THE FORMAL DEGREE OF DISCRETE SERIES REPRESENTATIONS OF *GL_N* (*GL_N*の離散系列表現の形式的次数について)

KAZUTOSHI KARIYAMA (刈山和俊)

INTRODUCTION

Let G be a connected reductive group defined over a non-Archimedean local field F, and G = G(F). It is important to determine the formal degrees of the discrete series representations of G for the explicit Plancherel measure for G. In Aubert and Plymen [1], the explicit Plancherel measure for $G = GL_N(D)$ is derived via the work of Silberger and Zink [13], where D is a division algebra over F.

For $GL_N(F)$, there are many works, e.g., [16], [8], [4], and [13] of computing formal degrees of discrete series representations. Indeed, the general formal degree formula of the discrete series representations are given in [4], and the explicit values of the formal degrees are computed in [8] in the tame case, and in [13] in the general case.

In this article, we improve the method of [13] by using the results of [4], and compute the values of the formal degrees of the discrete series representations of $GL_N(F)$ (Teorem 1.4), which are expressed in terms of critical exponents (see 1.1 below). These expressions are implicit in the formula of [13, Theorem 1.1]. Thus, our formulas are not essentially new. But our improved method remains valid for some other classical groups. In fact, we obtained analogous results for a symplectic group $Sp_N(F)$ and for a unramified unitary group U(V, h), where N is an even integer ≥ 4 and h is a non-degenerate Hermitian form of an N-dimensional F-vector space.

The contents of this article are summarized as follows: In Section 1, we give the improvement of the method of Silberger and Zink [13] for $GL_N(F)$, and in Sectin 2, we present results (Theorem 2.7) obtained using the recent works on Hecke algebras of self-dual simple types of Kariyama and Miyauchi [11] (cf. [10]) for the unramified unitary group U(V, h).

1. An improvement on the method of Silberger-Zink

1.1. **Preliminaries.** Let F be a non-Archimedean local field. Let \mathfrak{o}_F be the ring of integers of F, \mathfrak{p}_F its maximal ideal, and $k_F = \mathfrak{o}_F/\mathfrak{p}_F$ the residue field. We denote by $q = |k_F|$ the cardinality of k_F .

Let N be an integer ≥ 2 , and V an N-dimensional vector space over F. We set $A = \operatorname{End}_F(V)$ and denote by $G = A^{\times}$ the multiplicative group of A. By an appropriate F-basis of V, we identify $A = M_N(F)$ and $G = GL_N(F)$.

We use the notations of Bushnell-Kutzko [4]. Let \mathfrak{A} be a hereditary \mathfrak{o}_F -order in A with Jacobson radical $\mathfrak{P} = \operatorname{rad}(\mathfrak{A})$. We define a subgroup $\mathcal{K}_{\mathfrak{A}}$ of G by $\mathcal{K}_{\mathfrak{A}} = \{g \in G | g\mathfrak{A}g^{-1} = \mathfrak{A}\}$. For an element β in A, the integer $k_0(\beta, \mathfrak{A})$ is defined in [4, (1.4.5), (1.4.6)].

Following [4, (1.5)], a stratum in A is a 4-tuple $[\mathfrak{A}, n, r, \beta]$, where \mathfrak{A} is as above, n, r are integers such that n > r, and $\beta \in A$ with $\beta \in \mathfrak{P}^{-n}$.

Definition 1.1. ([4, (1.5.5)]) A stratum $[\mathfrak{A}, n, r, \beta]$ is called *pure*, if the following conditions are satisfied:

- (1) the algebra $E = F[\beta]$ is a field,
- (2) $E^{\times} \subset \mathcal{K}_{\mathfrak{A}},$ (3) $\beta \in \mathfrak{P}^{-n} \setminus \mathfrak{P}^{1-n}.$

It is called *simple* if, in addition,

(4) $r < -k_0(\beta, \mathfrak{A}).$

Thus, for a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, the integer $k_0(\beta, \mathfrak{A})$ satisfies $k_0(\beta, \mathfrak{A}) = -\min\{r \in \mathbb{Z} : [\mathfrak{A}, n, r, \beta] \text{ in not simple}\}$ of [15, (3.6)], and it is called the *critical exponent*.

1.2. Simple types. Hereafter, we assume that the hereditary o_F -order \mathfrak{A} in a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A is always principal, that is, there exists an element z in A such that $\mathfrak{P} = z\mathfrak{A} = \mathfrak{A}z$.

Let $e_0 = e(\mathfrak{A}|\mathfrak{o}_F)$ be the \mathfrak{o}_F -period of \mathfrak{A} , that is, $\mathfrak{P}^{e_0} = \mathfrak{p}_F \mathfrak{A}$, and set

$$f_0 = N/e_0.$$

Then each element x of \mathfrak{A} has the block form $x = (x_{ij})_{1 \leq i,j \leq e_0}$ with $x_{ij} \in M_{f_0}(\mathfrak{o}_F)$ if $i \leq j$, and $x_{ij} \in M_{f_0}(\mathfrak{p}_F)$ otherwise.

Let B be the A-centralizer of β , and $\mathfrak{B} = \mathfrak{A} \cap B$. Then it follows from Definition 1.1(2) that \mathfrak{B} is a hereditary \mathfrak{o}_E -order in B. Let $e_1 =$ $e(\mathfrak{B}|\mathfrak{o}_E)$ be the \mathfrak{o}_E -period of \mathfrak{B} , defined as is e_0 above, where \mathfrak{o}_E is the maximal ideal of E.

Associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, the following three compact open subgroups

$$H^1 = H^1(\beta, \mathfrak{A}) \subset J^1 = J^1(\beta, \mathfrak{A}) \subset J = J(\beta, \mathfrak{A})$$

of G are defined in [4, (3.1)]. Via these groups, a simple type in G, denoted by (J, λ) , is constructed as follows: Take a simple character θ of H^1 (see [4, (3.2)] for the definition). Then it is known that there exists a unique irreducible representation $\eta = \eta(\theta)$ of J^1 containing θ . We obtain an extension, κ , of η to J, which is called a β -extension.

