torus,

w—Au=u|Vul®>, |u/=1 inQx(0,7T)
u=u(rt): Ax[0,T)— S cR" (17)

where Q = R2/aZ x bZ. It holds that

2 1 d 2 / 2 1/ 3 2 2
el = cudVul? = = — VvV = 18
[luellz + 2dt“vu”2 QU ut|Vul A 8t|ul Vul*=0  (18)

which implies the fundamental property, decrease of total energy

dE

1

44



There is a self-similar transformation to w,(z,t) = u(uz, u?t) of (17) con-
sistent to E and the classification of the scaled stationary state which is the
origin of energy quantization in the level of stationary states described in
the previous section.

We have e-regularity so that there is &g > 0 such that u = u(z,t) is
smooth in Bg/y x [0, T] provided that

sup E(u(-,t), Br) < €o (20)
te(0,7

where E(u,R) = —;—/ |Vu|?, Bg = B(0, R). Inequality (20) means small-
B

ness of local energy in global-in-time which is reduced to the initial state by
the monotonicity formula

1
E(u(-,T), Br) < E(ug, Bar) + CE,T/R%, Ep= §||VU0||§- (21)

Theory of partial regularity is thus composed of e-regularity derived from
standard local parabolic theory and monotonicity formula which trades-off
space and time variables.

4 2D Smoluchowski-Poisson Equation

Global-in-time existence of the solution to (3) is related to the fundamental
properties (4)-(5), that is the Trudinger-Moser inequality. This inequality is
associated with the scaling property described above, but the critical mass
is reduced to a half because the boundary blowup is involved, that is

inf {F(u) | u>0, |lul]; =47} > —o0 (22)
valid to n = 2. Then we obtain the following theorem.
Theorem 4 ([2, 13, 21]) If X = |luol|; < 4, then T = 400 in (13).

Formation of collapse with mass estimate from below is done by localizing
the above theorem.

1. Using nice cut-off functions, we show the formation of collapse at each
isolated blowup point g € S in the form of '

%rl% lirtr%r}nf ()| L1 (@B (z0,R)) = ™ (T0) (23)

provided that T' < +o0.
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2. The Gagliardo-Nirenberg inequality guarantees e-regularity. There is
thus an absolute constant £y > 0 such that

lim H?T“;up lu( )l 21 (@nB(wo,R)) < €0 7o ¢

or equivalently

o €S = lirilT?rup lu(, )l L1 (@ B(zo,R)) = €05 YR >0. (24)

3. If we can replace lim sup;; by liminfy;7 in (24), we obtain §S < 400
by the total mass conservation ||u(t)||; = |lug|l1 = A. Then (23) arises
for any xg € S because any blowup point is now isolated.

4. Above replacement is justified by the weak formulation (11)-(12). In
more details, we have

[ a0 < ot (29

by

pp € L®(Q x Q), (26)
recall n = 2, which takes place of the monotonicity formula. Thus
u(z,t)dr = p(dz,t) is extended p(dz,t) € C.([0,T], M(Q)) up to
t =T. Then (23) implies

p(de,T) = > m(z0)dz,(dz) + f(z)dz (27)
ToES
with m(zo) > m.(zg) and 0 < f = f(z) € L}(Q).
The reverse inequality
m(zo) < ma(zo) (28)

regarded as a localization of blowup threshold. Global blowup criterion
follows from the weak formulation (26) and the second moment of which
plot-type argument is founded in [3]. In the case of (13), thus, the equality

d 9 B 22
&t e |z|“u(-,t) =4\ - o

holds under ug € L'(R?, (1+|z|?)dz) which implies T' < 400 in case A > 8.
Employing the method of localization to the above described second moment
argument, we obtain the following theorem [30].
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Theorem 5 There is a constant n = n(m) > 0 such that if we have
ro €ER?2 and 0 < Rk 1 satisfying

1
ﬁ/ lz —zoPug<n, m= up > My (o) (29)
QNB(xg,2R) QNB(zo,R)

then T = Tax < +00.
The following are the proof of (28).

1. We take the backward self-similar variables defined by
y=(z—mz0)/(T -t)"2, s=—log(T —t), t<T. (30)
Then the transformation consistent to the ODE blowup rate

Z(y, S) = (T - t)u(x’t)a w(y, s) = 'U(.’B,t) (31)
induces

2s =V - (Vz - 2V(w+ |y>/4)) in Q

A ow
— = —_ 3 —_— :O 2
Aw =z ms’mQ, e 0 onT, /Sw (32)

where Q = ;o 1057 Qs X {8}, T = U,s_ log T 02 X {5}, and Qs = (T
t)"Y/2(Q — {z0}). Similarly to the pre-scaled case there is generation
of weak solution so that any s, T +oo admits {s}} C {sx} and ¢(dy, s)
such that

2(y, s + sp)dy — ¢(dy, s) (33)

in Cy(—00, +00; Mo(R?)). Here, 0-extension of z(y, s) is taken where
it is not defined, Mo(R?) = Cy(R?)’, and Cy(R?2) denotes the set of
continuous functions on R? U {oco} taking 0 at co. This ¢(dy, s) is a
(finite) Radon measure on R? for each s. Contrary to the pre-scaled
case, y = oo is excluded in convergence (33) to derive collapse mass
estimate above.

2. Taking even extension in case z¢ € 9, the above ((dy, s) becomes a,
weak solution to

2, =V -(Vz—2V([*2z+ [y[*/4)) in R? x (o0, +00). (34)
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There is thus 0 < K = K(-,s) € £, |K(-, s)|ler < A2, a.e. s such that

K(-8)lx = ¢(dy,s) ® ((dy, s)
d

(0, Cd,)) = (B + 5y Vip,C(dy, ) + 560, K(,5)) a8

for ¢ € C3(R?) where s € (—00,+00) — (i, ((dy, s)) is locally abso-
lutely continuous. Here

0 _ 0 N __Y— Y ) _ /
Pp = Pp(y,Y') iy = o (Ve(y) — Ve(y'))
and £ is the closure of the linear hull of £ defined by

Eo={py +¥ | p € C{(R?), ¢ € X}
X =Co(R2xR) @ [(Co(RH®R)®R] & [R® (Co(R?) ® R))

with Co(R? x R?) standing for the set of continuous functions on
(R?U {o0}) x (R?2U{00}) vanishing at [(R2U {oo}) x {oo}] U [{oo} x
(R? U {oo})].

. We use parabolic envelope, infinitely large parabolic region. Henceforth

© = @z, r is a function satisfying (12) and

[ 1, QnB(zo,R/2)
Pao,R(T) = { 0, Q\B(::(?,R)

First, we refine (25) as

4 / u(-t)
dt a ' U)Pzxo,R

with a constant C' > 0 independent of 0 < R < 1 which implies

<C\+X)R2 (35)

| /Q a0l 1) - <som0,R,u<da:,T>>| < C\R(T - 1)

plim lirggup ((wxo,b(r_t)m,u(dw, t)) — m(wo)l =0.  (36)

It says that infinitely wide parabolic region in xt space associated with
backward self-similar variables contains the whole blowup mechanism.

We thus obtain

m(zo) = ((R2,s), —o00<s< 400 (37)
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for (z0) 0
N ) m(xg), =o€
m(:co) - { 2m(w0) xg € 0N

which means that collapse mass is equal to total mass of rescaled weak
limit with y = co excluded in the limit process.

. We take the scale-back ((dy, s) = e *A(dy/, '), v = e™*/%y, s’ = —¢~*
to (34) and obtain weak solution to

A;=V .- (VA-AVlx A), A>0 inR?x (—00,0)
A(R?,5) = ri(zo) —00< s<0.
Here we use
l d

= (0, Aldy, 9))| < Cp, Aldy,s) 20, A(R?s)=m(a0)

to take the translation weak limit where p € CZ2(R?) ® R. Any s; 1
+o0o thus admits {s}} C {si} such that A(dy,s — s;) — a(dy,s) in
Cy(—00, +00; M(R?)) where a = a(dy, s) is a weak solution to

as=V-(Va—aVl*a), a>0 in R2 x (—o00,400)
a(R?, s) = m(zo) —00< 8 < 400 (38)
and M(R?) = [Co(R?) ® R)’. Here we use M(R?) to envelope the

rescaled total mass which gurantees a(R?,s) = m(xo). Then (28) is
derived similarly to the classical solution done by [18], see below.

. First we use the local second moment. We obtain

'ﬁl(.’L‘o)
27

d%(ﬁ(lylz) +1,a(dy, s)) < C{c(lyl*) +1,a(dy, 5)) + ri(wo) (4 - )

a.e. s with C' > 0, § > 0 where

0<d(s)<1,s>0, —-1<¢(s)<0,5>0
_fs—1, 0<s<1/4
.d@_{o, s> 4.

In case Mm(xo) > 8, therefore, the condition

(5’1”71(.’1:0)

e (1(wo) — 8)

(c(lyl*) + 1,a(dy,0)) <n =



implies
(c(lyl®) + L,a(dy,s)) <0, s>1

a contradiction. Hence it must hold that
(c(ly*) +1,a(dy, 0)) 2 n. (39)
6. Problem (38) is invariant under the transformation
a(dy',s') = p*a(dy,s), o =py, s =ps, p> 0
and so is true for 5 in (39). In case m(zp) > 8, therefore, we obtain

(c(|ly)?) +1,a(dy,0)) > 7
(c(u™?yl®) +1,a(dy,0)) >0, " >0.