Write $G_E = B^{\times}$. Then G_E is isomorphic to $GL_{N/[E:F]}(E)$. Set

$$f_1 = N/([E:F]e_1).$$

For $U(\mathfrak{B}) = \mathfrak{B}^{\times} \supset U^{1}(\mathfrak{B}) = 1 + \operatorname{rad}(\mathfrak{B})$, it follows from [4, (3.1.15)] that $J = U(\mathfrak{B})J^1$ and that

$$J/J^1 \simeq U(\mathfrak{B})/U^1(\mathfrak{B}) \simeq GL_{f_1}(k_E)^{e_1},$$

where k_E denotes the residue field of E. Then J/J^1 is isomorphic to a Levi subgroup of $G_{N/[E:F]}(k_E)$. Let σ_0 be an irreducible cuspidal representation of $GL_{f_1}(k_E)$, and σ the inflation of the representation $\sigma_0^{\otimes e_1} = \sigma_0 \otimes \cdots \otimes \sigma_0$ (e_1 -times) of J/J^1 to J. Now the simple type (J, λ) in G is defined by

$$\lambda = \kappa \otimes \sigma,$$

in [4, (5.5.10)(a)].

In particular, a simple type (J, λ) in G of *level zero* is defined in [4, (5.5.10)(b)]. This is a special case of [4, (5.5.10)(a)], by setting E = F, $\mathfrak{B} = \mathfrak{A}, J^t = U^t(\mathfrak{A})(t = 0, 1)$, and θ, η, κ all trivial. Thus, J/J^1 is isomorphic to $GL_{N/e_1}(k_F)^{e_1}$ for $e_1 = e(\mathfrak{A}|\mathfrak{o}_F)$, and λ is the inflation of a representation $\sigma_0^{\otimes e_1}$, where we set $f_1 = N/e_1$ and σ_0 is an irreducible cuspidal representation of $GL_{f_1}(k_F)$, as above.

A simple type (J, λ) in G is called *maximal*, if $e_1 = e(\mathfrak{A}|\mathfrak{o}_E) = 1$.

1.3. Discrete series representations of $G = GL_N(F)$. Let e_1 be a positive integer dividing N, and ρ an irreducible supercuspidal representation of $G' = GL_{N/e_1}(F)$. Then there exists a maximal simple type (J_0, λ_0) in G' containing λ_0 by [4, (8.4.1)].

Let M be a Levi subgroup of $G = GL_N(F)$ that is isomorphic to $G'^{e_1} = G' \times \cdots \times G'$ $(e_1$ -times), and P = MN a parabolic subgroup of G with Levi factor M and with unipotent radical N. Then $\rho^{\otimes e_1}$ is an irreducible supercuspidal representation of $M \simeq G'^{e_1}$. Set $J_M = J_0^{e_1}$, and $\lambda_M = \lambda_0^{\otimes e_1}$. Then (J_M, λ_M) is a $[M, \rho^{\otimes e_1}]_M$ -type in the sense of [5, (8.1)], and by [6, Proposition 1.4], there exists an irreducible representation λ_P of a compact open subgroup J_P of G associated with the parabolic subgroup P such that (J_P, λ_P) is a G-cover of (J_M, λ_M) . Thus, (J_P, λ_P) is a $[M, \rho^{\otimes e_1}]_G$ -type. The pair (J_P, λ_P) is derived, as in [4, (7.2.17)], from a simple type (J, λ) in G associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A as in Section 1.2, and satisfies $\operatorname{Ind}_{J_P}^J \lambda_P \simeq \lambda$.

By [17], the induced representation

$$\operatorname{Ind}_{P}^{G}(|\det|^{(1-e_{1})/2}\rho\otimes\cdots\otimes|\det|^{(e_{1}-1)/2}\rho)$$

contains a unique irreducible discrete series representation, say (π, \mathcal{V}) , of G. Hence, by [4, (7.3.14)], (π, \mathcal{V}) contains (J, λ) and so (J_P, λ_P) .

1.4. A formal degree formula. Let (π, \mathcal{V}) be the irreducible discrete series representation of G in the previous section that contains a simple type (J, λ) in G associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A with $E = F[\beta]$ as in Section 1.2. Let B be the A-centralizer of β , and $\mathfrak{B} = B \cap \mathfrak{A}$.

Let $e_1 = e(\mathfrak{B}|\mathfrak{o}_E)$ and $f_1 = N/([E:F]e_1)$ be as in Section 1.2. Let K/E be an unramified extension of degree f_1 , and set $C^{\times} = GL_{e_1}(K)$. Let \mathcal{I} be an Iwahori subgroup of C^{\times} , and $\mathbf{1}_{\mathcal{I}}$ the trivial representation of \mathcal{I} . Then the Hecke algebras $\mathcal{H}(G,\lambda)$ and $\mathcal{H}(C^{\times},\mathbf{1}_{\mathcal{I}})$ for (J,λ) and $(\mathcal{I}, \mathbf{1}_{\mathcal{I}})$, respectively, are obtained (cf. [4, Section 4]). It follows from [4, (5.5.16), (5.6.6)] that there exists a support-preserving isomorphism

$$\Psi:\mathcal{H}(G,\lambda)\simeq\mathcal{H}(C^{\times},\mathbf{1}_{\mathcal{I}})$$

(cf. [4, (7.6.18)]). Via this isomorphism Ψ , the equivalence class of the irreducible discrete series representation (π, \mathcal{V}) of G corresponds to that of an unramified twist $\phi \cdot \operatorname{St}_{C^{\times}}$ of the Steinberg representation $\operatorname{St}_{C^{\times}}$ of C^{\times} (cf. [13, p.13]). In the notation of [4, (7.7.1)], we have

 $\pi \simeq \mathfrak{Ad}_{\Psi}(\phi \cdot \operatorname{St}_{C^{\times}})$

where \mathfrak{Ad}_{Ψ} is defined as in [4, (7.6.21)]. Denote by St_G the Steinberg representation of G, and by deg(St_G, dx) the formal degree of St_G relative to a Haar measure dx on G. Since the formal degrees of $\operatorname{St}_{C^{\times}}$ and $\phi \cdot \operatorname{St}_{C^{\times}}$ are the same, by [4, (7.7.11)], we obtain the following result.