Then we apply the dominated convergence theorem using
0<c(2y?)+1<1, c(u?y?)+1—-0, "yeR?
as u T +oo which implies n < 0, a contradiction.
Having proven (6)-(7), now we can show the following theorem.

Theorem 6 ([28, 23])) Every zo € S ts of type II. More strongly, we
have
ltlTl}l(T = ) [lu(s )l oo B(ao,b(T—t)172)) = +00 (40)

for any b > 0 and
2(y, s + §')dy — 8mdp(dy) (41)

in Cy(—00, +00; M(R?)) as s' 1 +oo.

Relation (41) is called formation of sub-collapse which says that to-
tal blowup mechanism is enclosed in hyper-parabola, infinitesimally small
parabolic region. In fact it is easy to see that (41) implies (40), while the
latter is proven as follows.

1. Similarly to (35) we obtain

d
pr /Q |z — xolzu(-, t)ozo,R| S C(A+ /\2)



which implies

| 12— aPut e < AT =0+ [ fo = 20 oS (2)e
Q
and hence

T — xg 2

/Q @) | Peotre ulnt) <C+ 46% (Pao,br(t): f)

R(t)= (T -t)2, b>o0. (42)

2. Given ty T T, we take {s;.} C {sx} satisfying (33) for sy = —log(T —
t). Inequality (42) implies (|y|%@z.5,¢(dy, s)) < C and hence

<|y12,C(dy, 8)> <C, —00<s<00 (43)
with b T +o0.
3. Putting I(s) = <|y|2 ,¢(dy, s)>, now we obtain

dl ) m(zg)?
4 _ \ro)
m(zo) 5

P +I=1 ae. s€R (44)

by (32) and (37) which implies <|y|2,C(dy, s)> =0, —00 < § < 0 by
(43). It follows that
((dy, s) = 8mdo(dy) (45)

and hence (40).

Here we mention the problem of quantization of blowup in infinite time of
the solution to (13) which says that T' = 400 with lim¢y4eo [|u()[lec = +00
will imply A = |luglls € 87IN. This expected property indicates the non-
stationary redisual vanishing which is assured for non-compact sequence of
stationary states [19]. We also expect that the movement of collapse formed
in infinite time is subject to a Hamiltonian. These profiles are actually the
cases of radially symmetric solutions and that of the first critical mass, re-
spectively, see [25]. The fundamental property of sup + inf inequality valid
to the stationary problem, however, will not hold to the non-stationary prob-
lem. In [1], the repulsive self-interaction is studied where (32) is replaced
by

v =V (Vo +oV(T %z + |z]*/4)) in R™ x (0, +00).

In this case there is exponential decay of a relative entropy.
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5 Harmonic Heat Flow

The following theorem is obtained by the above described e-regularity and
monotonicity formula for the model harmonic heat flow [34].

Theorem 7 There is a global-in-time H'-solution to (17) with finite
singular points in Q x [0, +o0c) where Q2 = R?/aZ x bZ.

We show the key ingredient, monoticity formula (21). This property is
regarded as bounded variation in time of local energy. For the harmonic
heat flow, this property is derived from the definite sign of the density of F,
that is |[Vu|2, more precisely,

1 T 1
3. 500 [VaC I3+ [ fuo)l3ds < 5 IVuol} =B (46)
te[0,T) 0 2

by (18). We have also

[ e+ [ v v =3 [ [?—lu!?] Vul2e? = 0
Q Q 2 Jq [Ot

/QVU-V(utcp2) = /(Vu Vug)p? -+-/[( - V)] - Vp?

= 33 | vuPet+ [ vy v

with

and, therefore,

2.2, 1@ 2,2 _
e+ 5% [ 9ule+ [ e 9y 0

for each p € C1(Q). It holds that

1/2
53 LIV < tutdiel + tude - { [ vuri9ie]
< b3l +Valula - BVl (47
and hence

Td 2 2
— Vu
/Odt/9| 2

by (46). Then (21) follows from (46)-(47).

dt < +00 (48)




Inequality (48) assures collapse formation with finite blowup points,

Vu(z, t)]de — > m(w0)dx,(dz) + f(z)dz (49)

ToES
ast 1 T in M(Q) with m(zg) > €9, 0 < f = f(z) € L}(Q) where S = Q\ B,

B = {zo € Q | limsup || Vv (-, t)||L2(B(z0,R)) < +00, 3R > 0}.
t1T
Inequality (47) implies also

<20 / " s )12ds

’/Q IVu(-, )02 g “/Qf(x)cpioﬂ — m(zo)

T 1/2
+2V2E;/? {/ e s)ngds} C(T-t)Y?/R, zo€S
t
with C' > 0 independent of 0 < R < 1. Then it follows that
ilg}/g 'VU(',t)P‘PiO,bR(t) = m(zo)

from (46) again, where b > 0 is arbitrary and R(t) = (T — t)1/2. Hyper-
parabola thus arises and we obtain type (II) blowup rate at each zo €
S, see Theorem 12 below concerning (51) for the proof. Inequality (46),
furthermore, implies

1113 inf(T —t) [us(t)||3 — O (50)

which assures a stationary profile of u(-,¢) as t T T, see [50].