Theorem 1.2. (cf. [13, Proposition 3.6]) Let notations and assumptions be as above. Then for arbitrary measures dx on G and dy on C^{\times} ,

(1.1)

$$\frac{\dim(\lambda)}{e(E|F)}\operatorname{vol}(K^{\times}\mathcal{I}/K^{\times}, dy) \operatorname{deg}(\operatorname{St}_{C^{\times}}, dy) = \operatorname{vol}(F^{\times}J/F^{\times}, dx) \operatorname{deg}(\pi, dx),$$

where e(E|F) denotes the index of ramification of E/F.

1.5. A deformation of the formal degree formula. There exists a hereditary \mathfrak{o}_F -order \mathfrak{A}_m in A such that $U(\mathfrak{A}_m) = \mathfrak{A}_m^{\times}$ is an Iwahori subgroup of G that is contained in the parahoric subgroup $U(\mathfrak{A})$. Now, we first normalize dx on G so that $\operatorname{vol}(F^{\times}U(\mathfrak{A}_m)/F^{\times}, dx) = 1$. Then

$$\operatorname{vol}(F^{\times}U(\mathfrak{A})/F^{\times}, dx) = (U(\mathfrak{A}) : U(\mathfrak{A}_m))\operatorname{vol}(F^{\times}U(\mathfrak{A}_m)/F^{\times}, dx)$$
$$= (U(\mathfrak{A}) : U(\mathfrak{A}_m)),$$

and by [3, Proposition 5.3], the formal degree of the Steinberg representation St_G of G is given by

$$\deg(\operatorname{St}_G, dx) = \frac{1}{N} \widetilde{W}_{A_{N-1}}(q^{-1})^{-1},$$

where $\widetilde{W}_{A_{N-1}}(t)$ is the Poincaré series of type A_{N-1} (see [12]). Thus, we obtain Macdonald's formula:

$$\operatorname{vol}(F^{\times}U(\mathfrak{A})/F^{\times},dx)\operatorname{deg}(\operatorname{St}_{G},dx)=\frac{1}{N}(U(\mathfrak{A}):U(\mathfrak{A}_{m}))\widetilde{W}_{A_{N-1}}(q^{-1})^{-1}$$

which is the same as that of [13, 3.7]. This formula holds for any Haar measure dx on G. We again normalize dx on G so that

$$\deg(\mathrm{St}_G, dx) = 1.$$

Then

$$\operatorname{vol}(F^{\times}U(\mathfrak{A})/F^{\times},dx) = \frac{1}{N}(U(\mathfrak{A}):U(\mathfrak{A}_m))\widetilde{W}_{A_{N-1}}(q^{-1})^{-1}$$

On the other hand, for $C^{\times} = GL_{e_1}(K)$, set

$$f = f(K|F) = [k_K : k_F],$$

where k_K is the residue field of K. Then, from Macdonald's formula for $\operatorname{St}_{C^{\times}}$, we also obtain

$$\operatorname{vol}(K^{\times}\mathcal{I}/K^{\times}, dy) \operatorname{deg}(\operatorname{St}_{C^{\times}}, dy) = \frac{1}{e_1} \widetilde{W}_{A_{e_1-1}}(q^{-f})^{-1}$$

Hence, since $N/e_1 = [K : F] = fe(E|F)$ and

$$\operatorname{vol}(F^{\times}J/F^{\times},dx) = \operatorname{vol}(F^{\times}U(\mathfrak{A})/F^{\times},dx)(U(\mathfrak{A}):J)^{-1},$$

we obtain

(1.2)

$$\frac{\deg(\operatorname{St}_{C^{\times}},dy)}{e(E|F)}\frac{\operatorname{vol}(K^{\times}\mathcal{I}/K^{\times},dy)}{\operatorname{vol}(F^{\times}J/F^{\times},dx)}=f\frac{\widetilde{W}_{A_{N-1}}(q^{-1})}{\widetilde{W}_{A_{e_{1}-1}}(q^{-f})}\frac{(U(\mathfrak{A}):J)}{(U(\mathfrak{A}):U(\mathfrak{A}_{m}))}.$$

Since $J = U(\mathfrak{B})J^1$ and $J^1 \subset U^1(\mathfrak{A})$, we moreover obtain

(1.3)
$$(U(\mathfrak{A}):J) = \frac{(U(\mathfrak{A}):U^{1}(\mathfrak{A}))}{(U(\mathfrak{B}):U^{1}(\mathfrak{B}))}(U^{1}(\mathfrak{A}):J^{1}).$$

Lemma 1.3. Let notations and assumptions be as above. Then the formal degree $deg(\pi, dx)$ is equal to

$$\left(f\frac{W_{A_{N-1}}(q^{-1})}{\widetilde{W}_{A_{e_1-1}}(q^{-f})}\right) (U(\mathfrak{A}_m): U^1(\mathfrak{A})) \left(\frac{\dim(\sigma)}{(U(\mathfrak{B}): U^1(\mathfrak{B}))}\right) \times \left((U^1(\mathfrak{A}): J^1) \dim(\eta)\right).$$

Proof. By definition, $\dim(\lambda) = \dim(\eta) \dim(\sigma)$. Thus, the lemma follows from Eqs. (1.1) to (1.3).

1.6. Calculation of the factors of $deg(\pi, dx)$. By the definition in [12],

(1.4)
$$f\frac{\widetilde{W}_{A_{N-1}}(q^{-1})}{\widetilde{W}_{A_{e_1-1}}(q^{-f})} = f\frac{q^N-1}{q^{N/e}-1}\frac{(q^f-1)^{e_1}}{(q-1)^N}$$

where we set e = e(E|F).

Since $U(\mathfrak{A})/U^1(\mathfrak{A}) \simeq GL_{f_0}(k_F)^{e_0}$ in Section 1.2, the quotient group $U(\mathfrak{A}_m)/U^1(\mathfrak{A})$ is isomorphic to the product of e_0 -copies of a Borel subgroup \overline{B}_0 of $GL_{f_0}(k_F)$. Hence,

(1.5)
$$(U(\mathfrak{A}_m): U^1(\mathfrak{A})) = |\overline{B}_0|^{e_0} = \{(q-1)^{f_0} q^{\frac{1}{2}f_0(f_0-1)}\}^{e_0}.$$

By the definition of σ_0 ,

$$\dim(\sigma) = (\dim(\sigma_0))^{e_1} = \prod_{i=1}^{f_1-1} (q^{f(E|F)i} - 1)^{e_1},$$

and $(U(\mathfrak{B}): U^{1}(\mathfrak{B})) = |GL_{f_{1}}(k_{E})|^{e_{1}}$. Hence,

(1.6)
$$\frac{\dim(\sigma)}{(U(\mathfrak{B}):U^{1}(\mathfrak{B}))} = \frac{q^{-\frac{1}{2}f(E|F)e_{1}f_{1}(f_{1}-1)}}{(q^{f}-1)^{e_{1}}}.$$

1.7. Calculation of the factor $(U^1(\mathfrak{A}) : J^1) \dim(\eta)$. Since by definition $U^1(\mathfrak{A}) = 1 + \mathfrak{P} \supset J^1 = 1 + \mathfrak{I}^1 \supset H^1 = 1 + \mathfrak{H}^1$, it follows from [4, (5.1.1)] that the last factor $(U^1(\mathfrak{A}) : J^1) \dim(\eta)$ is equal to

$$\begin{aligned} (\mathfrak{P}:\mathfrak{J}^1)\sqrt{(J^1:H^1)} &= (\mathfrak{P}:\mathfrak{J}^1)(\mathfrak{J}^1:\mathfrak{H}^1)^{1/2} \\ &= (\mathfrak{P}:\mathfrak{J}^1)^{1/2}(\mathfrak{P}:\mathfrak{H}^1)^{1/2}. \end{aligned}$$

This amounts to dim π_{β}^{1} in [13, 7.1]. We compute this similarly to as done in [13].

For the simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, $[\mathfrak{A}, n, r, \beta]$ with $r = -k_0(\beta, \mathfrak{A})$ is a pure stratum, and it determines a family $[\mathfrak{A}, n, r_i, \gamma_i], 0 \leq i \leq s$ of simple strata that satisfy the conditions [4, (2.4.2)]. This family is called a *defining sequence* for the pure stratum $[\mathfrak{A}, n, r, \beta]$. Hence we get a family of pairs $(r_i, \gamma_i), 0 \leq i \leq s$, such that

- (1) $[\mathfrak{A}, n, r_i, \gamma_i]$ is simple, $0 \leq i \leq s;$
- (2) $[\mathfrak{A}, n, r_0, \gamma_0] \sim [\mathfrak{A}, n, r, \beta];$
- (3) $0 < r = r_0 < r_1 < \cdots < r_s < r_{s+1} = n;$

(4) $r_{i+1} = -k_0(\gamma_i, \mathfrak{A})$, and for $0 \le i \le s-1$,

$$[\mathfrak{A}, n, r_{i+1}, \gamma_{i+1}] \sim [\mathfrak{A}, n, r_{i+1}, \gamma_i],$$

(5)
$$-k_0(\gamma_s,\mathfrak{A}) = n \text{ or } \infty.$$

These conditions include all the conditions in [4, (2.4.2)] except condition (vi).

Denote by A_{γ_i} the A-centralizer of γ_i . Then by using the family $(r_i, \gamma_i), 0 \leq i \leq s$, we define $\mathfrak{J} = \mathfrak{J}(\beta) = \mathfrak{J}(\beta, \mathfrak{A})$ and $\mathfrak{H} = \mathfrak{H}(\beta) = \mathfrak{H}(\beta, \mathfrak{A})$ inductively as follows:

$$\mathfrak{J}(\gamma_i) = \mathfrak{A} \cap A_{\gamma_i} + \mathfrak{J}(\gamma_{i+1}) \cap \mathfrak{P}^{[(r_{i+1}+1)/2]},\\ \mathfrak{H}(\gamma_i) = \mathfrak{A} \cap A_{\gamma_i} + \mathfrak{H}(\gamma_{i+1}) \cap \mathfrak{P}^{[r_{i+1}/2]+1},$$

for $-1 \leq i \leq s$, where we set $\gamma_{-1} = \beta$ and $\mathfrak{J}(\gamma_{s+1}) = \mathfrak{H}(\gamma_{s+1}) = \mathfrak{A}$, (see [4, (3.1.7), (3.1.8)]).

For a real number r, set

$$\overline{r} = [r/2] + 1, \ \underline{r} = [(r+1)/2],$$

where [x] denotes the greatest integer $\leq x$, for a real number x. From a filtration

$$\mathfrak{P} = \mathfrak{P} + \mathfrak{J}^1 \supset \mathfrak{P}^{\underline{r_1}} + \mathfrak{J}^1 \supset \mathfrak{P}^{\underline{r_2}} + \mathfrak{J}^1 \supset \cdots \supset \mathfrak{P}^{\underline{r_s}} + \mathfrak{J}^1 \supset \mathfrak{P}^{\underline{n}} + \mathfrak{J}^1 = \mathfrak{J}^1$$

in $\mathfrak{P} \supset \mathfrak{J}^1$, we get

$$\begin{aligned} (\mathfrak{P}:\mathfrak{J}^{1}) &= \prod_{i=-1}^{s} (\mathfrak{P}^{\underline{r_{i}}} + \mathfrak{J}^{1}:\mathfrak{P}^{\underline{r_{i+1}}} + \mathfrak{J}^{1}) \\ &= \prod_{i=-1}^{s} \frac{(\mathfrak{P}^{\underline{r_{i}}}:\mathfrak{P}^{\underline{r_{i+1}}})}{(\mathfrak{P}^{\underline{r_{i}}} \cap \mathfrak{J}:\mathfrak{P}^{\underline{r_{i+1}}} \cap \mathfrak{J})} \\ &= \prod_{i=-1}^{s} \frac{(\mathfrak{P}^{\underline{r_{i}}}:\mathfrak{P}^{\underline{r_{i+1}}})}{(\mathfrak{P}^{\underline{r_{i}}} \cap A_{\gamma_{i}}:\mathfrak{P}^{\underline{r_{i+1}}} \cap A_{\gamma_{i}})}, \end{aligned}$$

where we set $r_{-1} = 1$. The last line follows from [4, (3.1.8), (3.1.10)]. For $-1 \le i \le s$, set

$$d_i = \underline{r_{i+1}} - \underline{r_i}.$$

Since \mathfrak{P} is principal,

$$(\mathfrak{P}^{\underline{r_i}}:\mathfrak{P}^{\underline{r_{i+1}}}) = (\mathfrak{A}:\mathfrak{P})^{d_i} = |\mathcal{M}_{f_0}(k_F)|^{e_0d_i} = q^{Nf_0d_i}$$