The convergence (49) is compatible to u(-,t) — u(-,T), |Vu(-,T)|? = f
as t T T in H'(Q) because this convergence is valid also in C} (2 \ S).
Then the solution is extended beyond t = T with the updated initial value
u(-,T) € HY(2). This process ends after finitely many times. The solution
in Theorem 7 is thus constructed with weak continuity in H'(Q).

The concentration lemma [31] guarantees to generalize the initial value
ug = up(z) > 0 to L' function in (3). This solution is defined as the limit
of regular solutions for regularized initial values and becomes regular for
0 <t< 1 If we take 0 < f = f(z) € LYQ) in (6), we can extend the
blowup solution beyond t = T and this process ends with finitely many
times. This solution may be comparable to Struwe’s solution for harmonic
heat flow in Theorem 7, although its continuity is not certain in standard
function spaces.
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6 Mass Quantization in Higher Dimension

Degenerate parabolic equation is introduced by [8] to describe the motion
of the mean field of many self-interacting particles, that is

_1
mm Au™—V-(uVT*u), u>0 inR"x (0,T)

1
A Y

= (51)
with n > 3, and w,_; denoting the area of the boundary of the unit ball
in R™ so that —AI" = 4. First, the particle density at (z,t) € R" x (0,7
with the velocity v € R™ is denoted by 0 < f = f(z, v,t) which satisfies the
kinetic equation

Jt+v-Vof =V -Vyf ==V, -3

provided with the general dissipation flux term —V,, - j, where ¢ is the grav-
itational potential generated by f. We have the density-pressure relation
and the Poisson equation

p=p(u,0), Ap=u (52)

where p and 6 stand for the pressure and the temperature, respectively. The
dissipation flux term —V,, - j, next, is determined by the maximum entropy
production principle, so that f maximize the local entropy

S = s(f(z,v,t))dv
Rn
under the constraint
ue,t) = [ feodo, pat) =2 [P i,
Rn n R"

Averaging f over the velocities v € R™ and the passage to the limit of large
friction or large times lead to

pe = V[Dy - (Vp+ puVe)], . (53)

that is a hydrodynamical limit of self-gravitating particles whereby the total
mass \ = / p(z,t)dz is conserved during the evolution. We have, thus,

several mean field equations according to the entropy function s(f) subject
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to the law of partition of macroscopic states of particles into mezoscopic
states, that is the entropies of Boltzmann, Fermi-Dirac, Bose-Einstein, and
so forth. System (52)-(53) is still under-determined, and there are several
theories to prescribe the temperature 6. In the canonical statistics one takes
the iso-thermal setting, and hence the temperature 6 is a constant. In the
micro-canonical statistics, on the other hand, 6 is a function of ¢ while the

: 1 . . .
time-independent total energy F = g / pdzx + 2 / pedz is prescribed in
Q Q

advance. Rényi-Tsallis’ entropy S = _—1 (f?— f)dv is g-analogue of
q— R"

the Boltzmann entropy. Adopting this entropy, (52) takes p = ﬁGl_jz_ul"'"’

where k > 0 is a constant and % = q_Ll + 2, see [9, 4]. Normalizing physical

constants and taking the iso-thermal setting, we can reduce (52)-(53) to the

degenerate parabolic equation (51) where the new unknown w is a positive

constant times u and 7n'1:'1' = q—}l + 5. Whenn =3 and ¢ = —g—, the case
m = 2 — ;2; = % arises to (51). Equation (51) with m = 2 — % shares,

actually, similar variational and scaling properties to the Smoluchowski-
Poisson equation (13) with n = 2.