Set $f'_i = f(F[\gamma_i]|F), \ e'_i = e(F[\gamma_i]|F), \text{ and}$

$$m_i = (N/[F[\gamma_i]:F])/(e_0/e'_i) = f_0/f'_i.$$

Then

$$(\mathfrak{P}^{\underline{r_i}} \cap A_{\gamma_i} : \mathfrak{P}^{\underline{r_{i+1}}} \cap A_{\gamma_i}) = |\mathcal{M}_{m_i}(k_{F[\gamma_i]})|^{(e_0/e'_i)d_i} = q^{Nf_0d_i/[F[\gamma_i]:F]}.$$

Hence,

$$(\mathfrak{P}:\mathfrak{J}^1) = q^{\mu}; \ \mu = \sum_{i=-1}^s Nf_0(1 - [F[\gamma_i]:F]^{-1})d_i.$$

Similarly, setting $d'_i = \overline{r_{i+1}} - \overline{r_i}$, we get

$$(\mathfrak{P}:\mathfrak{H}^1) = q^{\mu'}; \ \mu' = \sum_{i=-1}^s Nf_0(1 - [F[\gamma_i]:F]^{-1})d'_i.$$

Finally, we obtain $(\mathfrak{P}:\mathfrak{J}^1)^{1/2}(\mathfrak{P}:\mathfrak{H}^1)^{1/2}=q^{\nu/2}$ with

(1.7)
$$\nu = \sum_{i=-1}^{s} N f_0 (1 - [F[\gamma_i] : F]^{-1}) (r_{i+1} - r_i).$$

1.8. Main Theorem for $GL_N(F)$. We are now ready to determine the explicit formal degree formula for an irreducible discrete series representation (π, \mathcal{V}) of G as in Section 1.3.

Theorem 1.4. ([13, Theorem 1.1]) Let (π, \mathcal{V}) be an irreducible discrete series representation of G that contains a simple type (J, λ) in G associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A as in Section 1.3. Let

dx be a Haar measure on G such that $\deg(\operatorname{St}_G, dx) = 1$. For a family $(r_i, \gamma_i), 0 \leq i \leq s$, as in Section 1.7, set

$$\Delta = \frac{1}{e(\mathfrak{A}|\mathfrak{o}_F)} \sum_{i=-1}^{s} (1 - [F[\gamma_i]:F]^{-1})(r_{i+1} - r_i)$$

where we reset $(r_{-1}, \gamma_{-1}) = (0, \beta)$ and $r_{s+1} = n$. Then this positive rational number Δ does not depend on the choice of defining sequence, and

$$\deg(\pi, dx) = f \frac{q^N - 1}{q^{N/e} - 1} q^{\frac{1}{2}[N^2 \Delta - N(1 - 1/e)]},$$

where f = f(K|F) and e = e(K|F) = e(E|F).

Proof. Denote by $\deg(\pi, dx)_{p'}$ the *p*-prime part of $\deg(\pi, dx)/f$. From Lemma 1.3 and from Eqs. (1.4) to (1.6), it follows immediately that

$$f \cdot \deg(\pi, dx)_{p'} = f \frac{q^N - 1}{q^{N/e} - 1}.$$

Since the q-power of $(1.5) \times (1.6)$ is equal to

$$\frac{1}{2}e_0f_0(f_0-1) - \frac{1}{2}f(E|F)e_1f_1(f_1-1) \\ = \frac{1}{2}N(\frac{1}{e}-1) + \frac{1}{2}Nf_0(1-\frac{1}{[E:F]})$$

the sum of this value and the value ν of (1.7) is reduced to the q-power of the right-hand side of the formula in the assertion.

It follows directly from [4, (2.1.4)] that Δ does not depend on the choice of defining sequence. The proof is complete.

In Theorem 1.4, if $e_1 = e(\mathfrak{B}|\mathfrak{o}_E) = 1$, the irreducible discrete series representation (π, \mathcal{V}) of G is supercuspidal. Thus, Theorem 1.4 contains the formal degree formula for an irreducible supercuspidal representation of G containing a maximal simple type (J, λ) as follows:

Corollary 1.5. Let (π, \mathcal{V}) be an irreducible supercuspidal representation of G containing a maximal simple type (J, λ) in G, and $\{(r_i, \gamma_i) : 0 \le i \le s\}$ a family as in Theorem 1.3. Then

$$\deg(\pi, dx) = f \frac{q^N - 1}{q^{N/e} - 1} q^{\frac{1}{2}[N^2 \Delta - N(1 - 1/e)]},$$

for a Haar measure dx on G with $deg(St_G, dx) = 1$, where

$$\Delta = \frac{1}{e} \sum_{i=-1}^{s} (1 - [F[\gamma_i] : F]^{-1})(r_{i+1} - r_i).$$

Remarks 1.6. (i) It is shown by [4, (6.2.2)] that an irreducible supercuspidal representation (π, \mathcal{V}) of G containing a maximal simple type (J, λ) in G of positive level is equivalent to c-Ind^G_{E×J} Λ for an extension Λ of λ . From this fact, we obtain

$$\deg(\pi, dx) = \frac{\dim(\lambda)}{\operatorname{vol}(E^{\times}J/F^{\times}, dx)}$$

for any Haar measure dx on G, (cf. [7, 5.9]), independently from Theorem 1.2, and can similarly show Corollary 1.5.