The solution to (51) which we handle with is the weak solution formu-
lated by [43]. Given the initial value

0<up € L{R")NL®R"Y), ul'c H(RM), (54)
we thus take the approximate solution u; = uc(z,t) satisfying

-1
Ut = T Aue + €)™ ~ V- (VT xu) iR x (0,7)

for 0 < € < 1 with sufficiently regular initial value up. = uge(z) and take
the limit process € | 0. If the existence time of the weak solution v denoted
T = Thmax € (0,+0¢] is finite, then

i = +00. 55
lim [[u(®)floo = +o0 (55)

For the proof, first, u. = u.(z,t) is extended as far as ||uc(t)||oo is bounded,
while

) Hu ) —
B= sup fuc(lleo < ol 0<T < fuglz

te(0,T) — T|luolloo’

holds by the L*-energy method [27]. Then we derive several estimates of
ue(-,t) uniform in 0 < e < 1 and 0 < t < T to take the limit. Then the
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existence time of the weak solution u = u(:,t) is bounded from below using
|luollco, and, consequently, it extends in ¢ as far as ||u(t)||co is bounded.
In particular, (55) arises in the case T = Tpax < 400. The scheme to
construct weak solution is due to [38, 36, 35] where the Besse potential is
used instead of I'. We compensate the lack of decay at the infinity of I' by
the decomposition VI xu = g1 + g9,

g1 = [VI - xgm\B(0,1)] ¥4, 92 = [VT - xBo1)] * u (56)
and the Calderén-Zygmund estimate
||D2u||p < C(n,p)||Au||p, u € WHP(R™), 1 < p < oo.

We emphasize that the blowup criterion (55) is concerned with the weak
solution. In [20], for instance, the unique existence of the classical solution
local in time is proven for n =1, m = 3, and (—A + 1)I' = §, provided with
the regular non-negative initial value ug = wo(x). If ug # 0 has compact
support, furthermore, this classical solution breaks down in finite time T, ex-
posing the profile limyr, ||Gzu(t)]loo = 400, limsupz, [[u(t)]lp < +00, 1<
p < oo0. Thus we have the continuation after t = T, of this classical solution
as a weak solution. Several arguments described below are formal because
of the lack of sufficient regularity of the solution althoug are justified by the
approximate solution.

First, (51) is a model B equation, see [42], associated with the free energy

f(u)—-/ ﬁdw—l(I‘* u) u>0
- R M 2 “ ’ -
In fact we have
(v,0F(u)) = if'(u + sv) = (v,u™ ! =T xu)
ds s=0

using the L2-inner product (, ). Under this identification 6F (u) = u™ 1 —
I' x u we can write (51) as uy = V- uV§F(u) in R™ x (0,T) which implies
the the total mass conservation and the decrease of the free energy

d

)l = ol =%, 5F@ == [ wlVsF@E <0 6D

Next we examine scaling invariance compatible to total mass conservation,
that is

uy(z,t) = p"u(pz, p™t), 1 >0 (58)
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. _ 2 . . .
valid to m = 2 — 2. The Trudinger-Moser inequality

n

hﬂmeuZstpuCMQRL/‘u=M}>ﬂm (59)

actually arises for each R > 0 to this exponent m = 2 — %, see [52, 51, 33,
and the threshold value A, is detected by the stationary state of (51),

u™ ! —T'%u = constant in {u > 0}, /R" u=A (60)

Then v = I' x u + constant satisfies
—-Av=1v! inR" /n vl = (61)
where m = 1 + % and hence ¢ = -“5. Problem (61) for this exponent is

invariant under the scaling transformation v, (z) = p"2v(uz), u > 0.

This stationary problem admits a family of solutions each of which is
necessarily radially symmetric, and determines the threshold value A = \,
uniquely. There is also mass quantization to the non-compact stationary
solution sequence on bounded domains [51, 47]. Threshold value \, is also
prescribed by the best constant C(n) of the Hardy-Littlewood-Sobolev in-

equality
2 2
(£, % )] < C@)IFImIAI™, m=2-,
see [5]. There is a difference between (61) and the two-dimensional problem
(15), however, that vi has a compact support. The other difference is scaling

propery of free energy F(u,) = u"~2F(u) which refines (59) as
.ﬁzmHFWHOSUEUWR%,/ w=A}=0. (62)
Rn

If ||uoll1 = A < A« is the case we obtain lim sup;r ||u(t)|lm < +o0 by (57)
and (62). Moser’s iteration scheme guarantees limsupyr [[u(t)[loo < +00
and hence T' = +00. Assuming

lz|%up € L*(R™), (63)

on the other hand, we have

i/nlxl2u(-,t) = T—n—:‘l“%/num(',t)—(n—2)<r*“’“>

dtR m
= 2(n—2)F(u) (64)
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which implies T' < +o00 in case F(ug) < 0. Since (62) is sharp and

inf{F(u) | 0 <uwe L™R"), u=A}=-00
Rn
each A > A, admits ug = up(z) > 0 with compact support such that F(up) <
0 and ”UOHI =\

Theorem 8 ([5, 44]) For A\, > 0 determined by the dimension n > 3
it holds that if uy = ug(x) is the initial value satisfying (54), (63), and
|uolls < A, then T = +oo in (51) for m =2 — 2. Each A > )., on the
other hand, takes ug = uo(x) such that (54), (63), ||uoll1 = A, and T < +c0.

Localization of the above criteria, particularly, deriving monotonicity for-

mula, however, has not been achieved. This difficulty is due to the above

described different relation from 2D Smolchowski-Poisson equation, between

total mass, free energy, and second moment of u. In fact we have z - VI =

—5 and - VI = —(n —2)T for I'(z) defined by (13) and (51), respectively.
The blowup set is defined by S = R™ \ B,

B = {z¢ € R" | > > such that lim supyyr [|[w(t)|| Lo (B(zo,r)) < +00}

which is non-empty because weak solution u = u(z,t) satisfies the blowup
criterion (55) for T < +00. To confirm the blowup rate, next, we write (51)
as

-1
m Au™ —Vu -V xu + u?

U =

and take the ODE part ¢ = ¢2. It follows that ((¢) = (T — t)~! which
defines type I blowup rate of u = u(x,t), that is ||u(t)||eo = O(T — t)71).
Then we say that xp € S is type I if lirtr%%nf(T = )|t || Lo (B(zo,ro)) < +00
for some 79 > 0 and type II in the other case. Then we obtain finiteness
of type II blowup points, recall, in 2D Smoluchowski-Poisson equation (13)
any zg € S is type IL

Theorem 9 ([46]) Let up = ug(x) be the initial value satisfying (54)
and (63), and assume T < +oo for the above described weak solution u =
u(z,t) to (51) withm =2 — 2. Then S is bounded and Sy is finite where

S = {wo € 8 | (T = )fu(®)|z(Bieoroy = +0, "0 > 0} -
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The first step to prove Theorem 9 is the e-regularity stated below.

Theorem 10 ([45]) We have €9 > 0, C > 0 independent of o € R”,
0 < R<1 such that

sup [lu(t)L1(Bao,r) <€0 = sup [[ut)llLec(Bag,r2)) < C  (65)
te(0,T) te(0,T)

where u = u(z,t) is a weak solution to (51).
For the proof of Theorem 10 we use the decomposition (56),
v=T*xu=wv1+vy, vi=[" XxRrRm\Bo1l *u v2=[T"xpe1)]*u

combined with the relation v = G x v; + G * v3 + G * u where G = G(z) is
the Bessel potential satisfying (—A + 1)G = 6. This potential, studied by
[37], decays exponentially at infinity. Direct consequence of Theorem 10 is
the boundedness of the blowup set S derived from (64). In fact we have

n

/ Pl £) < O(T,up) = 2(n — 2T F(uo) + / 12 ug

and hence lim sup/ u(-,t) < R2C(T,up). We obtain S ¢ R™\ B(0, R),
1T Jig|>R

taking R > 1 as C(T,ug)R™2 < ¢y,

The constant C in (65) is involved by the initial value. This propery,
however, is compensated by the parabolic regularity concerning local norms
of the solution noticed by [31] to (13).

Theorem 11 ([46]) Given r € [2,00) and R > 0, we have 0 < &, < 1
such that

S;épl) w21 (Bozry <&r = u®lrB@ory) <t™H 0<t<1.
te(0,

Given zp € S and 0 < R < 1, we take 0 < ¢ = ¢, r(z) € CP(R™)
satisfying supp ¢ C B(zo, R), ¢ = 1 on B(zo, R/2). Put A(t) = / ou(-,t).
RTL
First, it holds that

i/ ” 2</ uIV(,0|2
dt Jun” = Jrn

/ u| V@™ =T xu)|” < -A[Vel %F(u) (66)

2
=’/ uV(u™ ! —Txu)- Vo
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which means

' ||V<PN§O/\ " _ _
< -Delpr @ = [ jaPu (67)
If
ltiTI%}]-"(u(t)) > —00 (68)

is the case, therefore, it follows that

T4 1/2 T\d 2d 12
— uldt <T / —/ u| dt < 400
»/0 dt v/f;.n(p 0 dt Rn(p

and hence lim A(t) = lim ou(-,t) exists. Since Theorem 10 guarantees
t1T t1T Jrn

liminf A(t) = limsup A(t) > limsup ||u(t)||z1(B(zo,R)) = €0,
11T 1T t1T ’

we obtain limp,o lim infs7 [|u(t)|l L1(B(z0,2R)) = €0 for any zo € S, and hence
the finiteness of S by the total mass conservation.