(ii) In Theorem 1.4, the level zero case is implicit. In this case, $E = F, \mathfrak{B} = \mathfrak{A}, J^t = U^t(\mathfrak{A})(t = 0, 1)$ and η is trivial, as in Section 1.2. Thus, in the formula for deg (π, dx) of Lemma 1.3, we have $(U^1(\mathfrak{A}) : J^1) \dim(\eta) = 1$, and can get

$$\deg(\pi, dx) = N/e(\mathfrak{A}|\mathfrak{o}_F)$$

similarly to as done in Section 1.6, for such a Haar measure dx on G as above.

(iii) This formula follows also from Theorem 1.4, by setting e = 1, $\Delta = 0$ and $\lambda = \lambda_1$, since E = F, $J = U(\mathfrak{A})$ and so the defining sequence is empty. Hence, by Theorem 1.4, the formal degrees of all discrete series representations of $GL_N(F)$ are computed.

2. An application to unramified p-adic unitary groups

2.1. Unramified unitary groups. Let F be a non-Archimedean local field of odd residual characteristic, with a non-trivial galois involution $x \mapsto \overline{x}$ with fixed field F_0 . Let N be an even integer ≥ 4 , and V an N-dimensional F-vector space equipped with a non-degenerate F/F_0 -Hermitian form h with anisotropic part (0). Let G = U(V, h) be the unitary group of (V, h). Hereafter, we assume that F/F_0 is unramified.

Recently, in [9], we defined a self-dual simple type (J, λ) in G associated with a certain skew simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, and, in [11], we proved that the Hecke algebra $\mathcal{H}(G, \lambda)$ is the affine Hecke algebra of type \widetilde{C}_m for some positive integer $m \geq 2$, and determined the parameters of the Hecke algebra completely. Thanks to these results on G, we can apply the improved method of the previous section for $GL_N(F)$ to the unramified unitary group G, and we obtain analogous results for the group G. Here we present a part of these results without proofs.

2.2. Self-dual simple types. We also denote by $x \mapsto \overline{x}$ the adjoint (anti-)involution on $A = \operatorname{End}_F(V)$ induced by the Hermitian form h.

A simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, defined in Section 1.1, is called skew if \mathfrak{A} is defined by a self-dual strict \mathfrak{o}_F -lattice sequence Λ in V (cf. [14, 1.2]) and β is skew in A, i.e., $\overline{\beta} = -\beta$. Assume that $[\mathfrak{A}, n, 0, \beta]$ is a skew simple stratum in A with $E = F[\beta]$. Write $E_0 = \{x \in E : \overline{x} = x\}$. Then there exists a non-degenerate E/E_0 -Hermitian form h_E on the E-vector space V such that, setting $L^{\#} = \{v \in V : h_E(v, L) \subset \mathfrak{p}_E\}$, for an \mathfrak{o}_E -lattice L in V, we have $L^{\#} = \{v \in V : h(v, L) \subset \mathfrak{p}_F\}$ (cf. [15, Section 2]). **Definition 2.1.** Following [9], we say that a skew simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A is good if the following conditions are satisfied:

- (1) E/E_0 is an unramified quadratic extension;
- (2) $R = \dim_E(V)$ is even;
- (3) there exists an o_E -lattice L in $\{\Lambda(n) : n \in \mathbb{Z}\}$ such that $L^{\#} = \varpi_E L$, where Λ is as above and ϖ_E is a uniformizer of E.

Hereafter, we assume that $[\mathfrak{A}, n, 0, \beta]$ is a good skew simple stratum in A with $E = F[\beta]$. Let B be the A-centralizer of β , $\mathfrak{B} = B \cap \mathfrak{A}$, $e_1 = e(\mathfrak{B}|\mathfrak{o}_E)$, and $f_1 = N/([E:F]e_1)$, as before.

Similarly, we have compact open subgroups $H^1(\beta, \mathfrak{A}) \subset J^1(\beta, \mathfrak{A}) \subset J(\beta, \mathfrak{A}) \subset J(\beta, \mathfrak{A})$ of G. Denote simply by $H^1 \subset J^1 \subset J$ these subgroups. As in Section 1.2, we begin with a skew simple character θ of H^1 , and there exists a unique irreducible representation η of J^1 containing θ . Moreover, we also have a β -extension κ of η to J by [15, 4.2]. Set

$$m = [e_1/2].$$

It follows from the conditions of Definition 2.1 that the quotient group J/J^1 is isomorphic to

$$U(\mathfrak{B})/U^{1}(\mathfrak{B}) \simeq \begin{cases} GL_{f_{1}}(k_{E})^{m} & \text{if } e_{1} \text{ is even,} \\ GL_{f_{1}}(k_{E})^{m} \times U_{f_{1}}(k_{E}/k_{E_{0}}) & \text{if } e_{1} \text{ is odd,} \end{cases}$$

where by Definition 2.1(2), f_1 is even and $U_{f_1}(k_E/k_{E_0})$ denotes the unitary group of a non-degenerate k_E/k_{E_0} -Hermitian form on an f_1 dimensional k_E -vector space. Let σ_0 and σ_1 be irreducible cuspidal representations of $GL_{f_1}(k_E)$ and $U_{f_1}(k_E/k_{E_0})$, respectively. Let σ be the inflation of $\sigma_0^{\otimes m}$ to J if e_1 is even, and that of $\sigma_0^{\otimes m} \otimes \sigma_1$ if e_1 is odd. A simple type (J, λ) in G (of positive level) is defined similarly by $\lambda = \kappa \otimes \sigma$. By [15, p.334], on each factor $GL_{f_1}(k_E)$ of $U(\mathfrak{B})/U^1(\mathfrak{B})$, a certain Weyl group element of $G_E = B \cap G$ induces an involution $g \mapsto \overline{g}$.

Definition 2.2. ([11, Definition 5.2]) A simple type (J, λ) in G is called *self-dual* if σ_0 is equivalent to the representation $g \mapsto \sigma_0(\overline{g})$.