In the other case of limy7 F(u(t)) = —oo, we have F(u(tg)) < 0 for some
to € [0,7). We may assume tg = 0 without loss of generality. Inequality

(64) then implies %? < 0 and the existence of H(T) = limyr H(t) > 0.
Lemma 1 It holds that
sup A(t) < A(t) + C(H(t) — H(T))2. (69)
t'eft, L]
Proof: Inequality (67) implies

[Vell2oA
2(n — 2)

for 0 <t <t < T by H'(t) <0, and, therefore, it holds that

‘ (' — 8)A'(s)%ds < (H(t) — H(t'))
t

2

t+t/

g/z(ﬂ—g*@
t .

t4t!
2
= / A'(s)ds
t
t/

[ - ayas < 282 el ae) - )

t+¢t 2

o) - A)

.

2

_log2 |Vl
- 2 n—2

A-(H(t)-H(T)), teltT)
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which implies

AEY) < 4w + o - BOM, ¢ el )

and hence (69). 1
Now we use the scaling property (58).

Lemma 2 FEach ro > 0 admits to € [0,T) and C > 0 such that

lw(s t) L1 (Bzor)) < €0/2 =

sup (T = Dllw®)ll Lo (Bzo,(T—t1)17m)) S C (70)
te(t1+3(T—t1),t1+3(T—11)) .

where o € R™ and t; € [y, T).

Proof: Wehave A(t1) < €9/2, A(t) = / Pxo,roU(+, t) by the assumption
Rn
(70) and hence

0<T-t)k1, t; € [to,T) = sup A(t/) < €p (71)

T+t
t'efty, T4

by Lemma 1. Here we use the scaling property (58) and take p > 0 and
i(z,t) by
T+t

Wz, t) = p u(pz + zo, k"t + t1), p"+t; = 5

It holds that

i = T LAG™ — V. (@VT @), >0 in R®x (0,1)
T -t -
ph=—o—  sup [[a@)lz B orou-1) < €0
te(0,1)

by (71). Now we use Theorem 11 and then Moser’s iteration scheme applied
to the proof of Theorem 10. We obtain

sup [|@(t)||Leo(B(0,1)) < C1
te(1/4,3/4] :

similarly, because rou~! > 2 holds for 0 < T — ¢; < 1 which means

sup (T - tl)”u(t)”LOO(B(mo,(T—h)l/")) < Cr.
te(t1+3(T—t1),t1+3(T—t1))



Then (70) follows for C' = 3C;. ’ [

The proof of Theorem 2 is complete by showing

inf limlimi > .
,Jnf lim hftf%,_lrnf ()l 21 (B(zo,r)) = €0/2

In fact, then #S;; < +oo follows from the total mass conservation. Assuming
the contrary, we have zg € Syy, 79 > 0, and ¢; T T such that

lu(ti)|l L1(B(zo,2r0)) < €0/2

for j = 1,2,---. Then we obtain sup |[u(t;)||lL1(B(y,r0)) < €0/2, and,
y€B(zo,m0)
therefore,
sup (T = [t oo (B(y,(T—t;)1/m)) S C

te(t;+3(T—t;),ti+3(T—t;))
by Lemma 2, where y € B(zg, 7o) is arbitrary. This inequality implies

sup (T = t)||u®)|lLoe(B(zo,ro)) < C
te(tj+5(T—t5),t;+3(T-t))

lim Inf(T ~ t)[u(t)l L (B(zo,ro)) < +00

that is zg € Sy, a contradiction. 1

The proof of the next theorem is valid to Theorem 6.

Theorem 12 If (68) holds, then each xo € S is type II. We have, more
strongly,
ltin}l(T — ) [|u(®)|l Loo (B(zo,b(T—t)1/m) = +00 (72)

for any b > 0.

Proof: We have shown that the formation of collapse arises in this case. By
(66), furthermore, it holds that

[ | Lo
o |dt Jo

- Putting ¢ = ¢4, R, We obtain

(o1 U(t)) = (Pao,rs i(dz, T))| < C(TA)V2R™NT - t)

u(dz,T) = Y m(x0)z(dz) + f(z)dz. (73)
z9ES

dt < C(TX)?||Ve||co.

62



Given b > 0, we can take R = b(T —t) for 0 < T —t < 1 in (73), and again

/ u(-,t) — m(o)
B(xo,b(T—t))

follows for any b > 0. Using v(y, s) = (T —t)u(z,t), y = (x—20)/(T —t)1/",
s = —log(T —t), inequality (74) reads;

/ n—1 U("s)_m(wO)
B(0,be” " %)

Since / v(-,8) =\, s > —logT, any t; T T admits {s},} C {sx} for s =
—log(T — t;) such that

lim limsup =0 (74)

bT4o00 1T

lim limsup = 0. (75)

b+ st400

v(y, sp)dy = ((dy), ¢(dy) > m(xzo)do(dy) (76)
. . . s / —
in M(R"™) by (75). Relations (76) imply klgx; “U(sk)“Loo(B(o,b)) = +o0 for
any b > 0 and hence (72). 1

Scaling property combined with the compactness of solution sequence
derives other aspects of type II blowup points. The following theorem may
be comparable to non-degeneracy of the blowup point concerning the semi-
linear parabolic equation with sub-critical nonlinearity [15].

Theorem 13 ([46]) We have §S, ¢ < +00, £ > 0 where

Sue = {z0 € R" | Iy(t) = 0, 3> 0, |y(t) — zo| = O((T - t)¥/")
lilg%}nf(T — Dlu(| oo Byt -ty /ny) = €}

Proof: If inf limliminf ||u(t > 0 is not the case we have z; €
f oo limlimin [w(®) || L1 (B(zo,ry) > 0 is n k

STk > 0,0 <T —t < 5, j,k=1,2,-- such that

. gg 1
u(zx, t;;)dr < mln{——, ——} .
/13(93k,47‘k) (& t3k) 272

Let k be fixed. Since zx € Sy, there is yi(t) — zk, by > 0, L > 0 such that

k() — yk(s)| < Llt — sV, 0<T—t, T-s<1
hfﬁ,}nf(T = D)l oo (Byr(t) e T—t)1/m)) = &
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We have ji, > 1 such that B(yk(t;k), 3rx) C B(xx,4rk), j 2 jr and hence

g0 1

oup [ulty)l1catamy < i {3 } (77)
yEB(yi(tjx),Tk) ’ (B.2re)) 272k

In particular, it holds that

sup  Jlu(tsx)ll < 60
v k) L1 B aT-t)1/m) < o
yGB(yk(tjk),rk) J ( y ( t.‘lk) ))

with ji replaced larger if necessary which implies

sup (T = )lwt) | Lo By tje)r)) < € (78)
t€(tjk+ 5 (T—tj) tin+ 3 (T—tjk))

by Lemma 2. We obtain, also,

1
sup lulr (B esn)2me)) < (79)
t€(tjk, 2 (T+t5x))
by (77) and Lemma 1 under the same agreement. Inequalities (78)-(79)
imply
1

sup i (6l poo <C, sup |ju(?)l =1,
te(3,3) ! L (B(Os5i ) te0] - L B0 S

1
Bik = §(T —tiK), wik(z,t) = piru(une + yk(tic), it + tik)-

Since the parabolic regularity does not apply to the family uj; = u;x(x,t)
we come back to the approximate solution. Then passing to a subsequence
of {j} denoted by the same symbol, we have u;x — ux locally uniformly
in R™ x [%,g] as j — oo for k = 1,2,--- by diagonal argument where
ux = ug(z,t) is a solution to (51) satisfying

sup |lug(t)l|lLeemny < C,  sup fluk(®)L1mny <
te(3,3] te[3,2

?rlb—-l

Then it holds that u; — 0 locally uniformly in R™ x [8, 8] as k — oo. Given
0 < n < &, therefore, we have ||“k“L°°(B(0 2b)x(3,3]) < Q for a k sufficiently

large, and, then, there arises jp,x such that ||quHL°o (BO25)x(3,8) <7 for
any j > jpnk. This inequality implies

sup (T — )|ul) || Lo (Blyi (t30) m5x5)) <7
t€(tin+ o5 (T—tn) tik+ 5 (T—tjk))

hmlnf(T = O wt)l oo (Byrt) b(T~t)1/m)) ST
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sending j — o0, a contradiction. ]

The following theorem suggests that S may be a positive dimensional
set if §S = +o00. Since the lower dimensionally reduced solution does not
blowup because of the total mass conservation, one may suspect the validity
of §S§ < +o00. Here we say that z(t) € R™ attains a positive local maximum
if u(-,¢) is positive in a neighborhood of z(t) in z-space and z = z(t) takes
a local maximum of u(-,¢).

Theorem 14 If 4§ = +oo, there are infinite number of xg € S such

that i
lim sup ist(z(t), zo)

= 80
nr (T —t)l/» +oo, (80)

provided that z(t) attains a positive local mazmimum of u(-,t) such that

limsup u(z(t), t) = +00. (81)
11T

Proof: If §S = +o00 is the case, there are infinite number of zg € §\ S« 1
by Theorem 13. Since z(t) attains a positive local maximum of wu(:,t) it
follows that mh < m? for m(t) = u(z(t),t), see [12], and hence

m(t) = u(z(t),t) > (T — t)7L, 0<t<T
holds by (81). In particular we have

llrg%%nf(T - t)”u(t)’ILW(B(m(t),b(T——t)l/") Z 1, Vb > 0

Hence zo € S, 1 if (80) is not the case, a contradiction. i
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