2.3. A formal degree formula for unramified U(V,h). Recently, by [10] and [11], we determined the structure of the Hecke algebra $\mathcal{H}(G,\lambda)$ for such a self-dual simple type (J,λ) above as follows:

Proposition 2.3. Let $[\mathfrak{A}, n, 0, \beta]$ be a good skew simple stratum in A with $E = F[\beta]$, and (J, λ) a self-dual simple type in G associated with $[\mathfrak{A}, n, 0, \beta]$ in A. Let B be the A-centralizer of β , $e_1 = e(\mathfrak{B}|\mathfrak{o}_E)$, and $m = [e_1/2]$. Assume that $m \geq 2$. Then the Hecke algebra $\mathcal{H}(G, \lambda)$ for (J, λ) is an affine Hecke algebra of type \widetilde{C}_m with parameter $(q_1, q_2, q_3) =$ $(q^{-N/e_0}, q^{-N/2e_0}, q^{-N/2e_0})$, where $e_0 = e(\mathfrak{A}|\mathfrak{o}_F)$ as in Section 1.1.

Let K/E_0 be a field extension such that $K \supset E$, $K \supset K_0 \supset E_0$, $e(K|E_0) = 1$, and $[K : E] = [K_0 : E_0] = f_1$. Let C^{\times} be the unitary

group of type C_m defined by a non-degenerate K/K_0 -Hermitian form, and \mathcal{I} an Iwahori subgroup of C^{\times} . Immediately, $|k_K| = |k_E|^{f_1} = q^{N/e_0}$, and so the Iwahori-Hecke algebra $\mathcal{H}(C^{\times}, \mathbf{1}_{\mathcal{I}})$ turns out to be also the affine Hecke algebra of type \widetilde{C}_m with parameter $(q_1, q_2, q_3) = (q^{-N/e_0}, q^{-N/2e_0}, q^{-N/2e_0})$ provided that $m \geq 2$.

When $m = [e_1/2] = 1$, again by [11], $\mathcal{H}(G, \lambda)$ is isomorphic to the affine Hecke algebra with parameter $|k_{K_0}| = q^{N/2e_0}$ over the infinite dihedral group, and so is the Iwahori-Hecke algebra $\mathcal{H}(C^{\times}, \mathbf{1}_{\mathcal{I}})$ of unramified $C^{\times} = U(1, 1)(K_0)$ relative to $\mathbf{1}_{\mathcal{I}}$ as well (cf. [2, 3.d]). Hence, we obtain the following:

Proposition 2.4. Let notations and assumptions be as above. In particular, let $m \ge 1$. Then there exists a canonical isomorphism

$$\Psi: \mathcal{H}(G,\lambda) \simeq \mathcal{H}(C^{\times},\mathbf{1}_{\mathcal{I}}),$$

that is support-preserving.

Theorem 2.5. Via the Hecke isomorphism Ψ in Proposition 2.4, the Steinberg representation $\operatorname{St}_{C^{\times}}$ of C^{\times} corresponds to the equivalence class of an irreducible square-integrable representation, say (π, \mathcal{V}) , of G that contains the self-dual simple type (J, λ) in G as above.

Proof. This is the analogue of [5, (7.7.1)] for $GL_N(F)$. The method of proof remains valid for unramified G.

Corollary 2.6. Let notations and assumptions be as in Theorem 2.5. Then

$$\operatorname{vol}(J, dx) \; rac{\operatorname{deg}(\pi, dx)}{\operatorname{dim}(\lambda)} = \operatorname{vol}(\mathcal{I}, dy) \operatorname{deg}(\operatorname{St}_{C^{ imes}}, dy)$$

for any Haar measures dx on G and dy on C^{\times} .

2.4. A formal degree formula for unramified G. We normalize dx on G so that the formal degree of the Steinberg representation St_G of G is equal to 1 relative to dx. Then, as in Section 1.5, the formal degree deg (π, dx) is rewritten as

$$\begin{pmatrix} \widetilde{W}_{C_{N/2}}(q^{-1}, q^{-1/2}, q^{-1/2}) \\ \widetilde{W}_{C_m}(q^{-N/e_0}, q^{-N/2e_0}, q^{-N/2e_0}) \end{pmatrix} (U(\mathfrak{A}_m) : U^1(\mathfrak{A})) \\ \times \left(\frac{\dim(\sigma)}{(U(\mathfrak{B}) : U^1(\mathfrak{B}))} \right) \left((U^1(\mathfrak{A}) : J^1) \dim(\eta) \right),$$

where $U(\mathfrak{A}_m)$ is an Iwahori subgroup of G that is contained in $U(\mathfrak{A})$, and, for example, $\widetilde{W}_{C_m}(t_1, t_2, t_3)$ denotes the Poincaré series of type \widetilde{C}_m (see [12, Section 3]). We note that this also holds in the case of m = 1. For, if we formally set m = 1 in the Poincaé series $\widetilde{W}_{C_m}(t_1, t_2, t_3)$, we have

$$\frac{(1-t_1)(1+t_2)(1+t_3)}{(1-t_1)(1-t_2t_3)} = \frac{(1+t_2)(1+t_3)}{1-t_2t_3}.$$

This is nothing but the Poincaré series for the infinite dihedral group.

Similarly, we can easily compute the factors except for the last $(U^1(\mathfrak{A}): J^1) \dim(\eta)$ as in Section 1.6.

The calculation of this last factor is rather more laborious than that for GL_N in Section 1.7. We also have a defining sequence for the pure stratum $[\mathfrak{A}, n, r, \beta]$ in A with $r = -k_0(\beta, \mathfrak{A})$, and get a family $\{(r_i, \gamma_i)|0 \leq i \leq s\}$, together with $(r_{-1}, \gamma_{-1}) = (1, \beta)$, where γ_i is skew and simple in A, by [14, Section 3], as in Section 1.7. Set $d_i =$ $[(r_{i+1}+1)/2] - [(r_i+1)/2]$ and $d'_i = [r_{i+1}/2] - [r_i/2]$, for $-1 \leq i \leq s$, as before.

To present the main theorem, we need to define positive integers δ_i , for $-1 \leq i \leq s$, as follows: set $\delta_i = 0$ if $e_0/e(F[\gamma_i]|F)$ is even, and otherwise,

$$\begin{split} \delta_i &= [d_i/2] + [(d'_i+1)/2] & \text{if } r_i \equiv 0 \mod 4, \\ \delta_i &= [(d_i+1)/2] + [d'_i/2] & \text{if } r_i \equiv 1 \mod 4, \\ \delta_i &= [(d_i+1)/2] + [(d'_i+1)/2] & \text{if } r_i \equiv 2 \mod 4, \\ \delta_i &= [d_i/2] + [d'_i/2] & \text{if } r_i \equiv 3 \mod 4. \end{split}$$

Theorem 2.7. Let (π, \mathcal{V}) be an irreducible square-integrable representation of G containing a self-dual simple type (J, λ) in G as in Theorem 2.5. Let $\{(r_i, \gamma_i)| 0 \leq i \leq s\}$ be a family defined as above. Let $e_0 = e(\mathfrak{A}|\mathbf{o}_F), \ e = e(E|F), \ and \ e_i^0 = e(F[\gamma_i]|F[\gamma_i]_0), \ for \ 0 \leq i \leq s,$ where each $F[\gamma_i]_0$ is the fixed field of $F[\gamma_i]$ under the involution induced by the adjoint one $x \mapsto \overline{x}$ on A in Section 2.2. Set

$$\Delta = \frac{1}{e_0} \sum_{i=-1}^{s} \left(1 - \frac{1}{[F[\gamma_i]:F]} \right) (r_{i+1} - r_i),$$
$$\Delta' = \frac{1}{e_0} \sum_{i=-1}^{s} (1 - e_i^0) \delta_i$$

where each δ_i is the integer defined above and we reset $(r_{-1}, \gamma_{-1}) = (0, \beta)$ and $r_{s+1} = n$. Then these Δ and Δ' do not depend on the choice of defining sequence, and the formal degree deg (π, dx) is given by

(1) when $e_0/e = e(\mathfrak{B}|\mathfrak{o}_E)$ is even,

$$\begin{split} q^{\frac{1}{4}[N^2\Delta - N(1-1/e) + N\Delta']} \\ \times \prod_{i=0}^{e_0/2e-1} \frac{q^{N(i+e_0/2e)/e_0} - 1}{(q^{N(i+1)/e_0} - 1)(q^{N(i+1/2)/e_0} + 1)^2} \\ & \times \prod_{i=0}^{N/2-1} \frac{(q^{i+1} - 1)(q^{i+1} + 1)^2}{q^{N/2+i-1} - 1}, \end{split}$$

(2) when $e_0/e = e(\mathfrak{B}|\mathfrak{o}_E)$ is odd,

$$\frac{q^{\frac{1}{4}[N^2\Delta - N(1-1/e) + N\Delta']}}{q^{N/2e_0} - 1} \times \prod_{i=0}^{(e_0/e-3)/2} \frac{q^{N(i+(e_0/e-1)/2)/e_0} - 1}{(q^{N(i+1)/e_0} - 1)(q^{N(i+1/2)/e_0} + 1)^2} \times \prod_{i=0}^{N/2-1} \frac{(q^{i+1} - 1)(q^{i+1} + 1)^2}{q^{N/2+i-1} - 1}.$$

- **Remarks 2.8.** (1) We also obtained analogous results for $Sp_N(F)$. This formal degree formula is more complicated than that in Theorem 2.7 for the unramified unitary group G.
 - (2) In [11], it is proved that Theorem 2.5 holds for a self-dual simple type (J, λ) in G associated with not only a skew simple stratum [𝔄, n, 0, β] in A which is not good (see Definition 2.1), but also a skew (non-simple) semisimple stratum [Λ, n, 0, β] in A, that is, β is a skew semisimple element of A (cf. [14]).
 - (3) We constructed a special skew semisimple stratum $[\Lambda, n, 0, \beta]$ in A, and computed the corresponding formal degree as well.

References

- [1] A.-M. Aubert and R. Plymen, Plancherel measure for GL(n, F) and GL(m, D): Explicit formulas and Bernstein decomposition, J. Number Theory, **112** (2005), 26-66.
- [2] L. Blasco and C. Blondel, Algèbres de Hecke et séries principales généralisées de $Sp_4(F)$, Proc. London Math. Soc. (3) 85 (2002), 659-685.
- [3] A. Borel, Admissible representations of a semisimple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233-259.
- [4] C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Ann. Math. Stud. **129**, Princeton Univ. Press, 1993.
- [5] C. J. Bushnell and P. C. Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), 582-634.
- [6] C. J. Bushnell and P. C. Kutzko, Semisimple types in GL_n , Compositio Math. **119** (1999), 53-97.
- [7] H. Carayol, Représentations cuspidales du groupes linéaire, Ann. Scient. Ec. Norm. Sup. (4) 17 (1984), 191-225.
- [8] L. Corwin, A. Moy and P. J. Sally Jr., Degrees and formal degrees for division algebras and GL_n over a *p*-adic field, Pacific J. Math. 141 (1990), 21-45.
- K. Kariyama, On types for unramified p-adic unitary groups, Canad. J. Math. Vol. 60 (2008), No. 3, 1067-1107.
- [10] K. Kariyama, On the Hecke algebra of a type for unramified *p*-adic unitary groups, J. Algebra **323** (2010), 2624-2637.
- [11] K. Kariyama and M. Miyauchi, Hecke algebras of self-dual simple types for *p*-adic classical groups, Preprint 2010 submitted.
- [12] I. G. Macdonald, The Poincaré series of a Coxeter group, Math. Annalen 199 (1972), 161-174.

- [13] A. J. Silberger and E.-W. Zink, The formal degree of discrete series representations of central simple algebras over p-adic fields, Max-Plank-Institut für Math. MPI 96-154 (1996).
- [14] S. Stevens, Semisimple characters for p-adic classical groups, Duke Math. J. 127 no.1 (2005), 123-173.
- [15] S. Stevens, The supercuspidal representations of *p*-adic classical groups, Invent. Math. **172** (2) (2008), 289-352.
- [16] J.-W. Waldspurger, Algèbres de Hecke et induites de représentations cuspidales, pour GL(N), J. reine angew. Math. **370** (1986), 127-191.
- [17] A. Zelvinsky, Induced representations of reductive *p*-adic groups II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. **13** (1980), 165-210.

Deparment of Economics, Management and Information Science Onomichi University Onomichi, Hiroshima 722-8508, Japan E-mail: kariyama@onomichi-u.ac.jp